Revendor hcsshim and go-tar

Signed-off-by: Darren Stahl <darst@microsoft.com>
This commit is contained in:
Darren Stahl 2017-11-27 14:04:47 -08:00 committed by Derek McGowan
parent 967caeeacc
commit 444e4220c2
No known key found for this signature in database
GPG Key ID: F58C5D0A4405ACDB
20 changed files with 2211 additions and 883 deletions

View File

@ -35,10 +35,10 @@ golang.org/x/sync 450f422ab23cf9881c94e2db30cac0eb1b7cf80c
github.com/BurntSushi/toml v0.2.0-21-g9906417
github.com/grpc-ecosystem/go-grpc-prometheus 6b7015e65d366bf3f19b2b2a000a831940f0f7e0
github.com/Microsoft/go-winio v0.4.4
github.com/Microsoft/hcsshim v0.6.3
github.com/Microsoft/hcsshim v0.6.7
github.com/Microsoft/opengcs v0.3.2
github.com/boltdb/bolt e9cf4fae01b5a8ff89d0ec6b32f0d9c9f79aefdd
google.golang.org/genproto d80a6e20e776b0b17a324d0ba1ab50a39c8e8944
golang.org/x/text 19e51611da83d6be54ddafce4a4af510cb3e9ea4
github.com/dmcgowan/go-tar 2e2c51242e8993c50445dab7c03c8e7febddd0cf
github.com/dmcgowan/go-tar go1.10
github.com/stevvooe/ttrpc bdb2ab7a8169e485e39421e666e15a505e575fd2

View File

@ -201,12 +201,18 @@ func createContainerWithJSON(id string, c *ContainerConfig, additionalJSON strin
if createError == nil || IsPending(createError) {
if err := container.registerCallback(); err != nil {
// Terminate the container if it still exists. We're okay to ignore a failure here.
container.Terminate()
return nil, makeContainerError(container, operation, "", err)
}
}
err = processAsyncHcsResult(createError, resultp, container.callbackNumber, hcsNotificationSystemCreateCompleted, &defaultTimeout)
if err != nil {
if err == ErrTimeout {
// Terminate the container if it still exists. We're okay to ignore a failure here.
container.Terminate()
}
return nil, makeContainerError(container, operation, configuration, err)
}

View File

@ -72,6 +72,22 @@ var (
ErrPlatformNotSupported = errors.New("unsupported platform request")
)
type EndpointNotFoundError struct {
EndpointName string
}
func (e EndpointNotFoundError) Error() string {
return fmt.Sprintf("Endpoint %s not found", e.EndpointName)
}
type NetworkNotFoundError struct {
NetworkName string
}
func (e NetworkNotFoundError) Error() string {
return fmt.Sprintf("Network %s not found", e.NetworkName)
}
// ProcessError is an error encountered in HCS during an operation on a Process object
type ProcessError struct {
Process *process
@ -174,6 +190,12 @@ func makeProcessError(process *process, operation string, extraInfo string, err
// will currently return true when the error is ErrElementNotFound or ErrProcNotFound.
func IsNotExist(err error) bool {
err = getInnerError(err)
if _, ok := err.(EndpointNotFoundError); ok {
return true
}
if _, ok := err.(NetworkNotFoundError); ok {
return true
}
return err == ErrComputeSystemDoesNotExist ||
err == ErrElementNotFound ||
err == ErrProcNotFound

View File

@ -2,7 +2,6 @@ package hcsshim
import (
"encoding/json"
"fmt"
"net"
"github.com/sirupsen/logrus"
@ -135,7 +134,7 @@ func GetHNSEndpointByName(endpointName string) (*HNSEndpoint, error) {
return &hnsEndpoint, nil
}
}
return nil, fmt.Errorf("Endpoint %v not found", endpointName)
return nil, EndpointNotFoundError{EndpointName: endpointName}
}
// Create Endpoint by sending EndpointRequest to HNS. TODO: Create a separate HNS interface to place all these methods
@ -192,18 +191,24 @@ func (endpoint *HNSEndpoint) ContainerHotDetach(containerID string) error {
return modifyNetworkEndpoint(containerID, endpoint.Id, Remove)
}
// ApplyACLPolicy applies Acl Policy on the Endpoint
func (endpoint *HNSEndpoint) ApplyACLPolicy(policy *ACLPolicy) error {
// ApplyACLPolicy applies a set of ACL Policies on the Endpoint
func (endpoint *HNSEndpoint) ApplyACLPolicy(policies ...*ACLPolicy) error {
operation := "ApplyACLPolicy"
title := "HCSShim::HNSEndpoint::" + operation
logrus.Debugf(title+" id=%s", endpoint.Id)
jsonString, err := json.Marshal(policy)
if err != nil {
return err
for _, policy := range policies {
if policy == nil {
continue
}
jsonString, err := json.Marshal(policy)
if err != nil {
return err
}
endpoint.Policies = append(endpoint.Policies, jsonString)
}
endpoint.Policies[0] = jsonString
_, err = endpoint.Update()
_, err := endpoint.Update()
return err
}

View File

@ -2,7 +2,6 @@ package hcsshim
import (
"encoding/json"
"fmt"
"net"
"github.com/sirupsen/logrus"
@ -90,7 +89,7 @@ func GetHNSNetworkByName(networkName string) (*HNSNetwork, error) {
return &hnsnetwork, nil
}
}
return nil, fmt.Errorf("Network %v not found", networkName)
return nil, NetworkNotFoundError{NetworkName: networkName}
}
// Create Network by sending NetworkRequest to HNS.

View File

@ -75,19 +75,18 @@ const (
)
type ACLPolicy struct {
Type PolicyType `json:"Type"`
Protocol uint16
InternalPort uint16
Action ActionType
Direction DirectionType
LocalAddress string
RemoteAddress string
LocalPort uint16
RemotePort uint16
RuleType RuleType `json:"RuleType,omitempty"`
Priority uint16
ServiceName string
Type PolicyType `json:"Type"`
Protocol uint16
InternalPort uint16
Action ActionType
Direction DirectionType
LocalAddresses string
RemoteAddresses string
LocalPort uint16
RemotePort uint16
RuleType RuleType `json:"RuleType,omitempty"`
Priority uint16
ServiceName string
}
type Policy struct {

View File

@ -30,11 +30,12 @@ type Layer struct {
}
type MappedDir struct {
HostPath string
ContainerPath string
ReadOnly bool
BandwidthMaximum uint64
IOPSMaximum uint64
HostPath string
ContainerPath string
ReadOnly bool
BandwidthMaximum uint64
IOPSMaximum uint64
CreateInUtilityVM bool
}
type MappedPipe struct {

View File

@ -472,15 +472,21 @@ func cloneTree(srcPath, destPath string, mutatedFiles map[string]bool) error {
}
destFilePath := filepath.Join(destPath, relPath)
fileAttributes := info.Sys().(*syscall.Win32FileAttributeData).FileAttributes
// Directories, reparse points, and files that will be mutated during
// utility VM import must be copied. All other files can be hard linked.
isReparsePoint := info.Sys().(*syscall.Win32FileAttributeData).FileAttributes&syscall.FILE_ATTRIBUTE_REPARSE_POINT != 0
if info.IsDir() || isReparsePoint || mutatedFiles[relPath] {
fi, err := copyFileWithMetadata(srcFilePath, destFilePath, info.IsDir())
isReparsePoint := fileAttributes&syscall.FILE_ATTRIBUTE_REPARSE_POINT != 0
// In go1.9, FileInfo.IsDir() returns false if the directory is also a symlink.
// See: https://github.com/golang/go/commit/1989921aef60c83e6f9127a8448fb5ede10e9acc
// Fixes the problem by checking syscall.FILE_ATTRIBUTE_DIRECTORY directly
isDir := fileAttributes&syscall.FILE_ATTRIBUTE_DIRECTORY != 0
if isDir || isReparsePoint || mutatedFiles[relPath] {
fi, err := copyFileWithMetadata(srcFilePath, destFilePath, isDir)
if err != nil {
return err
}
if info.IsDir() && !isReparsePoint {
if isDir && !isReparsePoint {
di = append(di, dirInfo{path: destFilePath, fileInfo: *fi})
}
} else {
@ -490,8 +496,9 @@ func cloneTree(srcPath, destPath string, mutatedFiles map[string]bool) error {
}
}
// Don't recurse on reparse points.
if info.IsDir() && isReparsePoint {
// Don't recurse on reparse points in go1.8 and older. Filepath.Walk
// handles this in go1.9 and newer.
if isDir && isReparsePoint && shouldSkipDirectoryReparse {
return filepath.SkipDir
}

7
vendor/github.com/Microsoft/hcsshim/legacy18.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
// +build !go1.9
package hcsshim
// Due to a bug in go1.8 and before, directory reparse points need to be skipped
// during filepath.Walk. This is fixed in go1.9
var shouldSkipDirectoryReparse = true

7
vendor/github.com/Microsoft/hcsshim/legacy19.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
// +build go1.9
package hcsshim
// Due to a bug in go1.8 and before, directory reparse points need to be skipped
// during filepath.Walk. This is fixed in go1.9
var shouldSkipDirectoryReparse = false

