Vendor Microsoft/go-winio@v0.4.12

Signed-off-by: John Howard <jhoward@microsoft.com>
This commit is contained in:
John Howard 2019-02-21 09:44:08 -08:00
parent e0d7ed12a5
commit d83e4e9b3b
14 changed files with 1428 additions and 1 deletions

View File

@ -33,7 +33,7 @@ github.com/opencontainers/image-spec v1.0.1
golang.org/x/sync 42b317875d0fa942474b76e1b46a6060d720ae6e
github.com/BurntSushi/toml a368813c5e648fee92e5f6c30e3944ff9d5e8895
github.com/grpc-ecosystem/go-grpc-prometheus 6b7015e65d366bf3f19b2b2a000a831940f0f7e0
github.com/Microsoft/go-winio v0.4.11
github.com/Microsoft/go-winio v0.4.12
github.com/Microsoft/hcsshim v0.8.5
google.golang.org/genproto d80a6e20e776b0b17a324d0ba1ab50a39c8e8944
golang.org/x/text 19e51611da83d6be54ddafce4a4af510cb3e9ea4

View File

@ -0,0 +1,15 @@
// Package etw provides support for TraceLogging-based ETW (Event Tracing
// for Windows). TraceLogging is a format of ETW events that are self-describing
// (the event contains information on its own schema). This allows them to be
// decoded without needing a separate manifest with event information. The
// implementation here is based on the information found in
// TraceLoggingProvider.h in the Windows SDK, which implements TraceLogging as a
// set of C macros.
package etw
//go:generate go run $GOROOT/src/syscall/mksyscall_windows.go -output zsyscall_windows.go etw.go
//sys eventRegister(providerId *windows.GUID, callback uintptr, callbackContext uintptr, providerHandle *providerHandle) (win32err error) = advapi32.EventRegister
//sys eventUnregister(providerHandle providerHandle) (win32err error) = advapi32.EventUnregister
//sys eventWriteTransfer(providerHandle providerHandle, descriptor *EventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) = advapi32.EventWriteTransfer
//sys eventSetInformation(providerHandle providerHandle, class eventInfoClass, information uintptr, length uint32) (win32err error) = advapi32.EventSetInformation

View File

@ -0,0 +1,65 @@
package etw
import (
"bytes"
"encoding/binary"
)
// EventData maintains a buffer which builds up the data for an ETW event. It
// needs to be paired with EventMetadata which describes the event.
type EventData struct {
buffer bytes.Buffer
}
// Bytes returns the raw binary data containing the event data. The returned
// value is not copied from the internal buffer, so it can be mutated by the
// EventData object after it is returned.
func (ed *EventData) Bytes() []byte {
return ed.buffer.Bytes()
}
// WriteString appends a string, including the null terminator, to the buffer.
func (ed *EventData) WriteString(data string) {
ed.buffer.WriteString(data)
ed.buffer.WriteByte(0)
}
// WriteInt8 appends a int8 to the buffer.
func (ed *EventData) WriteInt8(value int8) {
ed.buffer.WriteByte(uint8(value))
}
// WriteInt16 appends a int16 to the buffer.
func (ed *EventData) WriteInt16(value int16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteInt32 appends a int32 to the buffer.
func (ed *EventData) WriteInt32(value int32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteInt64 appends a int64 to the buffer.
func (ed *EventData) WriteInt64(value int64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint8 appends a uint8 to the buffer.
func (ed *EventData) WriteUint8(value uint8) {
ed.buffer.WriteByte(value)
}
// WriteUint16 appends a uint16 to the buffer.
func (ed *EventData) WriteUint16(value uint16) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint32 appends a uint32 to the buffer.
func (ed *EventData) WriteUint32(value uint32) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}
// WriteUint64 appends a uint64 to the buffer.
func (ed *EventData) WriteUint64(value uint64) {
binary.Write(&ed.buffer, binary.LittleEndian, value)
}

View File

@ -0,0 +1,29 @@
package etw
import (
"unsafe"
)
type eventDataDescriptorType uint8
const (
eventDataDescriptorTypeUserData eventDataDescriptorType = iota
eventDataDescriptorTypeEventMetadata
eventDataDescriptorTypeProviderMetadata
)
type eventDataDescriptor struct {
ptr ptr64
size uint32
dataType eventDataDescriptorType
reserved1 uint8
reserved2 uint16
}
func newEventDataDescriptor(dataType eventDataDescriptorType, buffer []byte) eventDataDescriptor {
return eventDataDescriptor{
ptr: ptr64{ptr: unsafe.Pointer(&buffer[0])},
size: uint32(len(buffer)),
dataType: dataType,
}
}

