Update runc to v1.0.0-rc91

https://github.com/opencontainers/runc/releases/tag/v1.0.0-rc91

Signed-off-by: Davanum Srinivas <davanum@gmail.com>
This commit is contained in:
Davanum Srinivas
2020-07-01 22:06:59 -04:00
parent c91c72c867
commit 963625d7bc
275 changed files with 9060 additions and 18508 deletions

View File

@@ -3,12 +3,16 @@ module github.com/prometheus/client_golang
require (
github.com/beorn7/perks v1.0.1
github.com/cespare/xxhash/v2 v2.1.1
github.com/golang/protobuf v1.3.2
github.com/json-iterator/go v1.1.8
github.com/prometheus/client_model v0.1.0
github.com/prometheus/common v0.7.0
github.com/prometheus/procfs v0.0.8
golang.org/x/sys v0.0.0-20191220142924-d4481acd189f
github.com/golang/protobuf v1.4.0
github.com/json-iterator/go v1.1.9
github.com/kr/pretty v0.1.0 // indirect
github.com/prometheus/client_model v0.2.0
github.com/prometheus/common v0.9.1
github.com/prometheus/procfs v0.0.11
github.com/stretchr/testify v1.4.0 // indirect
golang.org/x/sys v0.0.0-20200420163511-1957bb5e6d1f
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15 // indirect
gopkg.in/yaml.v2 v2.2.5 // indirect
)
go 1.11

View File

@@ -17,6 +17,7 @@ import (
"errors"
"math"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
)
@@ -42,11 +43,27 @@ type Counter interface {
Add(float64)
}
// ExemplarAdder is implemented by Counters that offer the option of adding a
// value to the Counter together with an exemplar. Its AddWithExemplar method
// works like the Add method of the Counter interface but also replaces the
// currently saved exemplar (if any) with a new one, created from the provided
// value, the current time as timestamp, and the provided labels. Empty Labels
// will lead to a valid (label-less) exemplar. But if Labels is nil, the current
// exemplar is left in place. AddWithExemplar panics if the value is < 0, if any
// of the provided labels are invalid, or if the provided labels contain more
// than 64 runes in total.
type ExemplarAdder interface {
AddWithExemplar(value float64, exemplar Labels)
}
// CounterOpts is an alias for Opts. See there for doc comments.
type CounterOpts Opts
// NewCounter creates a new Counter based on the provided CounterOpts.
//
// The returned implementation also implements ExemplarAdder. It is safe to
// perform the corresponding type assertion.
//
// The returned implementation tracks the counter value in two separate
// variables, a float64 and a uint64. The latter is used to track calls of the
// Inc method and calls of the Add method with a value that can be represented
@@ -61,7 +78,7 @@ func NewCounter(opts CounterOpts) Counter {
nil,
opts.ConstLabels,
)
result := &counter{desc: desc, labelPairs: desc.constLabelPairs}
result := &counter{desc: desc, labelPairs: desc.constLabelPairs, now: time.Now}
result.init(result) // Init self-collection.
return result
}
@@ -78,6 +95,9 @@ type counter struct {
desc *Desc
labelPairs []*dto.LabelPair
exemplar atomic.Value // Containing nil or a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (c *counter) Desc() *Desc {
@@ -88,6 +108,7 @@ func (c *counter) Add(v float64) {
if v < 0 {
panic(errors.New("counter cannot decrease in value"))
}
ival := uint64(v)
if float64(ival) == v {
atomic.AddUint64(&c.valInt, ival)
@@ -103,6 +124,11 @@ func (c *counter) Add(v float64) {
}
}
func (c *counter) AddWithExemplar(v float64, e Labels) {
c.Add(v)
c.updateExemplar(v, e)
}
func (c *counter) Inc() {
atomic.AddUint64(&c.valInt, 1)
}
@@ -112,7 +138,23 @@ func (c *counter) Write(out *dto.Metric) error {
ival := atomic.LoadUint64(&c.valInt)
val := fval + float64(ival)
return populateMetric(CounterValue, val, c.labelPairs, out)
var exemplar *dto.Exemplar
if e := c.exemplar.Load(); e != nil {
exemplar = e.(*dto.Exemplar)
}
return populateMetric(CounterValue, val, c.labelPairs, exemplar, out)
}
func (c *counter) updateExemplar(v float64, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, c.now(), l)
if err != nil {
panic(err)
}
c.exemplar.Store(e)
}
// CounterVec is a Collector that bundles a set of Counters that all share the
@@ -138,7 +180,7 @@ func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
if len(lvs) != len(desc.variableLabels) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, lvs))
}
result := &counter{desc: desc, labelPairs: makeLabelPairs(desc, lvs)}
result := &counter{desc: desc, labelPairs: makeLabelPairs(desc, lvs), now: time.Now}
result.init(result) // Init self-collection.
return result
}),
@@ -267,6 +309,8 @@ type CounterFunc interface {
// provided function must be concurrency-safe. The function should also honor
// the contract for a Counter (values only go up, not down), but compliance will
// not be checked.
//
// Check out the ExampleGaugeFunc examples for the similar GaugeFunc.
func NewCounterFunc(opts CounterOpts, function func() float64) CounterFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),