View File

@ -3,20 +3,23 @@
// license that can be found in the LICENSE file.
// Package tar implements access to tar archives.
// It aims to cover most of the variations, including those produced
// by GNU and BSD tars.
//
// References:
// http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=5
// http://www.gnu.org/software/tar/manual/html_node/Standard.html
// http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html
// Tape archives (tar) are a file format for storing a sequence of files that
// can be read and written in a streaming manner.
// This package aims to cover most variations of the format,
// including those produced by GNU and BSD tar tools.
package tar
import (
"errors"
"fmt"
"io"
"math"
"os"
"path"
"reflect"
"strconv"
"strings"
"time"
)
@ -24,42 +27,569 @@ import (
// architectures. If a large value is encountered when decoding, the result
// stored in Header will be the truncated version.
// Header type flags.
const (
TypeReg = '0' // regular file
TypeRegA = '\x00' // regular file
TypeLink = '1' // hard link
TypeSymlink = '2' // symbolic link
TypeChar = '3' // character device node
TypeBlock = '4' // block device node
TypeDir = '5' // directory
TypeFifo = '6' // fifo node
TypeCont = '7' // reserved
TypeXHeader = 'x' // extended header
TypeXGlobalHeader = 'g' // global extended header
TypeGNULongName = 'L' // Next file has a long name
TypeGNULongLink = 'K' // Next file symlinks to a file w/ a long name
TypeGNUSparse = 'S' // sparse file
var (
ErrHeader = errors.New("tar: invalid tar header")
ErrWriteTooLong = errors.New("tar: write too long")
ErrFieldTooLong = errors.New("tar: header field too long")
ErrWriteAfterClose = errors.New("tar: write after close")
errMissData = errors.New("tar: sparse file references non-existent data")
errUnrefData = errors.New("tar: sparse file contains unreferenced data")
errWriteHole = errors.New("tar: write non-NUL byte in sparse hole")
)
type headerError []string
func (he headerError) Error() string {
const prefix = "tar: cannot encode header"
var ss []string
for _, s := range he {
if s != "" {
ss = append(ss, s)
}
}
if len(ss) == 0 {
return prefix
}
return fmt.Sprintf("%s: %v", prefix, strings.Join(ss, "; and "))
}
// Type flags for Header.Typeflag.
const (
// Type '0' indicates a regular file.
TypeReg = '0'
TypeRegA = '\x00' // For legacy support; use TypeReg instead
// Type '1' to '6' are header-only flags and may not have a data body.
TypeLink = '1' // Hard link
TypeSymlink = '2' // Symbolic link
TypeChar = '3' // Character device node
TypeBlock = '4' // Block device node
TypeDir = '5' // Directory
TypeFifo = '6' // FIFO node
// Type '7' is reserved.
TypeCont = '7'
// Type 'x' is used by the PAX format to store key-value records that
// are only relevant to the next file.
// This package transparently handles these types.
TypeXHeader = 'x'
// Type 'g' is used by the PAX format to store key-value records that
// are relevant to all subsequent files.
// This package only supports parsing and composing such headers,
// but does not currently support persisting the global state across files.
TypeXGlobalHeader = 'g'
// Type 'S' indicates a sparse file in the GNU format.
// Header.SparseHoles should be populated when using this type.
TypeGNUSparse = 'S'
// Types 'L' and 'K' are used by the GNU format for a meta file
// used to store the path or link name for the next file.
// This package transparently handles these types.
TypeGNULongName = 'L'
TypeGNULongLink = 'K'
)
// Keywords for PAX extended header records.
const (
paxNone = "" // Indicates that no PAX key is suitable
paxPath = "path"
paxLinkpath = "linkpath"
paxSize = "size"
paxUid = "uid"
paxGid = "gid"
paxUname = "uname"
paxGname = "gname"
paxMtime = "mtime"
paxAtime = "atime"
paxCtime = "ctime" // Removed from later revision of PAX spec, but was valid
paxCharset = "charset" // Currently unused
paxComment = "comment" // Currently unused
paxSchilyXattr = "SCHILY.xattr."
// Keywords for GNU sparse files in a PAX extended header.
paxGNUSparse = "GNU.sparse."
paxGNUSparseNumBlocks = "GNU.sparse.numblocks"
paxGNUSparseOffset = "GNU.sparse.offset"
paxGNUSparseNumBytes = "GNU.sparse.numbytes"
paxGNUSparseMap = "GNU.sparse.map"
paxGNUSparseName = "GNU.sparse.name"
paxGNUSparseMajor = "GNU.sparse.major"
paxGNUSparseMinor = "GNU.sparse.minor"
paxGNUSparseSize = "GNU.sparse.size"
paxGNUSparseRealSize = "GNU.sparse.realsize"
)
// basicKeys is a set of the PAX keys for which we have built-in support.
// This does not contain "charset" or "comment", which are both PAX-specific,
// so adding them as first-class features of Header is unlikely.
// Users can use the PAXRecords field to set it themselves.
var basicKeys = map[string]bool{
paxPath: true, paxLinkpath: true, paxSize: true, paxUid: true, paxGid: true,
paxUname: true, paxGname: true, paxMtime: true, paxAtime: true, paxCtime: true,
}
// A Header represents a single header in a tar archive.
// Some fields may not be populated.
//
// For forward compatibility, users that retrieve a Header from Reader.Next,
// mutate it in some ways, and then pass it back to Writer.WriteHeader
// should do so by creating a new Header and copying the fields
// that they are interested in preserving.
type Header struct {
Name string // name of header file entry
Mode int64 // permission and mode bits
Uid int // user id of owner
Gid int // group id of owner
Size int64 // length in bytes
ModTime time.Time // modified time
Typeflag byte // type of header entry
Linkname string // target name of link
Uname string // user name of owner
Gname string // group name of owner
Devmajor int64 // major number of character or block device
Devminor int64 // minor number of character or block device
AccessTime time.Time // access time
ChangeTime time.Time // status change time
Xattrs map[string]string
Typeflag byte // Type of header entry (should be TypeReg for most files)
Name string // Name of file entry
Linkname string // Target name of link (valid for TypeLink or TypeSymlink)
Size int64 // Logical file size in bytes
Mode int64 // Permission and mode bits
Uid int // User ID of owner
Gid int // Group ID of owner
Uname string // User name of owner
Gname string // Group name of owner
// If the Format is unspecified, then Writer.WriteHeader rounds ModTime
// to the nearest second and ignores the AccessTime and ChangeTime fields.
//
// To use AccessTime or ChangeTime, specify the Format as PAX or GNU.
// To use sub-second resolution, specify the Format as PAX.
ModTime time.Time // Modification time
AccessTime time.Time // Access time (requires either PAX or GNU support)
ChangeTime time.Time // Change time (requires either PAX or GNU support)
Devmajor int64 // Major device number (valid for TypeChar or TypeBlock)
Devminor int64 // Minor device number (valid for TypeChar or TypeBlock)
// SparseHoles represents a sequence of holes in a sparse file.
//
// A file is sparse if len(SparseHoles) > 0 or Typeflag is TypeGNUSparse.
// If TypeGNUSparse is set, then the format is GNU, otherwise
// the format is PAX (by using GNU-specific PAX records).
//
// A sparse file consists of fragments of data, intermixed with holes
// (described by this field). A hole is semantically a block of NUL-bytes,
// but does not actually exist within the tar file.
// The holes must be sorted in ascending order,
// not overlap with each other, and not extend past the specified Size.
SparseHoles []SparseEntry
// Xattrs stores extended attributes as PAX records under the
// "SCHILY.xattr." namespace.
//
// The following are semantically equivalent:
// h.Xattrs[key] = value
// h.PAXRecords["SCHILY.xattr."+key] = value
//
// When Writer.WriteHeader is called, the contents of Xattrs will take
// precedence over those in PAXRecords.
//
// Deprecated: Use PAXRecords instead.
Xattrs map[string]string
// PAXRecords is a map of PAX extended header records.
//
// User-defined records should have keys of the following form:
// VENDOR.keyword
// Where VENDOR is some namespace in all uppercase, and keyword may
// not contain the '=' character (e.g., "GOLANG.pkg.version").
// The key and value should be non-empty UTF-8 strings.
//
// When Writer.WriteHeader is called, PAX records derived from the
// the other fields in Header take precedence over PAXRecords.
PAXRecords map[string]string
// Format specifies the format of the tar header.
//
// This is set by Reader.Next as a best-effort guess at the format.
// Since the Reader liberally reads some non-compliant files,
// it is possible for this to be FormatUnknown.
//
// If the format is unspecified when Writer.WriteHeader is called,
// then it uses the first format (in the order of USTAR, PAX, GNU)
// capable of encoding this Header (see Format).
Format Format
}
// SparseEntry represents a Length-sized fragment at Offset in the file.
type SparseEntry struct{ Offset, Length int64 }
func (s SparseEntry) endOffset() int64 { return s.Offset + s.Length }
// A sparse file can be represented as either a sparseDatas or a sparseHoles.
// As long as the total size is known, they are equivalent and one can be
// converted to the other form and back. The various tar formats with sparse
// file support represent sparse files in the sparseDatas form. That is, they
// specify the fragments in the file that has data, and treat everything else as
// having zero bytes. As such, the encoding and decoding logic in this package
// deals with sparseDatas.
//
// However, the external API uses sparseHoles instead of sparseDatas because the
// zero value of sparseHoles logically represents a normal file (i.e., there are
// no holes in it). On the other hand, the zero value of sparseDatas implies
// that the file has no data in it, which is rather odd.
//
// As an example, if the underlying raw file contains the 10-byte data:
// var compactFile = "abcdefgh"
//
// And the sparse map has the following entries:
// var spd sparseDatas = []sparseEntry{
// {Offset: 2, Length: 5}, // Data fragment for 2..6
// {Offset: 18, Length: 3}, // Data fragment for 18..20
// }
// var sph sparseHoles = []SparseEntry{
// {Offset: 0, Length: 2}, // Hole fragment for 0..1
// {Offset: 7, Length: 11}, // Hole fragment for 7..17
// {Offset: 21, Length: 4}, // Hole fragment for 21..24
// }
//
// Then the content of the resulting sparse file with a Header.Size of 25 is:
// var sparseFile = "\x00"*2 + "abcde" + "\x00"*11 + "fgh" + "\x00"*4
type (
sparseDatas []SparseEntry
sparseHoles []SparseEntry
)
// validateSparseEntries reports whether sp is a valid sparse map.
// It does not matter whether sp represents data fragments or hole fragments.
func validateSparseEntries(sp []SparseEntry, size int64) bool {
// Validate all sparse entries. These are the same checks as performed by
// the BSD tar utility.
if size < 0 {
return false
}
var pre SparseEntry
for _, cur := range sp {
switch {
case cur.Offset < 0 || cur.Length < 0:
return false // Negative values are never okay
case cur.Offset > math.MaxInt64-cur.Length:
return false // Integer overflow with large length
case cur.endOffset() > size:
return false // Region extends beyond the actual size
case pre.endOffset() > cur.Offset:
return false // Regions cannot overlap and must be in order
}
pre = cur
}
return true
}
// alignSparseEntries mutates src and returns dst where each fragment's
// starting offset is aligned up to the nearest block edge, and each
// ending offset is aligned down to the nearest block edge.
//
// Even though the Go tar Reader and the BSD tar utility can handle entries
// with arbitrary offsets and lengths, the GNU tar utility can only handle
// offsets and lengths that are multiples of blockSize.
func alignSparseEntries(src []SparseEntry, size int64) []SparseEntry {
dst := src[:0]
for _, s := range src {
pos, end := s.Offset, s.endOffset()
pos += blockPadding(+pos) // Round-up to nearest blockSize
if end != size {
end -= blockPadding(-end) // Round-down to nearest blockSize
}
if pos < end {
dst = append(dst, SparseEntry{Offset: pos, Length: end - pos})
}
}
return dst
}
// invertSparseEntries converts a sparse map from one form to the other.
// If the input is sparseHoles, then it will output sparseDatas and vice-versa.
// The input must have been already validated.
//
// This function mutates src and returns a normalized map where:
// * adjacent fragments are coalesced together
// * only the last fragment may be empty
// * the endOffset of the last fragment is the total size
func invertSparseEntries(src []SparseEntry, size int64) []SparseEntry {
dst := src[:0]
var pre SparseEntry
for _, cur := range src {
if cur.Length == 0 {
continue // Skip empty fragments
}
pre.Length = cur.Offset - pre.Offset
if pre.Length > 0 {
dst = append(dst, pre) // Only add non-empty fragments
}
pre.Offset = cur.endOffset()
}
pre.Length = size - pre.Offset // Possibly the only empty fragment
return append(dst, pre)
}
// fileState tracks the number of logical (includes sparse holes) and physical
// (actual in tar archive) bytes remaining for the current file.
//
// Invariant: LogicalRemaining >= PhysicalRemaining
type fileState interface {
LogicalRemaining() int64
PhysicalRemaining() int64
}
// allowedFormats determines which formats can be used.
// The value returned is the logical OR of multiple possible formats.
