677
									
								
								vendor/github.com/google/go-cmp/cmp/compare.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										677
									
								
								vendor/github.com/google/go-cmp/cmp/compare.go
									
									
									
										generated
									
									
										vendored
									
									
								
							@@ -6,6 +6,10 @@
 | 
			
		||||
//
 | 
			
		||||
// This package is intended to be a more powerful and safer alternative to
 | 
			
		||||
// reflect.DeepEqual for comparing whether two values are semantically equal.
 | 
			
		||||
// It is intended to only be used in tests, as performance is not a goal and
 | 
			
		||||
// it may panic if it cannot compare the values. Its propensity towards
 | 
			
		||||
// panicking means that its unsuitable for production environments where a
 | 
			
		||||
// spurious panic may be fatal.
 | 
			
		||||
//
 | 
			
		||||
// The primary features of cmp are:
 | 
			
		||||
//
 | 
			
		||||
@@ -22,33 +26,24 @@
 | 
			
		||||
// equality is determined by recursively comparing the primitive kinds on both
 | 
			
		||||
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
 | 
			
		||||
// fields are not compared by default; they result in panics unless suppressed
 | 
			
		||||
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared
 | 
			
		||||
// using the AllowUnexported option.
 | 
			
		||||
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
 | 
			
		||||
// compared using the Exporter option.
 | 
			
		||||
package cmp
 | 
			
		||||
 | 
			
		||||
import (
 | 
			
		||||
	"fmt"
 | 
			
		||||
	"reflect"
 | 
			
		||||
	"strings"
 | 
			
		||||
 | 
			
		||||
	"github.com/google/go-cmp/cmp/internal/diff"
 | 
			
		||||
	"github.com/google/go-cmp/cmp/internal/flags"
 | 
			
		||||
	"github.com/google/go-cmp/cmp/internal/function"
 | 
			
		||||
	"github.com/google/go-cmp/cmp/internal/value"
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
// BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to
 | 
			
		||||
// the reflection package's inability to retrieve such entries. Equal will panic
 | 
			
		||||
// anytime it comes across a NaN key, but this behavior may change.
 | 
			
		||||
//
 | 
			
		||||
// See https://golang.org/issue/11104 for more details.
 | 
			
		||||
 | 
			
		||||
var nothing = reflect.Value{}
 | 
			
		||||
 | 
			
		||||
// Equal reports whether x and y are equal by recursively applying the
 | 
			
		||||
// following rules in the given order to x and y and all of their sub-values:
 | 
			
		||||
//
 | 
			
		||||
// • If two values are not of the same type, then they are never equal
 | 
			
		||||
// and the overall result is false.
 | 
			
		||||
//
 | 
			
		||||
// • Let S be the set of all Ignore, Transformer, and Comparer options that
 | 
			
		||||
// remain after applying all path filters, value filters, and type filters.
 | 
			
		||||
// If at least one Ignore exists in S, then the comparison is ignored.
 | 
			
		||||
@@ -61,71 +56,137 @@ var nothing = reflect.Value{}
 | 
			
		||||
//
 | 
			
		||||
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
 | 
			
		||||
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
 | 
			
		||||
// x.Equal(y) even if x or y is nil.
 | 
			
		||||
// Otherwise, no such method exists and evaluation proceeds to the next rule.
 | 
			
		||||
// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
 | 
			
		||||
// evaluation proceeds to the next rule.
 | 
			
		||||
//
 | 
			
		||||
// • Lastly, try to compare x and y based on their basic kinds.
 | 
			
		||||
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
 | 
			
		||||
// channels are compared using the equivalent of the == operator in Go.
 | 
			
		||||
// Functions are only equal if they are both nil, otherwise they are unequal.
 | 
			
		||||
// Pointers are equal if the underlying values they point to are also equal.
 | 
			
		||||
// Interfaces are equal if their underlying concrete values are also equal.
 | 
			
		||||
//
 | 
			
		||||
// Structs are equal if all of their fields are equal. If a struct contains
 | 
			
		||||
// unexported fields, Equal panics unless the AllowUnexported option is used or
 | 
			
		||||
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
 | 
			
		||||
// Structs are equal if recursively calling Equal on all fields report equal.
 | 
			
		||||
// If a struct contains unexported fields, Equal panics unless an Ignore option
 | 
			
		||||
// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
 | 
			
		||||
// explicitly permits comparing the unexported field.
 | 
			
		||||
//
 | 
			
		||||
// Arrays, slices, and maps are equal if they are both nil or both non-nil
 | 
			
		||||
// with the same length and the elements at each index or key are equal.
 | 
			
		||||
// Note that a non-nil empty slice and a nil slice are not equal.
 | 
			
		||||
// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
 | 
			
		||||
// Slices are equal if they are both nil or both non-nil, where recursively
 | 
			
		||||
// calling Equal on all non-ignored slice or array elements report equal.
 | 
			
		||||
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
 | 
			
		||||
// consider using cmpopts.EquateEmpty.
 | 
			
		||||
//
 | 
			
		||||
// Maps are equal if they are both nil or both non-nil, where recursively
 | 
			
		||||
// calling Equal on all non-ignored map entries report equal.
 | 
			
		||||
// Map keys are equal according to the == operator.
 | 
			
		||||
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
 | 
			
		||||
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
 | 
			
		||||
// consider using cmpopts.EquateEmpty.
 | 
			
		||||
//
 | 
			
		||||
// Pointers and interfaces are equal if they are both nil or both non-nil,
 | 
			