View File

@ -0,0 +1,67 @@
package etw
// Channel represents the ETW logging channel that is used. It can be used by
// event consumers to give an event special treatment.
type Channel uint8
const (
// ChannelTraceLogging is the default channel for TraceLogging events. It is
// not required to be used for TraceLogging, but will prevent decoding
// issues for these events on older operating systems.
ChannelTraceLogging Channel = 11
)
// Level represents the ETW logging level. There are several predefined levels
// that are commonly used, but technically anything from 0-255 is allowed.
// Lower levels indicate more important events, and 0 indicates an event that
// will always be collected.
type Level uint8
// Predefined ETW log levels.
const (
LevelAlways Level = iota
LevelCritical
LevelError
LevelWarning
LevelInfo
LevelVerbose
)
// EventDescriptor represents various metadata for an ETW event.
type EventDescriptor struct {
id uint16
version uint8
Channel Channel
Level Level
Opcode uint8
Task uint16
Keyword uint64
}
// NewEventDescriptor returns an EventDescriptor initialized for use with
// TraceLogging.
func NewEventDescriptor() *EventDescriptor {
// Standard TraceLogging events default to the TraceLogging channel, and
// verbose level.
return &EventDescriptor{
Channel: ChannelTraceLogging,
Level: LevelVerbose,
}
}
// Identity returns the identity of the event. If the identity is not 0, it
// should uniquely identify the other event metadata (contained in
// EventDescriptor, and field metadata). Only the lower 24 bits of this value
// are relevant.
func (ed *EventDescriptor) Identity() uint32 {
return (uint32(ed.version) << 16) | uint32(ed.id)
}
// SetIdentity sets the identity of the event. If the identity is not 0, it
// should uniquely identify the other event metadata (contained in
// EventDescriptor, and field metadata). Only the lower 24 bits of this value
// are relevant.
func (ed *EventDescriptor) SetIdentity(identity uint32) {
ed.id = uint16(identity)
ed.version = uint8(identity >> 16)
}