// If the value is FormatUnknown, then the input Header cannot be encoded
// and an error is returned explaining why.
//
// As a by-product of checking the fields, this function returns paxHdrs, which
// contain all fields that could not be directly encoded.
// A value receiver ensures that this method does not mutate the source Header.
func (h Header) allowedFormats() (format Format, paxHdrs map[string]string, err error) {
format = FormatUSTAR | FormatPAX | FormatGNU
paxHdrs = make(map[string]string)
var whyNoUSTAR, whyNoPAX, whyNoGNU string
var preferPAX bool // Prefer PAX over USTAR
verifyString := func(s string, size int, name, paxKey string) {
// NUL-terminator is optional for path and linkpath.
// Technically, it is required for uname and gname,
// but neither GNU nor BSD tar checks for it.
tooLong := len(s) > size
allowLongGNU := paxKey == paxPath || paxKey == paxLinkpath
if hasNUL(s) || (tooLong && !allowLongGNU) {
whyNoGNU = fmt.Sprintf("GNU cannot encode %s=%q", name, s)
format.mustNotBe(FormatGNU)
}
if !isASCII(s) || tooLong {
canSplitUSTAR := paxKey == paxPath
if _, _, ok := splitUSTARPath(s); !canSplitUSTAR || !ok {
whyNoUSTAR = fmt.Sprintf("USTAR cannot encode %s=%q", name, s)
format.mustNotBe(FormatUSTAR)
}
if paxKey == paxNone {
whyNoPAX = fmt.Sprintf("PAX cannot encode %s=%q", name, s)
format.mustNotBe(FormatPAX)
} else {
paxHdrs[paxKey] = s
}
}
if v, ok := h.PAXRecords[paxKey]; ok && v == s {
paxHdrs[paxKey] = v
}
}
verifyNumeric := func(n int64, size int, name, paxKey string) {
if !fitsInBase256(size, n) {
whyNoGNU = fmt.Sprintf("GNU cannot encode %s=%d", name, n)
format.mustNotBe(FormatGNU)
}
if !fitsInOctal(size, n) {
whyNoUSTAR = fmt.Sprintf("USTAR cannot encode %s=%d", name, n)
format.mustNotBe(FormatUSTAR)
if paxKey == paxNone {
whyNoPAX = fmt.Sprintf("PAX cannot encode %s=%d", name, n)
format.mustNotBe(FormatPAX)
} else {
paxHdrs[paxKey] = strconv.FormatInt(n, 10)
}
}
if v, ok := h.PAXRecords[paxKey]; ok && v == strconv.FormatInt(n, 10) {
paxHdrs[paxKey] = v
}
}
verifyTime := func(ts time.Time, size int, name, paxKey string) {
if ts.IsZero() {
return // Always okay
}
if !fitsInBase256(size, ts.Unix()) {
whyNoGNU = fmt.Sprintf("GNU cannot encode %s=%v", name, ts)
format.mustNotBe(FormatGNU)
}
isMtime := paxKey == paxMtime
fitsOctal := fitsInOctal(size, ts.Unix())
if (isMtime && !fitsOctal) || !isMtime {
whyNoUSTAR = fmt.Sprintf("USTAR cannot encode %s=%v", name, ts)
format.mustNotBe(FormatUSTAR)
}
needsNano := ts.Nanosecond() != 0
if !isMtime || !fitsOctal || needsNano {
preferPAX = true // USTAR may truncate sub-second measurements
if paxKey == paxNone {
whyNoPAX = fmt.Sprintf("PAX cannot encode %s=%v", name, ts)
format.mustNotBe(FormatPAX)
} else {
paxHdrs[paxKey] = formatPAXTime(ts)
}
}
if v, ok := h.PAXRecords[paxKey]; ok && v == formatPAXTime(ts) {
paxHdrs[paxKey] = v
}
}
// Check basic fields.
var blk block
v7 := blk.V7()
ustar := blk.USTAR()
gnu := blk.GNU()
verifyString(h.Name, len(v7.Name()), "Name", paxPath)
verifyString(h.Linkname, len(v7.LinkName()), "Linkname", paxLinkpath)
verifyString(h.Uname, len(ustar.UserName()), "Uname", paxUname)
verifyString(h.Gname, len(ustar.GroupName()), "Gname", paxGname)
verifyNumeric(h.Mode, len(v7.Mode()), "Mode", paxNone)
verifyNumeric(int64(h.Uid), len(v7.UID()), "Uid", paxUid)
verifyNumeric(int64(h.Gid), len(v7.GID()), "Gid", paxGid)
verifyNumeric(h.Size, len(v7.Size()), "Size", paxSize)
verifyNumeric(h.Devmajor, len(ustar.DevMajor()), "Devmajor", paxNone)
verifyNumeric(h.Devminor, len(ustar.DevMinor()), "Devminor", paxNone)
verifyTime(h.ModTime, len(v7.ModTime()), "ModTime", paxMtime)
verifyTime(h.AccessTime, len(gnu.AccessTime()), "AccessTime", paxAtime)
verifyTime(h.ChangeTime, len(gnu.ChangeTime()), "ChangeTime", paxCtime)
// Check for header-only types.
var whyOnlyPAX, whyOnlyGNU string
switch h.Typeflag {
case TypeReg, TypeChar, TypeBlock, TypeFifo, TypeGNUSparse:
// Exclude TypeLink and TypeSymlink, since they may reference directories.
if strings.HasSuffix(h.Name, "/") {
return FormatUnknown, nil, headerError{"filename may not have trailing slash"}
}
case TypeXHeader, TypeGNULongName, TypeGNULongLink:
return FormatUnknown, nil, headerError{"cannot manually encode TypeXHeader, TypeGNULongName, or TypeGNULongLink headers"}
case TypeXGlobalHeader:
if !reflect.DeepEqual(h, Header{Typeflag: h.Typeflag, Xattrs: h.Xattrs, PAXRecords: h.PAXRecords, Format: h.Format}) {
return FormatUnknown, nil, headerError{"only PAXRecords may be set for TypeXGlobalHeader"}
}
whyOnlyPAX = "only PAX supports TypeXGlobalHeader"
format.mayOnlyBe(FormatPAX)
}
if !isHeaderOnlyType(h.Typeflag) && h.Size < 0 {
return FormatUnknown, nil, headerError{"negative size on header-only type"}
}
// Check PAX records.
if len(h.Xattrs) > 0 {
for k, v := range h.Xattrs {
paxHdrs[paxSchilyXattr+k] = v
}
whyOnlyPAX = "only PAX supports Xattrs"
format.mayOnlyBe(FormatPAX)
}
if len(h.PAXRecords) > 0 {
for k, v := range h.PAXRecords {
switch _, exists := paxHdrs[k]; {
case exists:
continue // Do not overwrite existing records
case h.Typeflag == TypeXGlobalHeader:
paxHdrs[k] = v // Copy all records
case !basicKeys[k] && !strings.HasPrefix(k, paxGNUSparse):
paxHdrs[k] = v // Ignore local records that may conflict
}
}
whyOnlyPAX = "only PAX supports PAXRecords"
format.mayOnlyBe(FormatPAX)
}
for k, v := range paxHdrs {
if !validPAXRecord(k, v) {
return FormatUnknown, nil, headerError{fmt.Sprintf("invalid PAX record: %q", k+" = "+v)}
}
}
// Check sparse files.
if len(h.SparseHoles) > 0 || h.Typeflag == TypeGNUSparse {
if isHeaderOnlyType(h.Typeflag) {
return FormatUnknown, nil, headerError{"header-only type cannot be sparse"}
}
if !validateSparseEntries(h.SparseHoles, h.Size) {
return FormatUnknown, nil, headerError{"invalid sparse holes"}
}
if h.Typeflag == TypeGNUSparse {
whyOnlyGNU = "only GNU supports TypeGNUSparse"
format.mayOnlyBe(FormatGNU)
} else {
whyNoGNU = "GNU supports sparse files only with TypeGNUSparse"
format.mustNotBe(FormatGNU)
}
whyNoUSTAR = "USTAR does not support sparse files"
format.mustNotBe(FormatUSTAR)
}
// Check desired format.
if wantFormat := h.Format; wantFormat != FormatUnknown {
if wantFormat.has(FormatPAX) && !preferPAX {
wantFormat.mayBe(FormatUSTAR) // PAX implies USTAR allowed too
}
format.mayOnlyBe(wantFormat) // Set union of formats allowed and format wanted
}
if format == FormatUnknown {
switch h.Format {
case FormatUSTAR:
err = headerError{"Format specifies USTAR", whyNoUSTAR, whyOnlyPAX, whyOnlyGNU}
case FormatPAX:
err = headerError{"Format specifies PAX", whyNoPAX, whyOnlyGNU}
case FormatGNU:
err = headerError{"Format specifies GNU", whyNoGNU, whyOnlyPAX}
default:
err = headerError{whyNoUSTAR, whyNoPAX, whyNoGNU, whyOnlyPAX, whyOnlyGNU}
}
}
return format, paxHdrs, err
}
var sysSparseDetect func(f *os.File) (sparseHoles, error)
var sysSparsePunch func(f *os.File, sph sparseHoles) error
// DetectSparseHoles searches for holes within f to populate SparseHoles
// on supported operating systems and filesystems.
// The file offset is cleared to zero.
//
// When packing a sparse file, DetectSparseHoles should be called prior to
// serializing the header to the archive with Writer.WriteHeader.
func (h *Header) DetectSparseHoles(f *os.File) (err error) {
defer func() {
if _, serr := f.Seek(0, io.SeekStart); err == nil {
err = serr
}
}()
h.SparseHoles = nil
if sysSparseDetect != nil {
sph, err := sysSparseDetect(f)
h.SparseHoles = sph
return err
}
return nil
}
// PunchSparseHoles destroys the contents of f, and prepares a sparse file
// (on supported operating systems and filesystems)
// with holes punched according to SparseHoles.
// The file offset is cleared to zero.
//
// When extracting a sparse file, PunchSparseHoles should be called prior to
// populating the content of a file with Reader.WriteTo.
func (h *Header) PunchSparseHoles(f *os.File) (err error) {
defer func() {
if _, serr := f.Seek(0, io.SeekStart); err == nil {
err = serr
}
}()
if err := f.Truncate(0); err != nil {
return err
}
var size int64
if len(h.SparseHoles) > 0 {
size = h.SparseHoles[len(h.SparseHoles)-1].endOffset()
}
if !validateSparseEntries(h.SparseHoles, size) {
return errors.New("tar: invalid sparse holes")
}
if size == 0 {
return nil // For non-sparse files, do nothing (other than Truncate)
}
if sysSparsePunch != nil {
return sysSparsePunch(f, h.SparseHoles)
}
return f.Truncate(size)
}
// FileInfo returns an os.FileInfo for the Header.
@ -92,63 +622,43 @@ func (fi headerFileInfo) Mode() (mode os.FileMode) {
// Set setuid, setgid and sticky bits.
if fi.h.Mode&c_ISUID != 0 {
// setuid
mode |= os.ModeSetuid
}
if fi.h.Mode&c_ISGID != 0 {
// setgid
mode |= os.ModeSetgid
}
if fi.h.Mode&c_ISVTX != 0 {
// sticky
mode |= os.ModeSticky
}
// Set file mode bits.
// clear perm, setuid, setgid and sticky bits.
m := os.FileMode(fi.h.Mode) &^ 07777
if m == c_ISDIR {
// directory
// Set file mode bits; clear perm, setuid, setgid, and sticky bits.
switch m := os.FileMode(fi.h.Mode) &^ 07777; m {
case c_ISDIR:
mode |= os.ModeDir
}
if m == c_ISFIFO {
// named pipe (FIFO)
case c_ISFIFO:
mode |= os.ModeNamedPipe
}
if m == c_ISLNK {
// symbolic link
case c_ISLNK:
mode |= os.ModeSymlink
}
if m == c_ISBLK {
// device file
case c_ISBLK:
mode |= os.ModeDevice
}
if m == c_ISCHR {
// Unix character device
case c_ISCHR:
mode |= os.ModeDevice
mode |= os.ModeCharDevice
}
if m == c_ISSOCK {
// Unix domain socket
case c_ISSOCK:
mode |= os.ModeSocket
}
switch fi.h.Typeflag {
case TypeSymlink:
// symbolic link
mode |= os.ModeSymlink
case TypeChar:
// character device node
mode |= os.ModeDevice
mode |= os.ModeCharDevice
case TypeBlock:
// block device node
mode |= os.ModeDevice
case TypeDir:
// directory
mode |= os.ModeDir
case TypeFifo:
// fifo node
mode |= os.ModeNamedPipe
}
@ -158,11 +668,15 @@ func (fi headerFileInfo) Mode() (mode os.FileMode) {
// sysStat, if non-nil, populates h from system-dependent fields of fi.
var sysStat func(fi os.FileInfo, h *Header) error
// Mode constants from the tar spec.
const (
c_ISUID = 04000 // Set uid
c_ISGID = 02000 // Set gid
c_ISVTX = 01000 // Save text (sticky bit)
// Mode constants from the USTAR spec:
// See http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
c_ISUID = 04000 // Set uid
c_ISGID = 02000 // Set gid
c_ISVTX = 01000 // Save text (sticky bit)
// Common Unix mode constants; these are not defined in any common tar standard.
// Header.FileInfo understands these, but FileInfoHeader will never produce these.
c_ISDIR = 040000 // Directory
c_ISFIFO = 010000 // FIFO
c_ISREG = 0100000 // Regular file
@ -172,30 +686,16 @@ const (
c_ISSOCK = 0140000 // Socket
)
// Keywords for the PAX Extended Header
const (
paxAtime = "atime"
paxCharset = "charset"
paxComment = "comment"
paxCtime = "ctime" // please note that ctime is not a valid pax header.
paxGid = "gid"
paxGname = "gname"
paxLinkpath = "linkpath"
paxMtime = "mtime"
paxPath = "path"
paxSize = "size"
paxUid = "uid"
paxUname = "uname"
paxXattr = "SCHILY.xattr."
paxNone = ""
)
// FileInfoHeader creates a partially-populated Header from fi.
// If fi describes a symlink, FileInfoHeader records link as the link target.
// If fi describes a directory, a slash is appended to the name.
// Because os.FileInfo's Name method returns only the base name of
// the file it describes, it may be necessary to modify the Name field
// of the returned header to provide the full path name of the file.
//
// Since os.FileInfo's Name method only returns the base name of
// the file it describes, it may be necessary to modify Header.Name
// to provide the full path name of the file.
//
// This function does not populate Header.SparseHoles;
// for sparse file support, additionally call Header.DetectSparseHoles.
func FileInfoHeader(fi os.FileInfo, link string) (*Header, error) {
if fi == nil {
return nil, errors.New("tar: FileInfo is nil")
@ -208,32 +708,26 @@ func FileInfoHeader(fi os.FileInfo, link string) (*Header, error) {
}
switch {
case fm.IsRegular():
h.Mode |= c_ISREG
h.Typeflag = TypeReg
h.Size = fi.Size()
case fi.IsDir():
h.Typeflag = TypeDir
h.Mode |= c_ISDIR
h.Name += "/"
case fm&os.ModeSymlink != 0:
h.Typeflag = TypeSymlink
h.Mode |= c_ISLNK
h.Linkname = link
case fm&os.ModeDevice != 0:
if fm&os.ModeCharDevice != 0 {
h.Mode |= c_ISCHR
h.Typeflag = TypeChar
} else {
h.Mode |= c_ISBLK
h.Typeflag = TypeBlock
}
case fm&os.ModeNamedPipe != 0:
h.Typeflag = TypeFifo
h.Mode |= c_ISFIFO
case fm&os.ModeSocket != 0:
h.Mode |= c_ISSOCK
return nil, fmt.Errorf("tar: sockets not supported")
default:
return nil, fmt.Errorf("archive/tar: unknown file mode %v", fm)
return nil, fmt.Errorf("tar: unknown file mode %v", fm)
}
if fm&os.ModeSetuid != 0 {
h.Mode |= c_ISUID
@ -267,6 +761,15 @@ func FileInfoHeader(fi os.FileInfo, link string) (*Header, error) {
h.Size = 0
h.Linkname = sys.Linkname
}
if sys.SparseHoles != nil {
h.SparseHoles = append([]SparseEntry{}, sys.SparseHoles...)
}
if sys.PAXRecords != nil {
h.PAXRecords = make(map[string]string)
for k, v := range sys.PAXRecords {
h.PAXRecords[k] = v
}
}
}
if sysStat != nil {
return h, sysStat(fi, h)
@ -284,3 +787,10 @@ func isHeaderOnlyType(flag byte) bool {
return false
}
}
func min(a, b int64) int64 {
if a < b {
return a
}
return b
}