		||||
// where they have the same underlying concrete type and recursively
 | 
			
		||||
// calling Equal on the underlying values reports equal.
 | 
			
		||||
//
 | 
			
		||||
// Before recursing into a pointer, slice element, or map, the current path
 | 
			
		||||
// is checked to detect whether the address has already been visited.
 | 
			
		||||
// If there is a cycle, then the pointed at values are considered equal
 | 
			
		||||
// only if both addresses were previously visited in the same path step.
 | 
			
		||||
func Equal(x, y interface{}, opts ...Option) bool {
 | 
			
		||||
	s := newState(opts)
 | 
			
		||||
	s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
 | 
			
		||||
	s.compareAny(rootStep(x, y))
 | 
			
		||||
	return s.result.Equal()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Diff returns a human-readable report of the differences between two values.
 | 
			
		||||
// It returns an empty string if and only if Equal returns true for the same
 | 
			
		||||
// input values and options. The output string will use the "-" symbol to
 | 
			
		||||
// indicate elements removed from x, and the "+" symbol to indicate elements
 | 
			
		||||
// added to y.
 | 
			
		||||
// input values and options.
 | 
			
		||||
//
 | 
			
		||||
// Do not depend on this output being stable.
 | 
			
		||||
// The output is displayed as a literal in pseudo-Go syntax.
 | 
			
		||||
// At the start of each line, a "-" prefix indicates an element removed from x,
 | 
			
		||||
// a "+" prefix to indicates an element added to y, and the lack of a prefix
 | 
			
		||||
// indicates an element common to both x and y. If possible, the output
 | 
			
		||||
// uses fmt.Stringer.String or error.Error methods to produce more humanly
 | 
			
		||||
// readable outputs. In such cases, the string is prefixed with either an
 | 
			
		||||
// 's' or 'e' character, respectively, to indicate that the method was called.
 | 
			
		||||
//
 | 
			
		||||
// Do not depend on this output being stable. If you need the ability to
 | 
			
		||||
// programmatically interpret the difference, consider using a custom Reporter.
 | 
			
		||||
func Diff(x, y interface{}, opts ...Option) string {
 | 
			
		||||
	s := newState(opts)
 | 
			
		||||
 | 
			
		||||
	// Optimization: If there are no other reporters, we can optimize for the
 | 
			
		||||
	// common case where the result is equal (and thus no reported difference).
 | 
			
		||||
	// This avoids the expensive construction of a difference tree.
 | 
			
		||||
	if len(s.reporters) == 0 {
 | 
			
		||||
		s.compareAny(rootStep(x, y))
 | 
			
		||||
		if s.result.Equal() {
 | 
			
		||||
			return ""
 | 
			
		||||
		}
 | 
			
		||||
		s.result = diff.Result{} // Reset results
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	r := new(defaultReporter)
 | 
			
		||||
	opts = Options{Options(opts), r}
 | 
			
		||||
	eq := Equal(x, y, opts...)
 | 
			
		||||
	s.reporters = append(s.reporters, reporter{r})
 | 
			
		||||
	s.compareAny(rootStep(x, y))
 | 
			
		||||
	d := r.String()
 | 
			
		||||
	if (d == "") != eq {
 | 
			
		||||
	if (d == "") != s.result.Equal() {
 | 
			
		||||
		panic("inconsistent difference and equality results")
 | 
			
		||||
	}
 | 
			
		||||
	return d
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// rootStep constructs the first path step. If x and y have differing types,
 | 
			
		||||
// then they are stored within an empty interface type.
 | 
			
		||||
func rootStep(x, y interface{}) PathStep {
 | 
			
		||||
	vx := reflect.ValueOf(x)
 | 
			
		||||
	vy := reflect.ValueOf(y)
 | 
			
		||||
 | 
			
		||||
	// If the inputs are different types, auto-wrap them in an empty interface
 | 
			
		||||
	// so that they have the same parent type.
 | 
			
		||||
	var t reflect.Type
 | 
			
		||||
	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
 | 
			
		||||
		t = reflect.TypeOf((*interface{})(nil)).Elem()
 | 
			
		||||
		if vx.IsValid() {
 | 
			
		||||
			vvx := reflect.New(t).Elem()
 | 
			
		||||
			vvx.Set(vx)
 | 
			
		||||
			vx = vvx
 | 
			
		||||
		}
 | 
			
		||||
		if vy.IsValid() {
 | 
			
		||||
			vvy := reflect.New(t).Elem()
 | 
			
		||||
			vvy.Set(vy)
 | 
			
		||||
			vy = vvy
 | 
			
		||||
		}
 | 
			
		||||
	} else {
 | 
			
		||||
		t = vx.Type()
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return &pathStep{t, vx, vy}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
type state struct {
 | 
			
		||||
	// These fields represent the "comparison state".
 | 
			
		||||
	// Calling statelessCompare must not result in observable changes to these.
 | 
			
		||||
	result   diff.Result // The current result of comparison
 | 
			
		||||
	curPath  Path        // The current path in the value tree
 | 
			
		||||
	reporter reporter    // Optional reporter used for difference formatting
 | 
			