View File

@@ -84,25 +84,21 @@
// of those four metric types can be found in the Prometheus docs:
// https://prometheus.io/docs/concepts/metric_types/
//
// A fifth "type" of metric is Untyped. It behaves like a Gauge, but signals the
// Prometheus server not to assume anything about its type.
//
// In addition to the fundamental metric types Gauge, Counter, Summary,
// Histogram, and Untyped, a very important part of the Prometheus data model is
// the partitioning of samples along dimensions called labels, which results in
// In addition to the fundamental metric types Gauge, Counter, Summary, and
// Histogram, a very important part of the Prometheus data model is the
// partitioning of samples along dimensions called labels, which results in
// metric vectors. The fundamental types are GaugeVec, CounterVec, SummaryVec,
// HistogramVec, and UntypedVec.
// and HistogramVec.
//
// While only the fundamental metric types implement the Metric interface, both
// the metrics and their vector versions implement the Collector interface. A
// Collector manages the collection of a number of Metrics, but for convenience,
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary,
// Histogram, and Untyped are interfaces themselves while GaugeVec, CounterVec,
// SummaryVec, HistogramVec, and UntypedVec are not.
// a Metric can also “collect itself”. Note that Gauge, Counter, Summary, and
// Histogram are interfaces themselves while GaugeVec, CounterVec, SummaryVec,
// and HistogramVec are not.
//
// To create instances of Metrics and their vector versions, you need a suitable
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, HistogramOpts, or
// UntypedOpts.
// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts, or HistogramOpts.
//
// Custom Collectors and constant Metrics
//
@@ -118,13 +114,16 @@
// existing numbers into Prometheus Metrics during collection. An own
// implementation of the Collector interface is perfect for that. You can create
// Metric instances “on the fly” using NewConstMetric, NewConstHistogram, and
// NewConstSummary (and their respective Must… versions). That will happen in
// the Collect method. The Describe method has to return separate Desc
// instances, representative of the “throw-away” metrics to be created later.
// NewDesc comes in handy to create those Desc instances. Alternatively, you
// could return no Desc at all, which will mark the Collector “unchecked”. No
// checks are performed at registration time, but metric consistency will still
// be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// NewConstSummary (and their respective Must… versions). NewConstMetric is used
// for all metric types with just a float64 as their value: Counter, Gauge, and
// a special “type” called Untyped. Use the latter if you are not sure if the
// mirrored metric is a Counter or a Gauge. Creation of the Metric instance
// happens in the Collect method. The Describe method has to return separate
// Desc instances, representative of the “throw-away” metrics to be created
// later. NewDesc comes in handy to create those Desc instances. Alternatively,
// you could return no Desc at all, which will mark the Collector “unchecked”.
// No checks are performed at registration time, but metric consistency will
// still be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// errors. Thus, with unchecked Collectors, the responsibility to not collect
// metrics that lead to inconsistencies in the total scrape result lies with the
// implementer of the Collector. While this is not a desirable state, it is

View File

@@ -123,7 +123,7 @@ func (g *gauge) Sub(val float64) {
func (g *gauge) Write(out *dto.Metric) error {
val := math.Float64frombits(atomic.LoadUint64(&g.valBits))
return populateMetric(GaugeValue, val, g.labelPairs, out)
return populateMetric(GaugeValue, val, g.labelPairs, nil, out)
}
// GaugeVec is a Collector that bundles a set of Gauges that all share the same