View File

@ -4,38 +4,131 @@
package tar
import "strings"
// Format represents the tar archive format.
//
// The original tar format was introduced in Unix V7.
// Since then, there have been multiple competing formats attempting to
// standardize or extend the V7 format to overcome its limitations.
// The most common formats are the USTAR, PAX, and GNU formats,
// each with their own advantages and limitations.
//
// The following table captures the capabilities of each format:
//
// | USTAR | PAX | GNU
// ------------------+--------+-----------+----------
// Name | 256B | unlimited | unlimited
// Linkname | 100B | unlimited | unlimited
// Size | uint33 | unlimited | uint89
// Mode | uint21 | uint21 | uint57
// Uid/Gid | uint21 | unlimited | uint57
// Uname/Gname | 32B | unlimited | 32B
// ModTime | uint33 | unlimited | int89
// AccessTime | n/a | unlimited | int89
// ChangeTime | n/a | unlimited | int89
// Devmajor/Devminor | uint21 | uint21 | uint57
// ------------------+--------+-----------+----------
// string encoding | ASCII | UTF-8 | binary
// sub-second times | no | yes | no
// sparse files | no | yes | yes
//
// The table's upper portion shows the Header fields, where each format reports
// the maximum number of bytes allowed for each string field and
// the integer type used to store each numeric field
// (where timestamps are stored as the number of seconds since the Unix epoch).
//
// The table's lower portion shows specialized features of each format,
// such as supported string encodings, support for sub-second timestamps,
// or support for sparse files.
type Format int
// Constants to identify various tar formats.
const (
// The format is unknown.
formatUnknown = (1 << iota) / 2 // Sequence of 0, 1, 2, 4, 8, etc...
// Deliberately hide the meaning of constants from public API.
_ Format = (1 << iota) / 4 // Sequence of 0, 0, 1, 2, 4, 8, etc...
// FormatUnknown indicates that the format is unknown.
FormatUnknown
// The format of the original Unix V7 tar tool prior to standardization.
formatV7
// The old and new GNU formats, which are incompatible with USTAR.
// This does cover the old GNU sparse extension.
// This does not cover the GNU sparse extensions using PAX headers,
// versions 0.0, 0.1, and 1.0; these fall under the PAX format.
formatGNU
// FormatUSTAR represents the USTAR header format defined in POSIX.1-1988.
//
// While this format is compatible with most tar readers,
// the format has several limitations making it unsuitable for some usages.
// Most notably, it cannot support sparse files, files larger than 8GiB,
// filenames larger than 256 characters, and non-ASCII filenames.
//
// Reference:
// http://pubs.opengroup.org/onlinepubs/9699919799/utilities/pax.html#tag_20_92_13_06
FormatUSTAR
// FormatPAX represents the PAX header format defined in POSIX.1-2001.
//
// PAX extends USTAR by writing a special file with Typeflag TypeXHeader
// preceding the original header. This file contains a set of key-value
// records, which are used to overcome USTAR's shortcomings, in addition to
// providing the ability to have sub-second resolution for timestamps.
//
// Some newer formats add their own extensions to PAX by defining their
// own keys and assigning certain semantic meaning to the associated values.
// For example, sparse file support in PAX is implemented using keys
// defined by the GNU manual (e.g., "GNU.sparse.map").
//
// Reference:
// http://pubs.opengroup.org/onlinepubs/009695399/utilities/pax.html
FormatPAX
// FormatGNU represents the GNU header format.
//
// The GNU header format is older than the USTAR and PAX standards and
// is not compatible with them. The GNU format supports
// arbitrary file sizes, filenames of arbitrary encoding and length,
// sparse files, and other features.
//
// It is recommended that PAX be chosen over GNU unless the target
// application can only parse GNU formatted archives.
//
// Reference:
// http://www.gnu.org/software/tar/manual/html_node/Standard.html
FormatGNU
// Schily's tar format, which is incompatible with USTAR.
// This does not cover STAR extensions to the PAX format; these fall under
// the PAX format.
formatSTAR
// USTAR is the former standardization of tar defined in POSIX.1-1988.
// This is incompatible with the GNU and STAR formats.
formatUSTAR
// PAX is the latest standardization of tar defined in POSIX.1-2001.
// This is an extension of USTAR and is "backwards compatible" with it.
//
// Some newer formats add their own extensions to PAX, such as GNU sparse
// files and SCHILY extended attributes. Since they are backwards compatible
// with PAX, they will be labelled as "PAX".
formatPAX
formatMax
)
func (f Format) has(f2 Format) bool { return f&f2 != 0 }
func (f *Format) mayBe(f2 Format) { *f |= f2 }
func (f *Format) mayOnlyBe(f2 Format) { *f &= f2 }
func (f *Format) mustNotBe(f2 Format) { *f &^= f2 }
var formatNames = map[Format]string{
formatV7: "V7", FormatUSTAR: "USTAR", FormatPAX: "PAX", FormatGNU: "GNU", formatSTAR: "STAR",
}
func (f Format) String() string {
var ss []string
for f2 := Format(1); f2 < formatMax; f2 <<= 1 {
if f.has(f2) {
ss = append(ss, formatNames[f2])
}
}
switch len(ss) {
case 0:
return "<unknown>"
case 1:
return ss[0]
default:
return "(" + strings.Join(ss, " | ") + ")"
}
}
// Magics used to identify various formats.
const (
magicGNU, versionGNU = "ustar ", " \x00"
@ -50,6 +143,12 @@ const (
prefixSize = 155 // Max length of the prefix field in USTAR format
)
// blockPadding computes the number of bytes needed to pad offset up to the
// nearest block edge where 0 <= n < blockSize.
func blockPadding(offset int64) (n int64) {
return -offset & (blockSize - 1)
}
var zeroBlock block
type block [blockSize]byte
@ -63,14 +162,14 @@ func (b *block) Sparse() sparseArray { return (sparseArray)(b[:]) }
// GetFormat checks that the block is a valid tar header based on the checksum.
// It then attempts to guess the specific format based on magic values.
// If the checksum fails, then formatUnknown is returned.
func (b *block) GetFormat() (format int) {
// If the checksum fails, then FormatUnknown is returned.
func (b *block) GetFormat() Format {
// Verify checksum.
var p parser
value := p.parseOctal(b.V7().Chksum())
chksum1, chksum2 := b.ComputeChecksum()
if p.err != nil || (value != chksum1 && value != chksum2) {
return formatUnknown
return FormatUnknown
}
// Guess the magic values.
@ -81,9 +180,9 @@ func (b *block) GetFormat() (format int) {
case magic == magicUSTAR && trailer == trailerSTAR:
return formatSTAR
case magic == magicUSTAR:
return formatUSTAR
return FormatUSTAR | FormatPAX
case magic == magicGNU && version == versionGNU:
return formatGNU
return FormatGNU
default:
return formatV7
}
@ -91,19 +190,19 @@ func (b *block) GetFormat() (format int) {
// SetFormat writes the magic values necessary for specified format
// and then updates the checksum accordingly.
func (b *block) SetFormat(format int) {
func (b *block) SetFormat(format Format) {
// Set the magic values.
switch format {
case formatV7:
switch {
case format.has(formatV7):
// Do nothing.
case formatGNU:
case format.has(FormatGNU):
copy(b.GNU().Magic(), magicGNU)
copy(b.GNU().Version(), versionGNU)
case formatSTAR:
case format.has(formatSTAR):
copy(b.STAR().Magic(), magicUSTAR)
copy(b.STAR().Version(), versionUSTAR)
copy(b.STAR().Trailer(), trailerSTAR)
case formatUSTAR, formatPAX:
case format.has(FormatUSTAR | FormatPAX):
copy(b.USTAR().Magic(), magicUSTAR)
copy(b.USTAR().Version(), versionUSTAR)
default:
@ -134,6 +233,11 @@ func (b *block) ComputeChecksum() (unsigned, signed int64) {
return unsigned, signed
}
// Reset clears the block with all zeros.
func (b *block) Reset() {
*b = block{}
}
type headerV7 [blockSize]byte
func (h *headerV7) Name() []byte { return h[000:][:100] }
@ -187,11 +291,11 @@ func (h *headerUSTAR) Prefix() []byte { return h[345:][:155] }
type sparseArray []byte
func (s sparseArray) Entry(i int) sparseNode { return (sparseNode)(s[i*24:]) }
func (s sparseArray) Entry(i int) sparseElem { return (sparseElem)(s[i*24:]) }
func (s sparseArray) IsExtended() []byte { return s[24*s.MaxEntries():][:1] }
func (s sparseArray) MaxEntries() int { return len(s) / 24 }
type sparseNode []byte
type sparseElem []byte
func (s sparseNode) Offset() []byte { return s[00:][:12] }
func (s sparseNode) NumBytes() []byte { return s[12:][:12] }
func (s sparseElem) Offset() []byte { return s[00:][:12] }
func (s sparseElem) Length() []byte { return s[12:][:12] }