		||||
	result    diff.Result // The current result of comparison
 | 
			
		||||
	curPath   Path        // The current path in the value tree
 | 
			
		||||
	curPtrs   pointerPath // The current set of visited pointers
 | 
			
		||||
	reporters []reporter  // Optional reporters
 | 
			
		||||
 | 
			
		||||
	// recChecker checks for infinite cycles applying the same set of
 | 
			
		||||
	// transformers upon the output of itself.
 | 
			
		||||
	recChecker recChecker
 | 
			
		||||
 | 
			
		||||
	// dynChecker triggers pseudo-random checks for option correctness.
 | 
			
		||||
	// It is safe for statelessCompare to mutate this value.
 | 
			
		||||
	dynChecker dynChecker
 | 
			
		||||
 | 
			
		||||
	// These fields, once set by processOption, will not change.
 | 
			
		||||
	exporters map[reflect.Type]bool // Set of structs with unexported field visibility
 | 
			
		||||
	opts      Options               // List of all fundamental and filter options
 | 
			
		||||
	exporters []exporter // List of exporters for structs with unexported fields
 | 
			
		||||
	opts      Options    // List of all fundamental and filter options
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func newState(opts []Option) *state {
 | 
			
		||||
	s := new(state)
 | 
			
		||||
	for _, opt := range opts {
 | 
			
		||||
		s.processOption(opt)
 | 
			
		||||
	}
 | 
			
		||||
	// Always ensure a validator option exists to validate the inputs.
 | 
			
		||||
	s := &state{opts: Options{validator{}}}
 | 
			
		||||
	s.curPtrs.Init()
 | 
			
		||||
	s.processOption(Options(opts))
 | 
			
		||||
	return s
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -144,18 +205,10 @@ func (s *state) processOption(opt Option) {
 | 
			
		||||
			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
 | 
			
		||||
		}
 | 
			
		||||
		s.opts = append(s.opts, opt)
 | 
			
		||||
	case visibleStructs:
 | 
			
		||||
		if s.exporters == nil {
 | 
			
		||||
			s.exporters = make(map[reflect.Type]bool)
 | 
			
		||||
		}
 | 
			
		||||
		for t := range opt {
 | 
			
		||||
			s.exporters[t] = true
 | 
			
		||||
		}
 | 
			
		||||
	case exporter:
 | 
			
		||||
		s.exporters = append(s.exporters, opt)
 | 
			
		||||
	case reporter:
 | 
			
		||||
		if s.reporter != nil {
 | 
			
		||||
			panic("difference reporter already registered")
 | 
			
		||||
		}
 | 
			
		||||
		s.reporter = opt
 | 
			
		||||
		s.reporters = append(s.reporters, opt)
 | 
			
		||||
	default:
 | 
			
		||||
		panic(fmt.Sprintf("unknown option %T", opt))
 | 
			
		||||
	}
 | 
			
		||||
@@ -164,153 +217,96 @@ func (s *state) processOption(opt Option) {
 | 
			
		||||
// statelessCompare compares two values and returns the result.
 | 
			
		||||
// This function is stateless in that it does not alter the current result,
 | 
			
		||||
// or output to any registered reporters.
 | 
			
		||||
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
 | 
			
		||||
	// We do not save and restore the curPath because all of the compareX
 | 
			
		||||
	// methods should properly push and pop from the path.
 | 
			
		||||
	// It is an implementation bug if the contents of curPath differs from
 | 
			
		||||
func (s *state) statelessCompare(step PathStep) diff.Result {
 | 
			
		||||
	// We do not save and restore curPath and curPtrs because all of the
 | 
			
		||||
	// compareX methods should properly push and pop from them.
 | 
			
		||||
	// It is an implementation bug if the contents of the paths differ from
 | 
			
		||||
	// when calling this function to when returning from it.
 | 
			
		||||
 | 
			
		||||
	oldResult, oldReporter := s.result, s.reporter
 | 
			
		||||
	oldResult, oldReporters := s.result, s.reporters
 | 
			
		||||
	s.result = diff.Result{} // Reset result
 | 
			
		||||
	s.reporter = nil         // Remove reporter to avoid spurious printouts
 | 
			
		||||
	s.compareAny(vx, vy)
 | 
			
		||||
	s.reporters = nil        // Remove reporters to avoid spurious printouts
 | 
			
		||||
	s.compareAny(step)
 | 
			
		||||
	res := s.result
 | 
			
		||||
	s.result, s.reporter = oldResult, oldReporter
 | 
			
		||||
	s.result, s.reporters = oldResult, oldReporters
 | 
			
		||||
	return res
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareAny(vx, vy reflect.Value) {
 | 
			
		||||
	// TODO: Support cyclic data structures.
 | 
			
		||||
func (s *state) compareAny(step PathStep) {
 | 
			
		||||
	// Update the path stack.
 | 
			
		||||
	s.curPath.push(step)
 | 
			
		||||
	defer s.curPath.pop()
 | 
			
		||||
	for _, r := range s.reporters {
 | 
			
		||||
		r.PushStep(step)
 | 
			
		||||
		defer r.PopStep()
 | 
			
		||||
	}
 | 
			
		||||
	s.recChecker.Check(s.curPath)
 | 
			
		||||
 | 
			
		||||
	// Rule 0: Differing types are never equal.
 | 
			
		||||
	if !vx.IsValid() || !vy.IsValid() {
 | 
			
		||||
		s.report(vx.IsValid() == vy.IsValid(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
	// Cycle-detection for slice elements (see NOTE in compareSlice).
 | 
			