View File

@ -0,0 +1,177 @@
package etw
import (
"bytes"
"encoding/binary"
)
// InType indicates the type of data contained in the ETW event.
type InType byte
// Various InType definitions for TraceLogging. These must match the definitions
// found in TraceLoggingProvider.h in the Windows SDK.
const (
InTypeNull InType = iota
InTypeUnicodeString
InTypeANSIString
InTypeInt8
InTypeUint8
InTypeInt16
InTypeUint16
InTypeInt32
InTypeUint32
InTypeInt64
InTypeUint64
InTypeFloat
InTypeDouble
InTypeBool32
InTypeBinary
InTypeGUID
InTypePointerUnsupported
InTypeFileTime
InTypeSystemTime
InTypeSID
InTypeHexInt32
InTypeHexInt64
InTypeCountedString
InTypeCountedANSIString
InTypeStruct
InTypeCountedBinary
InTypeCountedArray InType = 32
InTypeArray InType = 64
)
// OutType specifies a hint to the event decoder for how the value should be
// formatted.
type OutType byte
// Various OutType definitions for TraceLogging. These must match the
// definitions found in TraceLoggingProvider.h in the Windows SDK.
const (
// OutTypeDefault indicates that the default formatting for the InType will
// be used by the event decoder.
OutTypeDefault OutType = iota
OutTypeNoPrint
OutTypeString
OutTypeBoolean
OutTypeHex
OutTypePID
OutTypeTID
OutTypePort
OutTypeIPv4
OutTypeIPv6
OutTypeSocketAddress
OutTypeXML
OutTypeJSON
OutTypeWin32Error
OutTypeNTStatus
OutTypeHResult
OutTypeFileTime
OutTypeSigned
OutTypeUnsigned
OutTypeUTF8 OutType = 35
OutTypePKCS7WithTypeInfo OutType = 36
OutTypeCodePointer OutType = 37
OutTypeDateTimeUTC OutType = 38
)
// EventMetadata maintains a buffer which builds up the metadata for an ETW
// event. It needs to be paired with EventData which describes the event.
type EventMetadata struct {
buffer bytes.Buffer
}
// Bytes returns the raw binary data containing the event metadata. Before being
// returned, the current size of the buffer is written to the start of the
// buffer. The returned value is not copied from the internal buffer, so it can
// be mutated by the EventMetadata object after it is returned.
func (em *EventMetadata) Bytes() []byte {
// Finalize the event metadata buffer by filling in the buffer length at the
// beginning.
binary.LittleEndian.PutUint16(em.buffer.Bytes(), uint16(em.buffer.Len()))
return em.buffer.Bytes()
}
// WriteEventHeader writes the metadata for the start of an event to the buffer.
// This specifies the event name and tags.
func (em *EventMetadata) WriteEventHeader(name string, tags uint32) {
binary.Write(&em.buffer, binary.LittleEndian, uint16(0)) // Length placeholder
em.writeTags(tags)
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
}
func (em *EventMetadata) writeField(name string, inType InType, outType OutType, tags uint32, arrSize uint16) {
em.buffer.WriteString(name)
em.buffer.WriteByte(0) // Null terminator for name
if outType == OutTypeDefault && tags == 0 {
em.buffer.WriteByte(byte(inType))
} else {
em.buffer.WriteByte(byte(inType | 128))
if tags == 0 {
em.buffer.WriteByte(byte(outType))
} else {
em.buffer.WriteByte(byte(outType | 128))
em.writeTags(tags)
}
}
if arrSize != 0 {
binary.Write(&em.buffer, binary.LittleEndian, arrSize)
}
}
// writeTags writes out the tags value to the event metadata. Tags is a 28-bit
// value, interpreted as bit flags, which are only relevant to the event
// consumer. The event consumer may choose to attribute special meaning to tags
// (e.g. 0x4 could mean the field contains PII). Tags are written as a series of
// bytes, each containing 7 bits of tag value, with the high bit set if there is
// more tag data in the following byte. This allows for a more compact
// representation when not all of the tag bits are needed.
func (em *EventMetadata) writeTags(tags uint32) {
// Only use the top 28 bits of the tags value.
tags &= 0xfffffff
for {
// Tags are written with the most significant bits (e.g. 21-27) first.
val := tags >> 21
if tags&0x1fffff == 0 {
// If there is no more data to write after this, write this value
// without the high bit set, and return.
em.buffer.WriteByte(byte(val & 0x7f))
return
}
em.buffer.WriteByte(byte(val | 0x80))
tags <<= 7
}
}
// WriteField writes the metadata for a simple field to the buffer.
func (em *EventMetadata) WriteField(name string, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType, outType, tags, 0)
}
// WriteArray writes the metadata for an array field to the buffer. The number
// of elements in the array must be written as a uint16 in the event data,
// immediately preceeding the event data.
func (em *EventMetadata) WriteArray(name string, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType|InTypeArray, outType, tags, 0)
}
// WriteCountedArray writes the metadata for an array field to the buffer. The
// size of a counted array is fixed, and the size is written into the metadata
// directly.
func (em *EventMetadata) WriteCountedArray(name string, count uint16, inType InType, outType OutType, tags uint32) {
em.writeField(name, inType|InTypeCountedArray, outType, tags, count)
}
// WriteStruct writes the metadata for a nested struct to the buffer. The struct
// contains the next N fields in the metadata, where N is specified by the
// fieldCount argument.
func (em *EventMetadata) WriteStruct(name string, fieldCount uint8, tags uint32) {
em.writeField(name, InTypeStruct, OutType(fieldCount), tags, 0)
}

View File

@ -0,0 +1,63 @@
package etw
import (
"golang.org/x/sys/windows"
)
type eventOptions struct {
descriptor *EventDescriptor
activityID *windows.GUID
relatedActivityID *windows.GUID
tags uint32
}
// EventOpt defines the option function type that can be passed to
// Provider.WriteEvent to specify general event options, such as level and
// keyword.
type EventOpt func(options *eventOptions)
// WithEventOpts returns the variadic arguments as a single slice.
func WithEventOpts(opts ...EventOpt) []EventOpt {
return opts
}
// WithLevel specifies the level of the event to be written.
func WithLevel(level Level) EventOpt {
return func(options *eventOptions) {
options.descriptor.Level = level
}
}
// WithKeyword specifies the keywords of the event to be written. Multiple uses
// of this option are OR'd together.
func WithKeyword(keyword uint64) EventOpt {
return func(options *eventOptions) {
options.descriptor.Keyword |= keyword
}
}
func WithChannel(channel Channel) EventOpt {
return func(options *eventOptions) {
options.descriptor.Channel = channel
}
}
// WithTags specifies the tags of the event to be written. Tags is a 28-bit
// value (top 4 bits are ignored) which are interpreted by the event consumer.
func WithTags(newTags uint32) EventOpt {
return func(options *eventOptions) {
options.tags |= newTags
}
}
func WithActivityID(activityID *windows.GUID) EventOpt {
return func(options *eventOptions) {
options.activityID = activityID
}
}
func WithRelatedActivityID(activityID *windows.GUID) EventOpt {
return func(options *eventOptions) {
options.relatedActivityID = activityID
}
}