File diff suppressed because it is too large Load Diff

77
vendor/github.com/dmcgowan/go-tar/sparse_unix.go generated vendored Normal file
View File

@ -0,0 +1,77 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux darwin dragonfly freebsd openbsd netbsd solaris
package tar
import (
"io"
"os"
"runtime"
"syscall"
)
func init() {
sysSparseDetect = sparseDetectUnix
}
func sparseDetectUnix(f *os.File) (sph sparseHoles, err error) {
// SEEK_DATA and SEEK_HOLE originated from Solaris and support for it
// has been added to most of the other major Unix systems.
var seekData, seekHole = 3, 4 // SEEK_DATA/SEEK_HOLE from unistd.h
if runtime.GOOS == "darwin" {
// Darwin has the constants swapped, compared to all other UNIX.
seekData, seekHole = 4, 3
}
// Check for seekData/seekHole support.
// Different OS and FS may differ in the exact errno that is returned when
// there is no support. Rather than special-casing every possible errno
// representing "not supported", just assume that a non-nil error means
// that seekData/seekHole is not supported.
if _, err := f.Seek(0, seekHole); err != nil {
return nil, nil
}
// Populate the SparseHoles.
var last, pos int64 = -1, 0
for {
// Get the location of the next hole section.
if pos, err = fseek(f, pos, seekHole); pos == last || err != nil {
return sph, err
}
offset := pos
last = pos
// Get the location of the next data section.
if pos, err = fseek(f, pos, seekData); pos == last || err != nil {
return sph, err
}
length := pos - offset
last = pos
if length > 0 {
sph = append(sph, SparseEntry{offset, length})
}
}
}
func fseek(f *os.File, pos int64, whence int) (int64, error) {
pos, err := f.Seek(pos, whence)
if errno(err) == syscall.ENXIO {
// SEEK_DATA returns ENXIO when past the last data fragment,
// which makes determining the size of the last hole difficult.
pos, err = f.Seek(0, io.SeekEnd)
}
return pos, err
}
func errno(err error) error {
if perr, ok := err.(*os.PathError); ok {
return perr.Err
}
return err
}

129
vendor/github.com/dmcgowan/go-tar/sparse_windows.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build windows
package tar
import (
"os"
"syscall"
"unsafe"
)
var errInvalidFunc = syscall.Errno(1) // ERROR_INVALID_FUNCTION from WinError.h
func init() {
sysSparseDetect = sparseDetectWindows
sysSparsePunch = sparsePunchWindows
}
func sparseDetectWindows(f *os.File) (sph sparseHoles, err error) {
const queryAllocRanges = 0x000940CF // FSCTL_QUERY_ALLOCATED_RANGES from WinIoCtl.h
type allocRangeBuffer struct{ offset, length int64 } // FILE_ALLOCATED_RANGE_BUFFER from WinIoCtl.h
s, err := f.Stat()
if err != nil {
return nil, err
}
queryRange := allocRangeBuffer{0, s.Size()}
allocRanges := make([]allocRangeBuffer, 64)
// Repeatedly query for ranges until the input buffer is large enough.
var bytesReturned uint32
for {
err := syscall.DeviceIoControl(
syscall.Handle(f.Fd()), queryAllocRanges,
(*byte)(unsafe.Pointer(&queryRange)), uint32(unsafe.Sizeof(queryRange)),
(*byte)(unsafe.Pointer(&allocRanges[0])), uint32(len(allocRanges)*int(unsafe.Sizeof(allocRanges[0]))),
&bytesReturned, nil,
)
if err == syscall.ERROR_MORE_DATA {
allocRanges = make([]allocRangeBuffer, 2*len(allocRanges))
continue
}
if err == errInvalidFunc {
return nil, nil // Sparse file not supported on this FS
}
if err != nil {
return nil, err
}
break
}
n := bytesReturned / uint32(unsafe.Sizeof(allocRanges[0]))
allocRanges = append(allocRanges[:n], allocRangeBuffer{s.Size(), 0})
// Invert the data fragments into hole fragments.
var pos int64
for _, r := range allocRanges {
if r.offset > pos {
sph = append(sph, SparseEntry{pos, r.offset - pos})
}
pos = r.offset + r.length
}
return sph, nil
}
func sparsePunchWindows(f *os.File, sph sparseHoles) error {
const setSparse = 0x000900C4 // FSCTL_SET_SPARSE from WinIoCtl.h
const setZeroData = 0x000980C8 // FSCTL_SET_ZERO_DATA from WinIoCtl.h
type zeroDataInfo struct{ start, end int64 } // FILE_ZERO_DATA_INFORMATION from WinIoCtl.h
// Set the file as being sparse.
var bytesReturned uint32
devErr := syscall.DeviceIoControl(
syscall.Handle(f.Fd()), setSparse,
nil, 0, nil, 0,
&bytesReturned, nil,
)
if devErr != nil && devErr != errInvalidFunc {
return devErr
}
// Set the file to the right size.
var size int64
if len(sph) > 0 {
size = sph[len(sph)-1].endOffset()
}
if err := f.Truncate(size); err != nil {
return err
}
if devErr == errInvalidFunc {
// Sparse file not supported on this FS.
// Call sparsePunchManual since SetEndOfFile does not guarantee that
// the extended space is filled with zeros.
return sparsePunchManual(f, sph)
}
// Punch holes for all relevant fragments.
for _, s := range sph {
zdi := zeroDataInfo{s.Offset, s.endOffset()}
err := syscall.DeviceIoControl(
syscall.Handle(f.Fd()), setZeroData,
(*byte)(unsafe.Pointer(&zdi)), uint32(unsafe.Sizeof(zdi)),
nil, 0,
&bytesReturned, nil,
)
if err != nil {
return err
}
}
return nil
}
// sparsePunchManual writes zeros into each hole.
func sparsePunchManual(f *os.File, sph sparseHoles) error {
const chunkSize = 32 << 10
zbuf := make([]byte, chunkSize)
for _, s := range sph {
for pos := s.Offset; pos < s.endOffset(); pos += chunkSize {
n := min(chunkSize, s.endOffset()-pos)
if _, err := f.WriteAt(zbuf[:n], pos); err != nil {
return err
}
}
}
return nil
}

View File

@ -8,6 +8,10 @@ package tar
import (
"os"
"os/user"
"runtime"
"strconv"
"sync"
"syscall"
)
@ -15,6 +19,10 @@ func init() {
sysStat = statUnix
}
// userMap and groupMap caches UID and GID lookups for performance reasons.
// The downside is that renaming uname or gname by the OS never takes effect.
var userMap, groupMap sync.Map // map[int]string
func statUnix(fi os.FileInfo, h *Header) error {
sys, ok := fi.Sys().(*syscall.Stat_t)
if !ok {
@ -22,11 +30,67 @@ func statUnix(fi os.FileInfo, h *Header) error {
}
h.Uid = int(sys.Uid)
h.Gid = int(sys.Gid)
// TODO(bradfitz): populate username & group. os/user
// doesn't cache LookupId lookups, and lacks group
// lookup functions.
// Best effort at populating Uname and Gname.
// The os/user functions may fail for any number of reasons
// (not implemented on that platform, cgo not enabled, etc).
if u, ok := userMap.Load(h.Uid); ok {
h.Uname = u.(string)
} else if u, err := user.LookupId(strconv.Itoa(h.Uid)); err == nil {
h.Uname = u.Username
userMap.Store(h.Uid, h.Uname)
}
if g, ok := groupMap.Load(h.Gid); ok {
h.Gname = g.(string)
} else if g, err := user.LookupGroupId(strconv.Itoa(h.Gid)); err == nil {
h.Gname = g.Name
groupMap.Store(h.Gid, h.Gname)
}
h.AccessTime = statAtime(sys)
h.ChangeTime = statCtime(sys)
// TODO(bradfitz): major/minor device numbers?
// Best effort at populating Devmajor and Devminor.
if h.Typeflag == TypeChar || h.Typeflag == TypeBlock {
dev := uint64(sys.Rdev) // May be int32 or uint32
switch runtime.GOOS {
case "linux":
// Copied from golang.org/x/sys/unix/dev_linux.go.
major := uint32((dev & 0x00000000000fff00) >> 8)
major |= uint32((dev & 0xfffff00000000000) >> 32)
minor := uint32((dev & 0x00000000000000ff) >> 0)
minor |= uint32((dev & 0x00000ffffff00000) >> 12)
h.Devmajor, h.Devminor = int64(major), int64(minor)
case "darwin":
// Copied from golang.org/x/sys/unix/dev_darwin.go.
major := uint32((dev >> 24) & 0xff)
minor := uint32(dev & 0xffffff)
h.Devmajor, h.Devminor = int64(major), int64(minor)
case "dragonfly":
// Copied from golang.org/x/sys/unix/dev_dragonfly.go.
major := uint32((dev >> 8) & 0xff)
minor := uint32(dev & 0xffff00ff)
h.Devmajor, h.Devminor = int64(major), int64(minor)
case "freebsd":
// Copied from golang.org/x/sys/unix/dev_freebsd.go.
major := uint32((dev >> 8) & 0xff)
minor := uint32(dev & 0xffff00ff)
h.Devmajor, h.Devminor = int64(major), int64(minor)
case "netbsd":
// Copied from golang.org/x/sys/unix/dev_netbsd.go.
major := uint32((dev & 0x000fff00) >> 8)
minor := uint32((dev & 0x000000ff) >> 0)
minor |= uint32((dev & 0xfff00000) >> 12)
h.Devmajor, h.Devminor = int64(major), int64(minor)
case "openbsd":
// Copied from golang.org/x/sys/unix/dev_openbsd.go.
major := uint32((dev & 0x0000ff00) >> 8)
minor := uint32((dev & 0x000000ff) >> 0)
minor |= uint32((dev & 0xffff0000) >> 8)
h.Devmajor, h.Devminor = int64(major), int64(minor)
default:
// TODO: Implement solaris (see https://golang.org/issue/8106)
}
}
return nil
}