		||||
	t := step.Type()
 | 
			
		||||
	vx, vy := step.Values()
 | 
			
		||||
	if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
 | 
			
		||||
		px, py := vx.Addr(), vy.Addr()
 | 
			
		||||
		if eq, visited := s.curPtrs.Push(px, py); visited {
 | 
			
		||||
			s.report(eq, reportByCycle)
 | 
			
		||||
			return
 | 
			
		||||
		}
 | 
			
		||||
		defer s.curPtrs.Pop(px, py)
 | 
			
		||||
	}
 | 
			
		||||
	if vx.Type() != vy.Type() {
 | 
			
		||||
		s.report(false, vx, vy) // Possible for path to be empty
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	t := vx.Type()
 | 
			
		||||
	if len(s.curPath) == 0 {
 | 
			
		||||
		s.curPath.push(&pathStep{typ: t})
 | 
			
		||||
		defer s.curPath.pop()
 | 
			
		||||
	}
 | 
			
		||||
	vx, vy = s.tryExporting(vx, vy)
 | 
			
		||||
 | 
			
		||||
	// Rule 1: Check whether an option applies on this node in the value tree.
 | 
			
		||||
	if s.tryOptions(vx, vy, t) {
 | 
			
		||||
	if s.tryOptions(t, vx, vy) {
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Rule 2: Check whether the type has a valid Equal method.
 | 
			
		||||
	if s.tryMethod(vx, vy, t) {
 | 
			
		||||
	if s.tryMethod(t, vx, vy) {
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Rule 3: Recursively descend into each value's underlying kind.
 | 
			
		||||
	// Rule 3: Compare based on the underlying kind.
 | 
			
		||||
	switch t.Kind() {
 | 
			
		||||
	case reflect.Bool:
 | 
			
		||||
		s.report(vx.Bool() == vy.Bool(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Bool() == vy.Bool(), 0)
 | 
			
		||||
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
			
		||||
		s.report(vx.Int() == vy.Int(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Int() == vy.Int(), 0)
 | 
			
		||||
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
			
		||||
		s.report(vx.Uint() == vy.Uint(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Uint() == vy.Uint(), 0)
 | 
			
		||||
	case reflect.Float32, reflect.Float64:
 | 
			
		||||
		s.report(vx.Float() == vy.Float(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Float() == vy.Float(), 0)
 | 
			
		||||
	case reflect.Complex64, reflect.Complex128:
 | 
			
		||||
		s.report(vx.Complex() == vy.Complex(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Complex() == vy.Complex(), 0)
 | 
			
		||||
	case reflect.String:
 | 
			
		||||
		s.report(vx.String() == vy.String(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.String() == vy.String(), 0)
 | 
			
		||||
	case reflect.Chan, reflect.UnsafePointer:
 | 
			
		||||
		s.report(vx.Pointer() == vy.Pointer(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.Pointer() == vy.Pointer(), 0)
 | 
			
		||||
	case reflect.Func:
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
	case reflect.Ptr:
 | 
			
		||||
		if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
 | 
			
		||||
			return
 | 
			
		||||
		}
 | 
			
		||||
		s.curPath.push(&indirect{pathStep{t.Elem()}})
 | 
			
		||||
		defer s.curPath.pop()
 | 
			
		||||
		s.compareAny(vx.Elem(), vy.Elem())
 | 
			
		||||
		return
 | 
			
		||||
	case reflect.Interface:
 | 
			
		||||
		if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
 | 
			
		||||
			return
 | 
			
		||||
		}
 | 
			
		||||
		if vx.Elem().Type() != vy.Elem().Type() {
 | 
			
		||||
			s.report(false, vx.Elem(), vy.Elem())
 | 
			
		||||
			return
 | 
			
		||||
		}
 | 
			
		||||
		s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
 | 
			
		||||
		defer s.curPath.pop()
 | 
			
		||||
		s.compareAny(vx.Elem(), vy.Elem())
 | 
			
		||||
		return
 | 
			
		||||
	case reflect.Slice:
 | 
			
		||||
		if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
 | 
			
		||||
			return
 | 
			
		||||
		}
 | 
			
		||||
		fallthrough
 | 
			
		||||
	case reflect.Array:
 | 
			
		||||
		s.compareArray(vx, vy, t)
 | 
			
		||||
		return
 | 
			
		||||
	case reflect.Map:
 | 
			
		||||
		s.compareMap(vx, vy, t)
 | 
			
		||||
		return
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), 0)
 | 
			
		||||
	case reflect.Struct:
 | 
			
		||||
		s.compareStruct(vx, vy, t)
 | 
			
		||||
		return
 | 
			
		||||
		s.compareStruct(t, vx, vy)
 | 
			
		||||
	case reflect.Slice, reflect.Array:
 | 
			
		||||
		s.compareSlice(t, vx, vy)
 | 
			
		||||
	case reflect.Map:
 | 
			
		||||
		s.compareMap(t, vx, vy)
 | 
			
		||||
	case reflect.Ptr:
 | 
			
		||||
		s.comparePtr(t, vx, vy)
 | 
			
		||||
	case reflect.Interface:
 | 
			
		||||
		s.compareInterface(t, vx, vy)
 | 
			
		||||
	default:
 | 
			
		||||
		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
 | 
			
		||||
	if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
 | 
			
		||||
		if sf.force {
 | 
			
		||||
			// Use unsafe pointer arithmetic to get read-write access to an
 | 
			
		||||
			// unexported field in the struct.
 | 
			
		||||
			vx = unsafeRetrieveField(sf.pvx, sf.field)
 | 
			
		||||
			vy = unsafeRetrieveField(sf.pvy, sf.field)
 | 
			
		||||
		} else {
 | 
			
		||||
			// We are not allowed to export the value, so invalidate them
 | 
			
		||||
			// so that tryOptions can panic later if not explicitly ignored.
 | 
			
		||||
			vx = nothing
 | 
			
		||||
			vy = nothing
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return vx, vy
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
 | 
			