View File

@@ -73,7 +73,7 @@ func NewGoCollector() Collector {
nil, nil),
gcDesc: NewDesc(
"go_gc_duration_seconds",
"A summary of the GC invocation durations.",
"A summary of the pause duration of garbage collection cycles.",
nil, nil),
goInfoDesc: NewDesc(
"go_info",

View File

@@ -20,6 +20,7 @@ import (
"sort"
"sync"
"sync/atomic"
"time"
"github.com/golang/protobuf/proto"
@@ -151,6 +152,10 @@ type HistogramOpts struct {
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
@@ -188,6 +193,7 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
upperBounds: opts.Buckets,
labelPairs: makeLabelPairs(desc, labelValues),
counts: [2]*histogramCounts{{}, {}},
now: time.Now,
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
@@ -205,9 +211,10 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
}
}
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts:
// for both counts as well as exemplars:
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
@@ -254,6 +261,9 @@ type histogram struct {
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
now func() time.Time // To mock out time.Now() for testing.
}
func (h *histogram) Desc() *Desc {
@@ -261,36 +271,13 @@ func (h *histogram) Desc() *Desc {
}
func (h *histogram) Observe(v float64) {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
i := sort.SearchFloat64s(h.upperBounds, v)
h.observe(v, h.findBucket(v))
}
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
if i < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[i], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
@@ -329,6 +316,18 @@ func (h *histogram) Write(out *dto.Metric) error {
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
out.Histogram = his
@@ -352,6 +351,57 @@ func (h *histogram) Write(out *dto.Metric) error {
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
if bucket < len(h.upperBounds) {
atomic.AddUint64(&hotCounts.buckets[bucket], 1)
}
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
}
// updateExemplar replaces the exemplar for the provided bucket. With empty
// labels, it's a no-op. It panics if any of the labels is invalid.
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
if l == nil {
return
}
e, err := newExemplar(v, h.now(), l)
if err != nil {
panic(err)
}
h.exemplars[bucket].Store(e)
}
// HistogramVec is a Collector that bundles a set of Histograms that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions

View File

@@ -50,3 +50,15 @@ type ObserverVec interface {
Collector
}
// ExemplarObserver is implemented by Observers that offer the option of
// observing a value together with an exemplar. Its ObserveWithExemplar method
// works like the Observe method of an Observer but also replaces the currently
// saved exemplar (if any) with a new one, created from the provided value, the
// current time as timestamp, and the provided Labels. Empty Labels will lead to
// a valid (label-less) exemplar. But if Labels is nil, the current exemplar is
// left in place. ObserveWithExemplar panics if any of the provided labels are
// invalid or if the provided labels contain more than 64 runes in total.
type ExemplarObserver interface {
ObserveWithExemplar(value float64, exemplar Labels)
}

View File

@@ -33,18 +33,22 @@ var (
)
type processMemoryCounters struct {
// https://docs.microsoft.com/en-us/windows/desktop/api/psapi/ns-psapi-_process_memory_counters_ex
// System interface description
// https://docs.microsoft.com/en-us/windows/desktop/api/psapi/ns-psapi-process_memory_counters_ex
// Refer to the Golang internal implementation
// https://golang.org/src/internal/syscall/windows/psapi_windows.go
_ uint32
PageFaultCount uint32
PeakWorkingSetSize uint64
WorkingSetSize uint64
QuotaPeakPagedPoolUsage uint64
QuotaPagedPoolUsage uint64
QuotaPeakNonPagedPoolUsage uint64
QuotaNonPagedPoolUsage uint64
PagefileUsage uint64
PeakPagefileUsage uint64
PrivateUsage uint64
PeakWorkingSetSize uintptr
WorkingSetSize uintptr
QuotaPeakPagedPoolUsage uintptr
QuotaPagedPoolUsage uintptr
QuotaPeakNonPagedPoolUsage uintptr
QuotaNonPagedPoolUsage uintptr
PagefileUsage uintptr
PeakPagefileUsage uintptr
PrivateUsage uintptr
}
func getProcessMemoryInfo(handle windows.Handle) (processMemoryCounters, error) {