View File

@ -12,26 +12,34 @@ import (
"time"
)
// hasNUL reports whether the NUL character exists within s.
func hasNUL(s string) bool {
return strings.IndexByte(s, 0) >= 0
}
// isASCII reports whether the input is an ASCII C-style string.
func isASCII(s string) bool {
for _, c := range s {
if c >= 0x80 {
if c >= 0x80 || c == 0x00 {
return false
}
}
return true
}
// toASCII converts the input to an ASCII C-style string.
// This a best effort conversion, so invalid characters are dropped.
func toASCII(s string) string {
if isASCII(s) {
return s
}
var buf bytes.Buffer
b := make([]byte, 0, len(s))
for _, c := range s {
if c < 0x80 {
buf.WriteByte(byte(c))
if c < 0x80 && c != 0x00 {
b = append(b, byte(c))
}
}
return buf.String()
return string(b)
}
type parser struct {
@ -45,23 +53,28 @@ type formatter struct {
// parseString parses bytes as a NUL-terminated C-style string.
// If a NUL byte is not found then the whole slice is returned as a string.
func (*parser) parseString(b []byte) string {
n := 0
for n < len(b) && b[n] != 0 {
n++
if i := bytes.IndexByte(b, 0); i >= 0 {
return string(b[:i])
}
return string(b[0:n])
return string(b)
}
// Write s into b, terminating it with a NUL if there is room.
// formatString copies s into b, NUL-terminating if possible.
func (f *formatter) formatString(b []byte, s string) {
if len(s) > len(b) {
f.err = ErrFieldTooLong
return
}
ascii := toASCII(s)
copy(b, ascii)
if len(ascii) < len(b) {
b[len(ascii)] = 0
copy(b, s)
if len(s) < len(b) {
b[len(s)] = 0
}
// Some buggy readers treat regular files with a trailing slash
// in the V7 path field as a directory even though the full path
// recorded elsewhere (e.g., via PAX record) contains no trailing slash.
if len(s) > len(b) && b[len(b)-1] == '/' {
n := len(strings.TrimRight(s[:len(b)], "/"))
b[n] = 0 // Replace trailing slash with NUL terminator
}
}
@ -73,7 +86,7 @@ func (f *formatter) formatString(b []byte, s string) {
// that the first byte can only be either 0x80 or 0xff. Thus, the first byte is
// equivalent to the sign bit in two's complement form.
func fitsInBase256(n int, x int64) bool {
var binBits = uint(n-1) * 8
binBits := uint(n-1) * 8
return n >= 9 || (x >= -1<<binBits && x < 1<<binBits)
}
@ -121,8 +134,14 @@ func (p *parser) parseNumeric(b []byte) int64 {
return p.parseOctal(b)
}
// Write x into b, as binary (GNUtar/star extension).
// formatNumeric encodes x into b using base-8 (octal) encoding if possible.
// Otherwise it will attempt to use base-256 (binary) encoding.
func (f *formatter) formatNumeric(b []byte, x int64) {
if fitsInOctal(len(b), x) {
f.formatOctal(b, x)
return
}
if fitsInBase256(len(b), x) {
for i := len(b) - 1; i >= 0; i-- {
b[i] = byte(x)
@ -155,6 +174,11 @@ func (p *parser) parseOctal(b []byte) int64 {
}
func (f *formatter) formatOctal(b []byte, x int64) {
if !fitsInOctal(len(b), x) {
x = 0 // Last resort, just write zero
f.err = ErrFieldTooLong
}
s := strconv.FormatInt(x, 8)
// Add leading zeros, but leave room for a NUL.
if n := len(b) - len(s) - 1; n > 0 {
@ -163,6 +187,13 @@ func (f *formatter) formatOctal(b []byte, x int64) {
f.formatString(b, s)
}
// fitsInOctal reports whether the integer x fits in a field n-bytes long
// using octal encoding with the appropriate NUL terminator.
func fitsInOctal(n int, x int64) bool {
octBits := uint(n-1) * 3
return x >= 0 && (n >= 22 || x < 1<<octBits)
}
// parsePAXTime takes a string of the form %d.%d as described in the PAX
// specification. Note that this implementation allows for negative timestamps,
// which is allowed for by the PAX specification, but not always portable.
@ -200,14 +231,27 @@ func parsePAXTime(s string) (time.Time, error) {
return time.Unix(secs, int64(nsecs)), nil
}
// TODO(dsnet): Implement formatPAXTime.
// formatPAXTime converts ts into a time of the form %d.%d as described in the
// PAX specification. This function is capable of negative timestamps.
func formatPAXTime(ts time.Time) (s string) {
secs, nsecs := ts.Unix(), ts.Nanosecond()
if nsecs == 0 {
return strconv.FormatInt(secs, 10)
}
// If seconds is negative, then perform correction.
sign := ""
if secs < 0 {
sign = "-" // Remember sign
secs = -(secs + 1) // Add a second to secs
nsecs = -(nsecs - 1E9) // Take that second away from nsecs
}
return strings.TrimRight(fmt.Sprintf("%s%d.%09d", sign, secs, nsecs), "0")
}
// parsePAXRecord parses the input PAX record string into a key-value pair.
// If parsing is successful, it will slice off the currently read record and
// return the remainder as r.
//
// A PAX record is of the following form:
// "%d %s=%s\n" % (size, key, value)
func parsePAXRecord(s string) (k, v, r string, err error) {
// The size field ends at the first space.
sp := strings.IndexByte(s, ' ')
@ -232,21 +276,51 @@ func parsePAXRecord(s string) (k, v, r string, err error) {
if eq == -1 {
return "", "", s, ErrHeader
}
return rec[:eq], rec[eq+1:], rem, nil
k, v = rec[:eq], rec[eq+1:]
if !validPAXRecord(k, v) {
return "", "", s, ErrHeader
}
return k, v, rem, nil
}
// formatPAXRecord formats a single PAX record, prefixing it with the
// appropriate length.
func formatPAXRecord(k, v string) string {
func formatPAXRecord(k, v string) (string, error) {
if !validPAXRecord(k, v) {
return "", ErrHeader
}
const padding = 3 // Extra padding for ' ', '=', and '\n'
size := len(k) + len(v) + padding
size += len(strconv.Itoa(size))
record := fmt.Sprintf("%d %s=%s\n", size, k, v)
record := strconv.Itoa(size) + " " + k + "=" + v + "\n"
// Final adjustment if adding size field increased the record size.
if len(record) != size {
size = len(record)
record = fmt.Sprintf("%d %s=%s\n", size, k, v)
record = strconv.Itoa(size) + " " + k + "=" + v + "\n"
}
return record, nil
}
// validPAXRecord reports whether the key-value pair is valid where each
// record is formatted as:
// "%d %s=%s\n" % (size, key, value)
//
// Keys and values should be UTF-8, but the number of bad writers out there
// forces us to be a more liberal.
// Thus, we only reject all keys with NUL, and only reject NULs in values
// for the PAX version of the USTAR string fields.
// The key must not contain an '=' character.
func validPAXRecord(k, v string) bool {
if k == "" || strings.IndexByte(k, '=') >= 0 {
return false
}
switch k {
case paxPath, paxLinkpath, paxUname, paxGname:
return !hasNUL(v)
default:
return !hasNUL(k)
}
return record
}