		||||
	// If there were no FilterValues, we will not detect invalid inputs,
 | 
			
		||||
	// so manually check for them and append invalid if necessary.
 | 
			
		||||
	// We still evaluate the options since an ignore can override invalid.
 | 
			
		||||
	opts := s.opts
 | 
			
		||||
	if !vx.IsValid() || !vy.IsValid() {
 | 
			
		||||
		opts = Options{opts, invalid{}}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
 | 
			
		||||
	// Evaluate all filters and apply the remaining options.
 | 
			
		||||
	if opt := opts.filter(s, vx, vy, t); opt != nil {
 | 
			
		||||
	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
 | 
			
		||||
		opt.apply(s, vx, vy)
 | 
			
		||||
		return true
 | 
			
		||||
	}
 | 
			
		||||
	return false
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
 | 
			
		||||
func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
 | 
			
		||||
	// Check if this type even has an Equal method.
 | 
			
		||||
	m, ok := t.MethodByName("Equal")
 | 
			
		||||
	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
 | 
			
		||||
@@ -318,11 +314,11 @@ func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	eq := s.callTTBFunc(m.Func, vx, vy)
 | 
			
		||||
	s.report(eq, vx, vy)
 | 
			
		||||
	s.report(eq, reportByMethod)
 | 
			
		||||
	return true
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
 | 
			
		||||
func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
 | 
			
		||||
	v = sanitizeValue(v, f.Type().In(0))
 | 
			
		||||
	if !s.dynChecker.Next() {
 | 
			
		||||
		return f.Call([]reflect.Value{v})[0]
 | 
			
		||||
@@ -333,15 +329,15 @@ func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
 | 
			
		||||
	// unsafe mutations to the input.
 | 
			
		||||
	c := make(chan reflect.Value)
 | 
			
		||||
	go detectRaces(c, f, v)
 | 
			
		||||
	got := <-c
 | 
			
		||||
	want := f.Call([]reflect.Value{v})[0]
 | 
			
		||||
	if got := <-c; !s.statelessCompare(got, want).Equal() {
 | 
			
		||||
	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
 | 
			
		||||
		// To avoid false-positives with non-reflexive equality operations,
 | 
			
		||||
		// we sanity check whether a value is equal to itself.
 | 
			
		||||
		if !s.statelessCompare(want, want).Equal() {
 | 
			
		||||
		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
 | 
			
		||||
			return want
 | 
			
		||||
		}
 | 
			
		||||
		fn := getFuncName(f.Pointer())
 | 
			
		||||
		panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
 | 
			
		||||
		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
 | 
			
		||||
	}
 | 
			
		||||
	return want
 | 
			
		||||
}
 | 
			
		||||
@@ -359,10 +355,10 @@ func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
 | 
			
		||||
	// unsafe mutations to the input.
 | 
			
		||||
	c := make(chan reflect.Value)
 | 
			
		||||
	go detectRaces(c, f, y, x)
 | 
			
		||||
	got := <-c
 | 
			
		||||
	want := f.Call([]reflect.Value{x, y})[0].Bool()
 | 
			
		||||
	if got := <-c; !got.IsValid() || got.Bool() != want {
 | 
			
		||||
		fn := getFuncName(f.Pointer())
 | 
			
		||||
		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
 | 
			
		||||
	if !got.IsValid() || got.Bool() != want {
 | 
			
		||||
		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
 | 
			
		||||
	}
 | 
			
		||||
	return want
 | 
			
		||||
}
 | 
			
		||||
@@ -380,140 +376,273 @@ func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
 | 
			
		||||
// assuming that T is assignable to R.
 | 
			
		||||
// Otherwise, it returns the input value as is.
 | 
			
		||||
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
 | 
			
		||||
	// TODO(dsnet): Remove this hacky workaround.
 | 
			
		||||
	// See https://golang.org/issue/22143
 | 
			
		||||
	if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
 | 
			
		||||
		return reflect.New(t).Elem()
 | 
			
		||||
	// TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143).
 | 
			
		||||
	if !flags.AtLeastGo110 {
 | 
			
		||||
		if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
 | 
			
		||||
			return reflect.New(t).Elem()
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
 | 
			
		||||
	step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
 | 
			
		||||
	s.curPath.push(step)
 | 
			
		||||
 | 
			
		||||
	// Compute an edit-script for slices vx and vy.
 | 
			
		||||
	es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
 | 
			
		||||
		step.xkey, step.ykey = ix, iy
 | 
			
		||||
		return s.statelessCompare(vx.Index(ix), vy.Index(iy))
 | 
			
		||||
	})
 | 
			
		||||
 | 
			
		||||
	// Report the entire slice as is if the arrays are of primitive kind,
 | 
			
		||||
	// and the arrays are different enough.
 | 
			
		||||
	isPrimitive := false
 | 
			
		||||
	switch t.Elem().Kind() {
 | 
			
		||||
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
 | 
			
		||||
		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
 | 
			
		||||
		reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
 | 
			
		||||
		isPrimitive = true
 | 
			
		||||
	}
 | 
			
		||||
	if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 {
 | 
			
		||||
		s.curPath.pop() // Pop first since we are reporting the whole slice
 | 
			
		||||
		s.report(false, vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Replay the edit-script.
 | 
			