View File

@@ -53,12 +53,16 @@ func (r *responseWriterDelegator) Written() int64 {
}
func (r *responseWriterDelegator) WriteHeader(code int) {
if r.observeWriteHeader != nil && !r.wroteHeader {
// Only call observeWriteHeader for the 1st time. It's a bug if
// WriteHeader is called more than once, but we want to protect
// against it here. Note that we still delegate the WriteHeader
// to the original ResponseWriter to not mask the bug from it.
r.observeWriteHeader(code)
}
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
if r.observeWriteHeader != nil {
r.observeWriteHeader(code)
}
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {

View File

@@ -144,7 +144,12 @@ func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
}
}
contentType := expfmt.Negotiate(req.Header)
var contentType expfmt.Format
if opts.EnableOpenMetrics {
contentType = expfmt.NegotiateIncludingOpenMetrics(req.Header)
} else {
contentType = expfmt.Negotiate(req.Header)
}
header := rsp.Header()
header.Set(contentTypeHeader, string(contentType))
@@ -162,28 +167,40 @@ func HandlerFor(reg prometheus.Gatherer, opts HandlerOpts) http.Handler {
enc := expfmt.NewEncoder(w, contentType)
var lastErr error
for _, mf := range mfs {
if err := enc.Encode(mf); err != nil {
lastErr = err
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error encoding and sending metric family:", err)
}
errCnt.WithLabelValues("encoding").Inc()
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case ContinueOnError:
// Handled later.
case HTTPErrorOnError:
httpError(rsp, err)
return
}
// handleError handles the error according to opts.ErrorHandling
// and returns true if we have to abort after the handling.
handleError := func(err error) bool {
if err == nil {
return false
}
if opts.ErrorLog != nil {
opts.ErrorLog.Println("error encoding and sending metric family:", err)
}
errCnt.WithLabelValues("encoding").Inc()
switch opts.ErrorHandling {
case PanicOnError:
panic(err)
case HTTPErrorOnError:
// We cannot really send an HTTP error at this
// point because we most likely have written
// something to rsp already. But at least we can
// stop sending.
return true
}
// Do nothing in all other cases, including ContinueOnError.
return false
}
if lastErr != nil {
httpError(rsp, lastErr)
for _, mf := range mfs {
if handleError(enc.Encode(mf)) {
return
}
}
if closer, ok := enc.(expfmt.Closer); ok {
// This in particular takes care of the final "# EOF\n" line for OpenMetrics.
if handleError(closer.Close()) {
return
}
}
})
@@ -255,7 +272,12 @@ type HandlerErrorHandling int
// errors are encountered.
const (
// Serve an HTTP status code 500 upon the first error
// encountered. Report the error message in the body.
// encountered. Report the error message in the body. Note that HTTP
// errors cannot be served anymore once the beginning of a regular
// payload has been sent. Thus, in the (unlikely) case that encoding the
// payload into the negotiated wire format fails, serving the response
// will simply be aborted. Set an ErrorLog in HandlerOpts to detect
// those errors.
HTTPErrorOnError HandlerErrorHandling = iota
// Ignore errors and try to serve as many metrics as possible. However,
// if no metrics can be served, serve an HTTP status code 500 and the
@@ -318,6 +340,16 @@ type HandlerOpts struct {
// away). Until the implementation is improved, it is recommended to
// implement a separate timeout in potentially slow Collectors.
Timeout time.Duration
// If true, the experimental OpenMetrics encoding is added to the
// possible options during content negotiation. Note that Prometheus
// 2.5.0+ will negotiate OpenMetrics as first priority. OpenMetrics is
// the only way to transmit exemplars. However, the move to OpenMetrics
// is not completely transparent. Most notably, the values of "quantile"
// labels of Summaries and "le" labels of Histograms are formatted with
// a trailing ".0" if they would otherwise look like integer numbers
// (which changes the identity of the resulting series on the Prometheus
// server).
EnableOpenMetrics bool
}
// gzipAccepted returns whether the client will accept gzip-encoded content.
@@ -334,11 +366,9 @@ func gzipAccepted(header http.Header) bool {
}
// httpError removes any content-encoding header and then calls http.Error with
// the provided error and http.StatusInternalServerErrer. Error contents is
// supposed to be uncompressed plain text. However, same as with a plain
// http.Error, any header settings will be void if the header has already been
// sent. The error message will still be written to the writer, but it will
// probably be of limited use.
// the provided error and http.StatusInternalServerError. Error contents is
// supposed to be uncompressed plain text. Same as with a plain http.Error, this
// must not be called if the header or any payload has already been sent.
func httpError(rsp http.ResponseWriter, err error) {
rsp.Header().Del(contentEncodingHeader)
http.Error(