View File

@ -4,12 +4,8 @@
package tar
// TODO(dsymonds):
// - catch more errors (no first header, etc.)
import (
"bytes"
"errors"
"fmt"
"io"
"path"
@ -19,234 +15,365 @@ import (
"time"
)
var (
ErrWriteTooLong = errors.New("archive/tar: write too long")
ErrFieldTooLong = errors.New("archive/tar: header field too long")
ErrWriteAfterClose = errors.New("archive/tar: write after close")
errInvalidHeader = errors.New("archive/tar: header field too long or contains invalid values")
)
// A Writer provides sequential writing of a tar archive in POSIX.1 format.
// A tar archive consists of a sequence of files.
// Call WriteHeader to begin a new file, and then call Write to supply that file's data,
// writing at most hdr.Size bytes in total.
// Writer provides sequential writing of a tar archive.
// Write.WriteHeader begins a new file with the provided Header,
// and then Writer can be treated as an io.Writer to supply that file's data.
type Writer struct {
w io.Writer
err error
nb int64 // number of unwritten bytes for current file entry
pad int64 // amount of padding to write after current file entry
closed bool
usedBinary bool // whether the binary numeric field extension was used
preferPax bool // use PAX header instead of binary numeric header
hdrBuff block // buffer to use in writeHeader when writing a regular header
paxHdrBuff block // buffer to use in writeHeader when writing a PAX header
w io.Writer
pad int64 // Amount of padding to write after current file entry
curr fileWriter // Writer for current file entry
hdr Header // Shallow copy of Header that is safe for mutations
blk block // Buffer to use as temporary local storage
// err is a persistent error.
// It is only the responsibility of every exported method of Writer to
// ensure that this error is sticky.
err error
}
// NewWriter creates a new Writer writing to w.
func NewWriter(w io.Writer) *Writer { return &Writer{w: w} }
func NewWriter(w io.Writer) *Writer {
return &Writer{w: w, curr: &regFileWriter{w, 0}}
}
// Flush finishes writing the current file (optional).
type fileWriter interface {
io.Writer
fileState
ReadFrom(io.Reader) (int64, error)
}
// Flush finishes writing the current file's block padding.
// The current file must be fully written before Flush can be called.
//
// Deprecated: This is unnecessary as the next call to WriteHeader or Close
// will implicitly flush out the file's padding.
func (tw *Writer) Flush() error {
if tw.nb > 0 {
tw.err = fmt.Errorf("archive/tar: missed writing %d bytes", tw.nb)
return tw.err
}
n := tw.nb + tw.pad
for n > 0 && tw.err == nil {
nr := n
if nr > blockSize {
nr = blockSize
}
var nw int
nw, tw.err = tw.w.Write(zeroBlock[0:nr])
n -= int64(nw)
}
tw.nb = 0
tw.pad = 0
return tw.err
}
var (
minTime = time.Unix(0, 0)
// There is room for 11 octal digits (33 bits) of mtime.
maxTime = minTime.Add((1<<33 - 1) * time.Second)
)
// WriteHeader writes hdr and prepares to accept the file's contents.
// WriteHeader calls Flush if it is not the first header.
// Calling after a Close will return ErrWriteAfterClose.
func (tw *Writer) WriteHeader(hdr *Header) error {
return tw.writeHeader(hdr, true)
}
// WriteHeader writes hdr and prepares to accept the file's contents.
// WriteHeader calls Flush if it is not the first header.
// Calling after a Close will return ErrWriteAfterClose.
// As this method is called internally by writePax header to allow it to
// suppress writing the pax header.
func (tw *Writer) writeHeader(hdr *Header, allowPax bool) error {
if tw.closed {
return ErrWriteAfterClose
}
if tw.err == nil {
tw.Flush()
}
if tw.err != nil {
return tw.err
}
// a map to hold pax header records, if any are needed
paxHeaders := make(map[string]string)
// TODO(dsnet): we might want to use PAX headers for
// subsecond time resolution, but for now let's just capture
// too long fields or non ascii characters
// We need to select which scratch buffer to use carefully,
// since this method is called recursively to write PAX headers.
// If allowPax is true, this is the non-recursive call, and we will use hdrBuff.
// If allowPax is false, we are being called by writePAXHeader, and hdrBuff is
// already being used by the non-recursive call, so we must use paxHdrBuff.
header := &tw.hdrBuff
if !allowPax {
header = &tw.paxHdrBuff
if nb := tw.curr.LogicalRemaining(); nb > 0 {
return fmt.Errorf("tar: missed writing %d bytes", nb)
}
copy(header[:], zeroBlock[:])
// Wrappers around formatter that automatically sets paxHeaders if the
// argument extends beyond the capacity of the input byte slice.
var f formatter
var formatString = func(b []byte, s string, paxKeyword string) {
needsPaxHeader := paxKeyword != paxNone && len(s) > len(b) || !isASCII(s)
if needsPaxHeader {
paxHeaders[paxKeyword] = s
return
}
f.formatString(b, s)
}
var formatNumeric = func(b []byte, x int64, paxKeyword string) {
// Try octal first.
s := strconv.FormatInt(x, 8)
if len(s) < len(b) {
f.formatOctal(b, x)
return
}
// If it is too long for octal, and PAX is preferred, use a PAX header.
if paxKeyword != paxNone && tw.preferPax {
f.formatOctal(b, 0)
s := strconv.FormatInt(x, 10)
paxHeaders[paxKeyword] = s
return
}
tw.usedBinary = true
f.formatNumeric(b, x)
}
// Handle out of range ModTime carefully.
var modTime int64
if !hdr.ModTime.Before(minTime) && !hdr.ModTime.After(maxTime) {
modTime = hdr.ModTime.Unix()
}
v7 := header.V7()
formatString(v7.Name(), hdr.Name, paxPath)
// TODO(dsnet): The GNU format permits the mode field to be encoded in
// base-256 format. Thus, we can use formatNumeric instead of formatOctal.
f.formatOctal(v7.Mode(), hdr.Mode)
formatNumeric(v7.UID(), int64(hdr.Uid), paxUid)
formatNumeric(v7.GID(), int64(hdr.Gid), paxGid)
formatNumeric(v7.Size(), hdr.Size, paxSize)
// TODO(dsnet): Consider using PAX for finer time granularity.
formatNumeric(v7.ModTime(), modTime, paxNone)
v7.TypeFlag()[0] = hdr.Typeflag
formatString(v7.LinkName(), hdr.Linkname, paxLinkpath)
ustar := header.USTAR()
formatString(ustar.UserName(), hdr.Uname, paxUname)
formatString(ustar.GroupName(), hdr.Gname, paxGname)
formatNumeric(ustar.DevMajor(), hdr.Devmajor, paxNone)
formatNumeric(ustar.DevMinor(), hdr.Devminor, paxNone)
// TODO(dsnet): The logic surrounding the prefix field is broken when trying
// to encode the header as GNU format. The challenge with the current logic
// is that we are unsure what format we are using at any given moment until
// we have processed *all* of the fields. The problem is that by the time
// all fields have been processed, some work has already been done to handle
// each field under the assumption that it is for one given format or
// another. In some situations, this causes the Writer to be confused and
// encode a prefix field when the format being used is GNU. Thus, producing
// an invalid tar file.
//
// As a short-term fix, we disable the logic to use the prefix field, which
// will force the badly generated GNU files to become encoded as being
// the PAX format.
//
// As an alternative fix, we could hard-code preferPax to be true. However,
// this is problematic for the following reasons:
// * The preferPax functionality is not tested at all.
// * This can result in headers that try to use both the GNU and PAX
// features at the same time, which is also wrong.
//
// The proper fix for this is to use a two-pass method:
// * The first pass simply determines what set of formats can possibly
// encode the given header.
// * The second pass actually encodes the header as that given format
// without worrying about violating the format.
//
// See the following:
// https://golang.org/issue/12594
// https://golang.org/issue/17630
// https://golang.org/issue/9683
const usePrefix = false
// try to use a ustar header when only the name is too long
_, paxPathUsed := paxHeaders[paxPath]
if usePrefix && !tw.preferPax && len(paxHeaders) == 1 && paxPathUsed {
prefix, suffix, ok := splitUSTARPath(hdr.Name)
if ok {
// Since we can encode in USTAR format, disable PAX header.
delete(paxHeaders, paxPath)
// Update the path fields
formatString(v7.Name(), suffix, paxNone)
formatString(ustar.Prefix(), prefix, paxNone)
}
}
if tw.usedBinary {
header.SetFormat(formatGNU)
} else {
header.SetFormat(formatUSTAR)
}
// Check if there were any formatting errors.
if f.err != nil {
tw.err = f.err
if _, tw.err = tw.w.Write(zeroBlock[:tw.pad]); tw.err != nil {
return tw.err
}
tw.pad = 0
return nil
}
if allowPax {
for k, v := range hdr.Xattrs {
paxHeaders[paxXattr+k] = v
// WriteHeader writes hdr and prepares to accept the file's contents.
// The Header.Size determines how many bytes can be written for the next file.
// If the current file is not fully written, then this returns an error.
// This implicitly flushes any padding necessary before writing the header.
func (tw *Writer) WriteHeader(hdr *Header) error {
if err := tw.Flush(); err != nil {
return err
}
tw.hdr = *hdr // Shallow copy of Header
// Round ModTime and ignore AccessTime and ChangeTime unless
// the format is explicitly chosen.
// This ensures nominal usage of WriteHeader (without specifying the format)
// does not always result in the PAX format being chosen, which
// causes a 1KiB increase to every header.
if tw.hdr.Format == FormatUnknown {
tw.hdr.ModTime = tw.hdr.ModTime.Round(time.Second)
tw.hdr.AccessTime = time.Time{}
tw.hdr.ChangeTime = time.Time{}
}
allowedFormats, paxHdrs, err := tw.hdr.allowedFormats()
switch {
case allowedFormats.has(FormatUSTAR):
tw.err = tw.writeUSTARHeader(&tw.hdr)
return tw.err
case allowedFormats.has(FormatPAX):
tw.err = tw.writePAXHeader(&tw.hdr, paxHdrs)
return tw.err
case allowedFormats.has(FormatGNU):
tw.err = tw.writeGNUHeader(&tw.hdr)
return tw.err
default:
return err // Non-fatal error
}
}
func (tw *Writer) writeUSTARHeader(hdr *Header) error {
// Check if we can use USTAR prefix/suffix splitting.
var namePrefix string
if prefix, suffix, ok := splitUSTARPath(hdr.Name); ok {
namePrefix, hdr.Name = prefix, suffix
}
// Pack the main header.
var f formatter
blk := tw.templateV7Plus(hdr, f.formatString, f.formatOctal)
f.formatString(blk.USTAR().Prefix(), namePrefix)
blk.SetFormat(FormatUSTAR)
if f.err != nil {
return f.err // Should never happen since header is validated
}
return tw.writeRawHeader(blk, hdr.Size, hdr.Typeflag)
}
func (tw *Writer) writePAXHeader(hdr *Header, paxHdrs map[string]string) error {
realName, realSize := hdr.Name, hdr.Size
// Handle sparse files.
var spd sparseDatas
var spb []byte
if len(hdr.SparseHoles) > 0 {
sph := append([]SparseEntry{}, hdr.SparseHoles...) // Copy sparse map
sph = alignSparseEntries(sph, hdr.Size)
spd = invertSparseEntries(sph, hdr.Size)
// Format the sparse map.
hdr.Size = 0 // Replace with encoded size
spb = append(strconv.AppendInt(spb, int64(len(spd)), 10), '\n')
for _, s := range spd {
hdr.Size += s.Length
spb = append(strconv.AppendInt(spb, s.Offset, 10), '\n')
spb = append(strconv.AppendInt(spb, s.Length, 10), '\n')
}
pad := blockPadding(int64(len(spb)))
spb = append(spb, zeroBlock[:pad]...)
hdr.Size += int64(len(spb)) // Accounts for encoded sparse map
// Add and modify appropriate PAX records.
dir, file := path.Split(realName)
hdr.Name = path.Join(dir, "GNUSparseFile.0", file)
paxHdrs[paxGNUSparseMajor] = "1"
paxHdrs[paxGNUSparseMinor] = "0"
paxHdrs[paxGNUSparseName] = realName
paxHdrs[paxGNUSparseRealSize] = strconv.FormatInt(realSize, 10)
paxHdrs[paxSize] = strconv.FormatInt(hdr.Size, 10)
delete(paxHdrs, paxPath) // Recorded by paxGNUSparseName
}
// Write PAX records to the output.
isGlobal := hdr.Typeflag == TypeXGlobalHeader
if len(paxHdrs) > 0 || isGlobal {
// Sort keys for deterministic ordering.
var keys []string
for k := range paxHdrs {
keys = append(keys, k)
}
sort.Strings(keys)
// Write each record to a buffer.
var buf bytes.Buffer
for _, k := range keys {
rec, err := formatPAXRecord(k, paxHdrs[k])
if err != nil {
return err
}
buf.WriteString(rec)
}
// Write the extended header file.
var name string
var flag byte
if isGlobal {
name = "GlobalHead.0.0"
flag = TypeXGlobalHeader
} else {
dir, file := path.Split(realName)
name = path.Join(dir, "PaxHeaders.0", file)
flag = TypeXHeader
}
data := buf.String()
if err := tw.writeRawFile(name, data, flag, FormatPAX); err != nil || isGlobal {
return err // Global headers return here
}
}
if len(paxHeaders) > 0 {
if !allowPax {
return errInvalidHeader
// Pack the main header.
var f formatter // Ignore errors since they are expected
fmtStr := func(b []byte, s string) { f.formatString(b, toASCII(s)) }
blk := tw.templateV7Plus(hdr, fmtStr, f.formatOctal)
blk.SetFormat(FormatPAX)
if err := tw.writeRawHeader(blk, hdr.Size, hdr.Typeflag); err != nil {
return err
}
// Write the sparse map and setup the sparse writer if necessary.
if len(spd) > 0 {
// Use tw.curr since the sparse map is accounted for in hdr.Size.
if _, err := tw.curr.Write(spb); err != nil {
return err
}
if err := tw.writePAXHeader(hdr, paxHeaders); err != nil {
tw.curr = &sparseFileWriter{tw.curr, spd, 0}
}
return nil
}
func (tw *Writer) writeGNUHeader(hdr *Header) error {