		||||
	var ix, iy int
 | 
			
		||||
	for _, e := range es {
 | 
			
		||||
		switch e {
 | 
			
		||||
		case diff.UniqueX:
 | 
			
		||||
			step.xkey, step.ykey = ix, -1
 | 
			
		||||
			s.report(false, vx.Index(ix), nothing)
 | 
			
		||||
			ix++
 | 
			
		||||
		case diff.UniqueY:
 | 
			
		||||
			step.xkey, step.ykey = -1, iy
 | 
			
		||||
			s.report(false, nothing, vy.Index(iy))
 | 
			
		||||
			iy++
 | 
			
		||||
		default:
 | 
			
		||||
			step.xkey, step.ykey = ix, iy
 | 
			
		||||
			if e == diff.Identity {
 | 
			
		||||
				s.report(true, vx.Index(ix), vy.Index(iy))
 | 
			
		||||
			} else {
 | 
			
		||||
				s.compareAny(vx.Index(ix), vy.Index(iy))
 | 
			
		||||
			}
 | 
			
		||||
			ix++
 | 
			
		||||
			iy++
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	s.curPath.pop()
 | 
			
		||||
	return
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
 | 
			
		||||
	if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// We combine and sort the two map keys so that we can perform the
 | 
			
		||||
	// comparisons in a deterministic order.
 | 
			
		||||
	step := &mapIndex{pathStep: pathStep{t.Elem()}}
 | 
			
		||||
	s.curPath.push(step)
 | 
			
		||||
	defer s.curPath.pop()
 | 
			
		||||
	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
 | 
			
		||||
		step.key = k
 | 
			
		||||
		vvx := vx.MapIndex(k)
 | 
			
		||||
		vvy := vy.MapIndex(k)
 | 
			
		||||
		switch {
 | 
			
		||||
		case vvx.IsValid() && vvy.IsValid():
 | 
			
		||||
			s.compareAny(vvx, vvy)
 | 
			
		||||
		case vvx.IsValid() && !vvy.IsValid():
 | 
			
		||||
			s.report(false, vvx, nothing)
 | 
			
		||||
		case !vvx.IsValid() && vvy.IsValid():
 | 
			
		||||
			s.report(false, nothing, vvy)
 | 
			
		||||
		default:
 | 
			
		||||
			// It is possible for both vvx and vvy to be invalid if the
 | 
			
		||||
			// key contained a NaN value in it. There is no way in
 | 
			
		||||
			// reflection to be able to retrieve these values.
 | 
			
		||||
			// See https://golang.org/issue/11104
 | 
			
		||||
			panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
 | 
			
		||||
func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
 | 
			
		||||
	var addr bool
 | 
			
		||||
	var vax, vay reflect.Value // Addressable versions of vx and vy
 | 
			
		||||
 | 
			
		||||
	step := &structField{}
 | 
			
		||||
	s.curPath.push(step)
 | 
			
		||||
	defer s.curPath.pop()
 | 
			
		||||
	var mayForce, mayForceInit bool
 | 
			
		||||
	step := StructField{&structField{}}
 | 
			
		||||
	for i := 0; i < t.NumField(); i++ {
 | 
			
		||||
		vvx := vx.Field(i)
 | 
			
		||||
		vvy := vy.Field(i)
 | 
			
		||||
		step.typ = t.Field(i).Type
 | 
			
		||||
		step.vx = vx.Field(i)
 | 
			
		||||
		step.vy = vy.Field(i)
 | 
			
		||||
		step.name = t.Field(i).Name
 | 
			
		||||
		step.idx = i
 | 
			
		||||
		step.unexported = !isExported(step.name)
 | 
			
		||||
		if step.unexported {
 | 
			
		||||
			if step.name == "_" {
 | 
			
		||||
				continue
 | 
			
		||||
			}
 | 
			
		||||
			// Defer checking of unexported fields until later to give an
 | 
			
		||||
			// Ignore a chance to ignore the field.
 | 
			
		||||
			if !vax.IsValid() || !vay.IsValid() {
 | 
			
		||||
				// For unsafeRetrieveField to work, the parent struct must
 | 
			
		||||
				// For retrieveUnexportedField to work, the parent struct must
 | 
			
		||||
				// be addressable. Create a new copy of the values if
 | 
			
		||||
				// necessary to make them addressable.
 | 
			
		||||
				addr = vx.CanAddr() || vy.CanAddr()
 | 
			
		||||
				vax = makeAddressable(vx)
 | 
			
		||||
				vay = makeAddressable(vy)
 | 
			
		||||
			}
 | 
			
		||||
			step.force = s.exporters[t]
 | 
			
		||||
			if !mayForceInit {
 | 
			
		||||
				for _, xf := range s.exporters {
 | 
			
		||||
					mayForce = mayForce || xf(t)
 | 
			
		||||
				}
 | 
			
		||||
				mayForceInit = true
 | 
			
		||||
			}
 | 
			
		||||
			step.mayForce = mayForce
 | 
			
		||||
			step.paddr = addr
 | 
			
		||||
			step.pvx = vax
 | 
			
		||||
			step.pvy = vay
 | 
			
		||||
			step.field = t.Field(i)
 | 
			
		||||
		}
 | 
			
		||||
		s.compareAny(vvx, vvy)
 | 
			
		||||
		s.compareAny(step)
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// report records the result of a single comparison.
 | 
			