View File

@ -0,0 +1,379 @@
package etw
import (
"math"
"unsafe"
)
// FieldOpt defines the option function type that can be passed to
// Provider.WriteEvent to add fields to the event.
type FieldOpt func(em *EventMetadata, ed *EventData)
// WithFields returns the variadic arguments as a single slice.
func WithFields(opts ...FieldOpt) []FieldOpt {
return opts
}
// BoolField adds a single bool field to the event.
func BoolField(name string, value bool) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint8, OutTypeBoolean, 0)
bool8 := uint8(0)
if value {
bool8 = uint8(1)
}
ed.WriteUint8(bool8)
}
}
// BoolArray adds an array of bool to the event.
func BoolArray(name string, values []bool) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint8, OutTypeBoolean, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
bool8 := uint8(0)
if v {
bool8 = uint8(1)
}
ed.WriteUint8(bool8)
}
}
}
// StringField adds a single string field to the event.
func StringField(name string, value string) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeANSIString, OutTypeUTF8, 0)
ed.WriteString(value)
}
}
// StringArray adds an array of string to the event.
func StringArray(name string, values []string) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeANSIString, OutTypeUTF8, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteString(v)
}
}
}
// IntField adds a single int field to the event.
func IntField(name string, value int) FieldOpt {
switch unsafe.Sizeof(value) {
case 4:
return Int32Field(name, int32(value))
case 8:
return Int64Field(name, int64(value))
default:
panic("Unsupported int size")
}
}
// IntArray adds an array of int to the event.
func IntArray(name string, values []int) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, int)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeInt32
writeItem = func(ed *EventData, item int) { ed.WriteInt32(int32(item)) }
case 8:
inType = InTypeInt64
writeItem = func(ed *EventData, item int) { ed.WriteInt64(int64(item)) }
default:
panic("Unsupported int size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
}
}
// Int8Field adds a single int8 field to the event.
func Int8Field(name string, value int8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt8, OutTypeDefault, 0)
ed.WriteInt8(value)
}
}
// Int8Array adds an array of int8 to the event.
func Int8Array(name string, values []int8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt8, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt8(v)
}
}
}
// Int16Field adds a single int16 field to the event.
func Int16Field(name string, value int16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt16, OutTypeDefault, 0)
ed.WriteInt16(value)
}
}
// Int16Array adds an array of int16 to the event.
func Int16Array(name string, values []int16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt16, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt16(v)
}
}
}
// Int32Field adds a single int32 field to the event.
func Int32Field(name string, value int32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt32, OutTypeDefault, 0)
ed.WriteInt32(value)
}
}
// Int32Array adds an array of int32 to the event.
func Int32Array(name string, values []int32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt32, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt32(v)
}
}
}
// Int64Field adds a single int64 field to the event.
func Int64Field(name string, value int64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeInt64, OutTypeDefault, 0)
ed.WriteInt64(value)
}
}
// Int64Array adds an array of int64 to the event.
func Int64Array(name string, values []int64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeInt64, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteInt64(v)
}
}
}
// UintField adds a single uint field to the event.
func UintField(name string, value uint) FieldOpt {
switch unsafe.Sizeof(value) {
case 4:
return Uint32Field(name, uint32(value))
case 8:
return Uint64Field(name, uint64(value))
default:
panic("Unsupported uint size")
}
}
// UintArray adds an array of uint to the event.
func UintArray(name string, values []uint) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uint)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeUint32
writeItem = func(ed *EventData, item uint) { ed.WriteUint32(uint32(item)) }
case 8:
inType = InTypeUint64
writeItem = func(ed *EventData, item uint) { ed.WriteUint64(uint64(item)) }
default:
panic("Unsupported uint size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
}
}
// Uint8Field adds a single uint8 field to the event.
func Uint8Field(name string, value uint8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint8, OutTypeDefault, 0)
ed.WriteUint8(value)
}
}
// Uint8Array adds an array of uint8 to the event.