// Use long-link files if Name or Linkname exceeds the field size.
const longName = "././@LongLink"
if len(hdr.Name) > nameSize {
data := hdr.Name + "\x00"
if err := tw.writeRawFile(longName, data, TypeGNULongName, FormatGNU); err != nil {
return err
}
}
if len(hdr.Linkname) > nameSize {
data := hdr.Linkname + "\x00"
if err := tw.writeRawFile(longName, data, TypeGNULongLink, FormatGNU); err != nil {
return err
}
}
tw.nb = hdr.Size
tw.pad = (blockSize - (tw.nb % blockSize)) % blockSize
_, tw.err = tw.w.Write(header[:])
return tw.err
// Pack the main header.
var f formatter // Ignore errors since they are expected
var spd sparseDatas
var spb []byte
blk := tw.templateV7Plus(hdr, f.formatString, f.formatNumeric)
if !hdr.AccessTime.IsZero() {
f.formatNumeric(blk.GNU().AccessTime(), hdr.AccessTime.Unix())
}
if !hdr.ChangeTime.IsZero() {
f.formatNumeric(blk.GNU().ChangeTime(), hdr.ChangeTime.Unix())
}
if hdr.Typeflag == TypeGNUSparse {
sph := append([]SparseEntry{}, hdr.SparseHoles...) // Copy sparse map
sph = alignSparseEntries(sph, hdr.Size)
spd = invertSparseEntries(sph, hdr.Size)
// Format the sparse map.
formatSPD := func(sp sparseDatas, sa sparseArray) sparseDatas {
for i := 0; len(sp) > 0 && i < sa.MaxEntries(); i++ {
f.formatNumeric(sa.Entry(i).Offset(), sp[0].Offset)
f.formatNumeric(sa.Entry(i).Length(), sp[0].Length)
sp = sp[1:]
}
if len(sp) > 0 {
sa.IsExtended()[0] = 1
}
return sp
}
sp2 := formatSPD(spd, blk.GNU().Sparse())
for len(sp2) > 0 {
var spHdr block
sp2 = formatSPD(sp2, spHdr.Sparse())
spb = append(spb, spHdr[:]...)
}
// Update size fields in the header block.
realSize := hdr.Size
hdr.Size = 0 // Encoded size; does not account for encoded sparse map
for _, s := range spd {
hdr.Size += s.Length
}
copy(blk.V7().Size(), zeroBlock[:]) // Reset field
f.formatNumeric(blk.V7().Size(), hdr.Size)
f.formatNumeric(blk.GNU().RealSize(), realSize)
}
blk.SetFormat(FormatGNU)
if err := tw.writeRawHeader(blk, hdr.Size, hdr.Typeflag); err != nil {
return err
}
// Write the extended sparse map and setup the sparse writer if necessary.
if len(spd) > 0 {
// Use tw.w since the sparse map is not accounted for in hdr.Size.
if _, err := tw.w.Write(spb); err != nil {
return err
}
tw.curr = &sparseFileWriter{tw.curr, spd, 0}
}
return nil
}
type (
stringFormatter func([]byte, string)
numberFormatter func([]byte, int64)
)
// templateV7Plus fills out the V7 fields of a block using values from hdr.
// It also fills out fields (uname, gname, devmajor, devminor) that are
// shared in the USTAR, PAX, and GNU formats using the provided formatters.
//
// The block returned is only valid until the next call to
// templateV7Plus or writeRawFile.
func (tw *Writer) templateV7Plus(hdr *Header, fmtStr stringFormatter, fmtNum numberFormatter) *block {
tw.blk.Reset()
modTime := hdr.ModTime
if modTime.IsZero() {
modTime = time.Unix(0, 0)
}
v7 := tw.blk.V7()
v7.TypeFlag()[0] = hdr.Typeflag
fmtStr(v7.Name(), hdr.Name)
fmtStr(v7.LinkName(), hdr.Linkname)
fmtNum(v7.Mode(), hdr.Mode)
fmtNum(v7.UID(), int64(hdr.Uid))
fmtNum(v7.GID(), int64(hdr.Gid))
fmtNum(v7.Size(), hdr.Size)
fmtNum(v7.ModTime(), modTime.Unix())
ustar := tw.blk.USTAR()
fmtStr(ustar.UserName(), hdr.Uname)
fmtStr(ustar.GroupName(), hdr.Gname)
fmtNum(ustar.DevMajor(), hdr.Devmajor)
fmtNum(ustar.DevMinor(), hdr.Devminor)
return &tw.blk
}
// writeRawFile writes a minimal file with the given name and flag type.
// It uses format to encode the header format and will write data as the body.
// It uses default values for all of the other fields (as BSD and GNU tar does).
func (tw *Writer) writeRawFile(name, data string, flag byte, format Format) error {
tw.blk.Reset()
// Best effort for the filename.
name = toASCII(name)
if len(name) > nameSize {
name = name[:nameSize]
}
name = strings.TrimRight(name, "/")
var f formatter
v7 := tw.blk.V7()
v7.TypeFlag()[0] = flag
f.formatString(v7.Name(), name)
f.formatOctal(v7.Mode(), 0)
f.formatOctal(v7.UID(), 0)
f.formatOctal(v7.GID(), 0)
f.formatOctal(v7.Size(), int64(len(data))) // Must be < 8GiB
f.formatOctal(v7.ModTime(), 0)
tw.blk.SetFormat(format)
if f.err != nil {
return f.err // Only occurs if size condition is violated
}
// Write the header and data.
if err := tw.writeRawHeader(&tw.blk, int64(len(data)), flag); err != nil {
return err
}
_, err := io.WriteString(tw, data)
return err
}
// writeRawHeader writes the value of blk, regardless of its value.
// It sets up the Writer such that it can accept a file of the given size.
// If the flag is a special header-only flag, then the size is treated as zero.
func (tw *Writer) writeRawHeader(blk *block, size int64, flag byte) error {
if err := tw.Flush(); err != nil {
return err
}
if _, err := tw.w.Write(blk[:]); err != nil {
return err
}
if isHeaderOnlyType(flag) {
size = 0
}
tw.curr = &regFileWriter{tw.w, size}
tw.pad = blockPadding(size)
return nil
}
// splitUSTARPath splits a path according to USTAR prefix and suffix rules.
@ -270,95 +397,233 @@ func splitUSTARPath(name string) (prefix, suffix string, ok bool) {
return name[:i], name[i+1:], true
}
// writePaxHeader writes an extended pax header to the
// archive.
func (tw *Writer) writePAXHeader(hdr *Header, paxHeaders map[string]string) error {
// Prepare extended header
ext := new(Header)
ext.Typeflag = TypeXHeader
// Setting ModTime is required for reader parsing to
// succeed, and seems harmless enough.
ext.ModTime = hdr.ModTime
// The spec asks that we namespace our pseudo files
// with the current pid. However, this results in differing outputs
// for identical inputs. As such, the constant 0 is now used instead.
// golang.org/issue/12358
dir, file := path.Split(hdr.Name)
fullName := path.Join(dir, "PaxHeaders.0", file)
ascii := toASCII(fullName)
if len(ascii) > nameSize {
ascii = ascii[:nameSize]
}
ext.Name = ascii
// Construct the body
var buf bytes.Buffer
// Keys are sorted before writing to body to allow deterministic output.
keys := make([]string, 0, len(paxHeaders))
for k := range paxHeaders {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys {
fmt.Fprint(&buf, formatPAXRecord(k, paxHeaders[k]))
}
ext.Size = int64(len(buf.Bytes()))
if err := tw.writeHeader(ext, false); err != nil {
return err
}
if _, err := tw.Write(buf.Bytes()); err != nil {
return err
}
if err := tw.Flush(); err != nil {
return err
}
return nil
}
// Write writes to the current entry in the tar archive.
// Write writes to the current file in the tar archive.
// Write returns the error ErrWriteTooLong if more than
// hdr.Size bytes are written after WriteHeader.
func (tw *Writer) Write(b []byte) (n int, err error) {
if tw.closed {
err = ErrWriteAfterClose
return
// Header.Size bytes are written after WriteHeader.
//
// If the current file is sparse, then the regions marked as a hole
// must be written as NUL-bytes.
//
// Calling Write on special types like TypeLink, TypeSymlink, TypeChar,
// TypeBlock, TypeDir, and TypeFifo returns (0, ErrWriteTooLong) regardless
// of what the Header.Size claims.
func (tw *Writer) Write(b []byte) (int, error) {
if tw.err != nil {
return 0, tw.err
}
overwrite := false
if int64(len(b)) > tw.nb {
b = b[0:tw.nb]
overwrite = true
n, err := tw.curr.Write(b)
if err != nil && err != ErrWriteTooLong {
tw.err = err
}
n, err = tw.w.Write(b)
tw.nb -= int64(n)
if err == nil && overwrite {
err = ErrWriteTooLong
return
}
tw.err = err
return
return n, err
}
// Close closes the tar archive, flushing any unwritten
// data to the underlying writer.
func (tw *Writer) Close() error {
if tw.err != nil || tw.closed {
return tw.err
// ReadFrom populates the content of the current file by reading from r.
// The bytes read must match the number of remaining bytes in the current file.
//
// If the current file is sparse and r is an io.ReadSeeker,
// then ReadFrom uses Seek to skip past holes defined in Header.SparseHoles,
// assuming that skipped regions are all NULs.
// This always reads the last byte to ensure r is the right size.
func (tw *Writer) ReadFrom(r io.Reader) (int64, error) {
if tw.err != nil {
return 0, tw.err
}
n, err := tw.curr.ReadFrom(r)
if err != nil && err != ErrWriteTooLong {
tw.err = err
}
return n, err
}
// Close closes the tar archive by flushing the padding, and writing the footer.
// If the current file (from a prior call to WriteHeader) is not fully written,
// then this returns an error.
func (tw *Writer) Close() error {
if tw.err == ErrWriteAfterClose {
return nil
}
tw.Flush()
tw.closed = true
if tw.err != nil {
return tw.err
}
// trailer: two zero blocks
for i := 0; i < 2; i++ {
_, tw.err = tw.w.Write(zeroBlock[:])
if tw.err != nil {
break
// Trailer: two zero blocks.
err := tw.Flush()
for i := 0; i < 2 && err == nil; i++ {
_, err = tw.w.Write(zeroBlock[:])
}
// Ensure all future actions are invalid.
tw.err = ErrWriteAfterClose
return err // Report IO errors
}
// regFileWriter is a fileWriter for writing data to a regular file entry.
type regFileWriter struct {
w io.Writer // Underlying Writer
nb int64 // Number of remaining bytes to write
}
func (fw *regFileWriter) Write(b []byte) (n int, err error) {
overwrite := int64(len(b)) > fw.nb
if overwrite {
b = b[:fw.nb]
}
if len(b) > 0 {
n, err = fw.w.Write(b)
fw.nb -= int64(n)
}
switch {
case err != nil:
return n, err
case overwrite:
return n, ErrWriteTooLong
default:
return n, nil
}
}
func (fw *regFileWriter) ReadFrom(r io.Reader) (int64, error) {
return io.Copy(struct{ io.Writer }{fw}, r)
}
func (fw regFileWriter) LogicalRemaining() int64 {
return fw.nb
}
func (fw regFileWriter) PhysicalRemaining() int64 {
return fw.nb
}
// sparseFileWriter is a fileWriter for writing data to a sparse file entry.
type sparseFileWriter struct {
fw fileWriter // Underlying fileWriter
sp sparseDatas // Normalized list of data fragments
pos int64 // Current position in sparse file
}
func (sw *sparseFileWriter) Write(b []byte) (n int, err error) {
overwrite := int64(len(b)) > sw.LogicalRemaining()
if overwrite {
b = b[:sw.LogicalRemaining()]
}
b0 := b
endPos := sw.pos + int64(len(b))
for endPos > sw.pos && err == nil {
var nf int // Bytes written in fragment
dataStart, dataEnd := sw.sp[0].Offset, sw.sp[0].endOffset()
if sw.pos < dataStart { // In a hole fragment
bf := b[:min(int64(len(b)), dataStart-sw.pos)]
nf, err = zeroWriter{}.Write(bf)
} else { // In a data fragment
bf := b[:min(int64(len(b)), dataEnd-sw.pos)]
nf, err = sw.fw.Write(bf)
}
b = b[nf:]
sw.pos += int64(nf)
if sw.pos >= dataEnd && len(sw.sp) > 1 {
sw.sp = sw.sp[1:] // Ensure last fragment always remains
}
}
return tw.err
n = len(b0) - len(b)
switch {
case err == ErrWriteTooLong:
return n, errMissData // Not possible; implies bug in validation logic
case err != nil:
return n, err
case sw.LogicalRemaining() == 0 && sw.PhysicalRemaining() > 0:
return n, errUnrefData // Not possible; implies bug in validation logic
case overwrite:
return n, ErrWriteTooLong
default:
return n, nil
}
}
func (sw *sparseFileWriter) ReadFrom(r io.Reader) (n int64, err error) {
rs, ok := r.(io.ReadSeeker)
if ok {
if _, err := rs.Seek(0, io.SeekCurrent); err != nil {
ok = false // Not all io.Seeker can really seek
}
}
if !ok {
return io.Copy(struct{ io.Writer }{sw}, r)
}
var readLastByte bool
pos0 := sw.pos
for sw.LogicalRemaining() > 0 && !readLastByte && err == nil {
var nf int64 // Size of fragment
dataStart, dataEnd := sw.sp[0].Offset, sw.sp[0].endOffset()
if sw.pos < dataStart { // In a hole fragment
nf = dataStart - sw.pos
if sw.PhysicalRemaining() == 0 {
readLastByte = true
nf--
}
_, err = rs.Seek(nf, io.SeekCurrent)
} else { // In a data fragment
nf = dataEnd - sw.pos
nf, err = io.CopyN(sw.fw, rs, nf)
}
sw.pos += nf
if sw.pos >= dataEnd && len(sw.sp) > 1 {
sw.sp = sw.sp[1:] // Ensure last fragment always remains
}
}
// If the last fragment is a hole, then seek to 1-byte before EOF, and
// read a single byte to ensure the file is the right size.
if readLastByte && err == nil {
_, err = mustReadFull(rs, []byte{0})
sw.pos++
}
n = sw.pos - pos0
switch {
case err == io.EOF:
return n, io.ErrUnexpectedEOF
case err == ErrWriteTooLong:
return n, errMissData // Not possible; implies bug in validation logic
case err != nil:
return n, err
case sw.LogicalRemaining() == 0 && sw.PhysicalRemaining() > 0:
return n, errUnrefData // Not possible; implies bug in validation logic
default:
return n, ensureEOF(rs)
}
}
func (sw sparseFileWriter) LogicalRemaining() int64 {
return sw.sp[len(sw.sp)-1].endOffset() - sw.pos
}
func (sw sparseFileWriter) PhysicalRemaining() int64 {
return sw.fw.PhysicalRemaining()
}
// zeroWriter may only be written with NULs, otherwise it returns errWriteHole.
type zeroWriter struct{}
func (zeroWriter) Write(b []byte) (int, error) {
for i, c := range b {
if c != 0 {
return i, errWriteHole
}
}
return len(b), nil
}
// ensureEOF checks whether r is at EOF, reporting ErrWriteTooLong if not so.
func ensureEOF(r io.Reader) error {
n, err := tryReadFull(r, []byte{0})
switch {
case n > 0:
return ErrWriteTooLong
case err == io.EOF:
return nil
default:
return err
}
}