		||||
// It also calls Report if any reporter is registered.
 | 
			
		||||
func (s *state) report(eq bool, vx, vy reflect.Value) {
 | 
			
		||||
	if eq {
 | 
			
		||||
		s.result.NSame++
 | 
			
		||||
	} else {
 | 
			
		||||
		s.result.NDiff++
 | 
			
		||||
func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
 | 
			
		||||
	isSlice := t.Kind() == reflect.Slice
 | 
			
		||||
	if isSlice && (vx.IsNil() || vy.IsNil()) {
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), 0)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	if s.reporter != nil {
 | 
			
		||||
		s.reporter.Report(vx, vy, eq, s.curPath)
 | 
			
		||||
 | 
			
		||||
	// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
 | 
			
		||||
	// since slices represents a list of pointers, rather than a single pointer.
 | 
			
		||||
	// The pointer checking logic must be handled on a per-element basis
 | 
			
		||||
	// in compareAny.
 | 
			
		||||
	//
 | 
			
		||||
	// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
 | 
			
		||||
	// pointer P, a length N, and a capacity C. Supposing each slice element has
 | 
			
		||||
	// a memory size of M, then the slice is equivalent to the list of pointers:
 | 
			
		||||
	//	[P+i*M for i in range(N)]
 | 
			
		||||
	//
 | 
			
		||||
	// For example, v[:0] and v[:1] are slices with the same starting pointer,
 | 
			
		||||
	// but they are clearly different values. Using the slice pointer alone
 | 
			
		||||
	// violates the assumption that equal pointers implies equal values.
 | 
			
		||||
 | 
			
		||||
	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
 | 
			
		||||
	withIndexes := func(ix, iy int) SliceIndex {
 | 
			
		||||
		if ix >= 0 {
 | 
			
		||||
			step.vx, step.xkey = vx.Index(ix), ix
 | 
			
		||||
		} else {
 | 
			
		||||
			step.vx, step.xkey = reflect.Value{}, -1
 | 
			
		||||
		}
 | 
			
		||||
		if iy >= 0 {
 | 
			
		||||
			step.vy, step.ykey = vy.Index(iy), iy
 | 
			
		||||
		} else {
 | 
			
		||||
			step.vy, step.ykey = reflect.Value{}, -1
 | 
			
		||||
		}
 | 
			
		||||
		return step
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Ignore options are able to ignore missing elements in a slice.
 | 
			
		||||
	// However, detecting these reliably requires an optimal differencing
 | 
			
		||||
	// algorithm, for which diff.Difference is not.
 | 
			
		||||
	//
 | 
			
		||||
	// Instead, we first iterate through both slices to detect which elements
 | 
			
		||||
	// would be ignored if standing alone. The index of non-discarded elements
 | 
			
		||||
	// are stored in a separate slice, which diffing is then performed on.
 | 
			
		||||
	var indexesX, indexesY []int
 | 
			
		||||
	var ignoredX, ignoredY []bool
 | 
			
		||||
	for ix := 0; ix < vx.Len(); ix++ {
 | 
			
		||||
		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
 | 
			
		||||
		if !ignored {
 | 
			
		||||
			indexesX = append(indexesX, ix)
 | 
			
		||||
		}
 | 
			
		||||
		ignoredX = append(ignoredX, ignored)
 | 
			
		||||
	}
 | 
			
		||||
	for iy := 0; iy < vy.Len(); iy++ {
 | 
			
		||||
		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
 | 
			
		||||
		if !ignored {
 | 
			
		||||
			indexesY = append(indexesY, iy)
 | 
			
		||||
		}
 | 
			
		||||
		ignoredY = append(ignoredY, ignored)
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Compute an edit-script for slices vx and vy (excluding ignored elements).
 | 
			
		||||
	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
 | 
			
		||||
		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
 | 
			
		||||
	})
 | 
			
		||||
 | 
			
		||||
	// Replay the ignore-scripts and the edit-script.
 | 
			
		||||
	var ix, iy int
 | 
			
		||||
	for ix < vx.Len() || iy < vy.Len() {
 | 
			
		||||
		var e diff.EditType
 | 
			
		||||
		switch {
 | 
			
		||||
		case ix < len(ignoredX) && ignoredX[ix]:
 | 
			
		||||
			e = diff.UniqueX
 | 
			
		||||
		case iy < len(ignoredY) && ignoredY[iy]:
 | 
			
		||||
			e = diff.UniqueY
 | 
			
		||||
		default:
 | 
			
		||||
			e, edits = edits[0], edits[1:]
 | 
			
		||||
		}
 | 
			
		||||
		switch e {
 | 
			
		||||
		case diff.UniqueX:
 | 
			
		||||
			s.compareAny(withIndexes(ix, -1))
 | 
			
		||||
			ix++
 | 
			
		||||
		case diff.UniqueY:
 | 
			
		||||
			s.compareAny(withIndexes(-1, iy))
 | 
			
		||||
			iy++
 | 
			
		||||
		default:
 | 
			
		||||
			s.compareAny(withIndexes(ix, iy))
 | 
			
		||||
			ix++
 | 
			
		||||
			iy++
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
 | 
			
		||||
	if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), 0)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle-detection for maps.
 | 
			