View File

@@ -16,8 +16,11 @@ package prometheus
import (
"fmt"
"sort"
"time"
"unicode/utf8"
"github.com/golang/protobuf/proto"
"github.com/golang/protobuf/ptypes"
dto "github.com/prometheus/client_model/go"
)
@@ -25,7 +28,8 @@ import (
// ValueType is an enumeration of metric types that represent a simple value.
type ValueType int
// Possible values for the ValueType enum.
// Possible values for the ValueType enum. Use UntypedValue to mark a metric
// with an unknown type.
const (
_ ValueType = iota
CounterValue
@@ -69,7 +73,7 @@ func (v *valueFunc) Desc() *Desc {
}
func (v *valueFunc) Write(out *dto.Metric) error {
return populateMetric(v.valType, v.function(), v.labelPairs, out)
return populateMetric(v.valType, v.function(), v.labelPairs, nil, out)
}
// NewConstMetric returns a metric with one fixed value that cannot be
@@ -116,19 +120,20 @@ func (m *constMetric) Desc() *Desc {
}
func (m *constMetric) Write(out *dto.Metric) error {
return populateMetric(m.valType, m.val, m.labelPairs, out)
return populateMetric(m.valType, m.val, m.labelPairs, nil, out)
}
func populateMetric(
t ValueType,
v float64,
labelPairs []*dto.LabelPair,
e *dto.Exemplar,
m *dto.Metric,
) error {
m.Label = labelPairs
switch t {
case CounterValue:
m.Counter = &dto.Counter{Value: proto.Float64(v)}
m.Counter = &dto.Counter{Value: proto.Float64(v), Exemplar: e}
case GaugeValue:
m.Gauge = &dto.Gauge{Value: proto.Float64(v)}
case UntypedValue:
@@ -160,3 +165,40 @@ func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
sort.Sort(labelPairSorter(labelPairs))
return labelPairs
}
// ExemplarMaxRunes is the max total number of runes allowed in exemplar labels.
const ExemplarMaxRunes = 64
// newExemplar creates a new dto.Exemplar from the provided values. An error is
// returned if any of the label names or values are invalid or if the total
// number of runes in the label names and values exceeds ExemplarMaxRunes.
func newExemplar(value float64, ts time.Time, l Labels) (*dto.Exemplar, error) {
e := &dto.Exemplar{}
e.Value = proto.Float64(value)
tsProto, err := ptypes.TimestampProto(ts)
if err != nil {
return nil, err
}
e.Timestamp = tsProto
labelPairs := make([]*dto.LabelPair, 0, len(l))
var runes int
for name, value := range l {
if !checkLabelName(name) {
return nil, fmt.Errorf("exemplar label name %q is invalid", name)
}
runes += utf8.RuneCountInString(name)
if !utf8.ValidString(value) {
return nil, fmt.Errorf("exemplar label value %q is not valid UTF-8", value)
}
runes += utf8.RuneCountInString(value)
labelPairs = append(labelPairs, &dto.LabelPair{
Name: proto.String(name),
Value: proto.String(value),
})
}
if runes > ExemplarMaxRunes {
return nil, fmt.Errorf("exemplar labels have %d runes, exceeding the limit of %d", runes, ExemplarMaxRunes)
}
e.Label = labelPairs
return e, nil
}

View File

@@ -91,6 +91,18 @@ func (m *metricVec) Delete(labels Labels) bool {
return m.metricMap.deleteByHashWithLabels(h, labels, m.curry)
}
// Without explicit forwarding of Describe, Collect, Reset, those methods won't
// show up in GoDoc.
// Describe implements Collector.
func (m *metricVec) Describe(ch chan<- *Desc) { m.metricMap.Describe(ch) }
// Collect implements Collector.
func (m *metricVec) Collect(ch chan<- Metric) { m.metricMap.Collect(ch) }
// Reset deletes all metrics in this vector.
func (m *metricVec) Reset() { m.metricMap.Reset() }
func (m *metricVec) curryWith(labels Labels) (*metricVec, error) {
var (
newCurry []curriedLabelValue