		||||
	if eq, visited := s.curPtrs.Push(vx, vy); visited {
 | 
			
		||||
		s.report(eq, reportByCycle)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	defer s.curPtrs.Pop(vx, vy)
 | 
			
		||||
 | 
			
		||||
	// We combine and sort the two map keys so that we can perform the
 | 
			
		||||
	// comparisons in a deterministic order.
 | 
			
		||||
	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
 | 
			
		||||
	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
 | 
			
		||||
		step.vx = vx.MapIndex(k)
 | 
			
		||||
		step.vy = vy.MapIndex(k)
 | 
			
		||||
		step.key = k
 | 
			
		||||
		if !step.vx.IsValid() && !step.vy.IsValid() {
 | 
			
		||||
			// It is possible for both vx and vy to be invalid if the
 | 
			
		||||
			// key contained a NaN value in it.
 | 
			
		||||
			//
 | 
			
		||||
			// Even with the ability to retrieve NaN keys in Go 1.12,
 | 
			
		||||
			// there still isn't a sensible way to compare the values since
 | 
			
		||||
			// a NaN key may map to multiple unordered values.
 | 
			
		||||
			// The most reasonable way to compare NaNs would be to compare the
 | 
			
		||||
			// set of values. However, this is impossible to do efficiently
 | 
			
		||||
			// since set equality is provably an O(n^2) operation given only
 | 
			
		||||
			// an Equal function. If we had a Less function or Hash function,
 | 
			
		||||
			// this could be done in O(n*log(n)) or O(n), respectively.
 | 
			
		||||
			//
 | 
			
		||||
			// Rather than adding complex logic to deal with NaNs, make it
 | 
			
		||||
			// the user's responsibility to compare such obscure maps.
 | 
			
		||||
			const help = "consider providing a Comparer to compare the map"
 | 
			
		||||
			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
 | 
			
		||||
		}
 | 
			
		||||
		s.compareAny(step)
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
 | 
			
		||||
	if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), 0)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Cycle-detection for pointers.
 | 
			
		||||
	if eq, visited := s.curPtrs.Push(vx, vy); visited {
 | 
			
		||||
		s.report(eq, reportByCycle)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	defer s.curPtrs.Pop(vx, vy)
 | 
			
		||||
 | 
			
		||||
	vx, vy = vx.Elem(), vy.Elem()
 | 
			
		||||
	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
 | 
			
		||||
	if vx.IsNil() || vy.IsNil() {
 | 
			
		||||
		s.report(vx.IsNil() && vy.IsNil(), 0)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	vx, vy = vx.Elem(), vy.Elem()
 | 
			
		||||
	if vx.Type() != vy.Type() {
 | 
			
		||||
		s.report(false, 0)
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (s *state) report(eq bool, rf resultFlags) {
 | 
			
		||||
	if rf&reportByIgnore == 0 {
 | 
			
		||||
		if eq {
 | 
			
		||||
			s.result.NumSame++
 | 
			
		||||
			rf |= reportEqual
 | 
			
		||||
		} else {
 | 
			
		||||
			s.result.NumDiff++
 | 
			
		||||
			rf |= reportUnequal
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	for _, r := range s.reporters {
 | 
			
		||||
		r.Report(Result{flags: rf})
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// recChecker tracks the state needed to periodically perform checks that
 | 
			
		||||
// user provided transformers are not stuck in an infinitely recursive cycle.
 | 
			
		||||
type recChecker struct{ next int }
 | 
			
		||||
 | 
			
		||||
// Check scans the Path for any recursive transformers and panics when any
 | 
			
		||||
// recursive transformers are detected. Note that the presence of a
 | 
			
		||||
// recursive Transformer does not necessarily imply an infinite cycle.
 | 
			
		||||
// As such, this check only activates after some minimal number of path steps.
 | 
			
		||||
func (rc *recChecker) Check(p Path) {
 | 
			
		||||
	const minLen = 1 << 16
 | 
			
		||||
	if rc.next == 0 {
 | 
			
		||||
		rc.next = minLen
 | 
			
		||||
	}
 | 
			
		||||
	if len(p) < rc.next {
 | 
			
		||||
		return
 | 
			
		||||
	}
 | 
			
		||||
	rc.next <<= 1
 | 
			
		||||
 | 
			
		||||
	// Check whether the same transformer has appeared at least twice.
 | 
			
		||||
	var ss []string
 | 
			
		||||
	m := map[Option]int{}
 | 
			
		||||
	for _, ps := range p {
 | 
			
		||||
		if t, ok := ps.(Transform); ok {
 | 
			
		||||
			t := t.Option()
 | 
			
		||||
			if m[t] == 1 { // Transformer was used exactly once before
 | 
			
		||||
				tf := t.(*transformer).fnc.Type()
 | 
			
		||||
				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
 | 
			
		||||
			}
 | 
			
		||||
			m[t]++
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	if len(ss) > 0 {
 | 
			
		||||
		const warning = "recursive set of Transformers detected"
 | 
			
		||||
		const help = "consider using cmpopts.AcyclicTransformer"
 | 
			
		||||
		set := strings.Join(ss, "\n\t")
 | 
			
		||||
		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user