func Uint8Array(name string, values []uint8) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint8, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint8(v)
}
}
}
// Uint16Field adds a single uint16 field to the event.
func Uint16Field(name string, value uint16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint16, OutTypeDefault, 0)
ed.WriteUint16(value)
}
}
// Uint16Array adds an array of uint16 to the event.
func Uint16Array(name string, values []uint16) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint16, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint16(v)
}
}
}
// Uint32Field adds a single uint32 field to the event.
func Uint32Field(name string, value uint32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint32, OutTypeDefault, 0)
ed.WriteUint32(value)
}
}
// Uint32Array adds an array of uint32 to the event.
func Uint32Array(name string, values []uint32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint32, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint32(v)
}
}
}
// Uint64Field adds a single uint64 field to the event.
func Uint64Field(name string, value uint64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeUint64, OutTypeDefault, 0)
ed.WriteUint64(value)
}
}
// Uint64Array adds an array of uint64 to the event.
func Uint64Array(name string, values []uint64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeUint64, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint64(v)
}
}
}
// UintptrField adds a single uintptr field to the event.
func UintptrField(name string, value uintptr) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uintptr)
switch unsafe.Sizeof(value) {
case 4:
inType = InTypeHexInt32
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint32(uint32(item)) }
case 8:
inType = InTypeHexInt64
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint64(uint64(item)) }
default:
panic("Unsupported uintptr size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, inType, OutTypeDefault, 0)
writeItem(ed, value)
}
}
// UintptrArray adds an array of uintptr to the event.
func UintptrArray(name string, values []uintptr) FieldOpt {
inType := InTypeNull
var writeItem func(*EventData, uintptr)
switch unsafe.Sizeof(values[0]) {
case 4:
inType = InTypeHexInt32
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint32(uint32(item)) }
case 8:
inType = InTypeHexInt64
writeItem = func(ed *EventData, item uintptr) { ed.WriteUint64(uint64(item)) }
default:
panic("Unsupported uintptr size")
}
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, inType, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
writeItem(ed, v)
}
}
}
// Float32Field adds a single float32 field to the event.
func Float32Field(name string, value float32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeFloat, OutTypeDefault, 0)
ed.WriteUint32(math.Float32bits(value))
}
}
// Float32Array adds an array of float32 to the event.
func Float32Array(name string, values []float32) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeFloat, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint32(math.Float32bits(v))
}
}
}
// Float64Field adds a single float64 field to the event.
func Float64Field(name string, value float64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteField(name, InTypeDouble, OutTypeDefault, 0)
ed.WriteUint64(math.Float64bits(value))
}
}
// Float64Array adds an array of float64 to the event.
func Float64Array(name string, values []float64) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteArray(name, InTypeDouble, OutTypeDefault, 0)
ed.WriteUint16(uint16(len(values)))
for _, v := range values {
ed.WriteUint64(math.Float64bits(v))
}
}
}
// Struct adds a nested struct to the event, the FieldOpts in the opts argument
// are used to specify the fields of the struct.
func Struct(name string, opts ...FieldOpt) FieldOpt {
return func(em *EventMetadata, ed *EventData) {
em.WriteStruct(name, uint8(len(opts)), 0)
for _, opt := range opts {
opt(em, ed)
}
}
}

View File

@ -0,0 +1,279 @@
package etw
import (
"bytes"
"crypto/sha1"
"encoding/binary"
"encoding/hex"
"fmt"
"strings"
"unicode/utf16"
"unsafe"
"golang.org/x/sys/windows"
)
// Provider represents an ETW event provider. It is identified by a provider
// name and ID (GUID), which should always have a 1:1 mapping to each other
// (e.g. don't use multiple provider names with the same ID, or vice versa).
type Provider struct {
ID *windows.GUID
handle providerHandle
metadata []byte
callback EnableCallback
index uint
enabled bool
level Level
keywordAny uint64
keywordAll uint64
}
// String returns the `provider`.ID as a string
func (provider *Provider) String() string {
data1 := make([]byte, 4)
binary.BigEndian.PutUint32(data1, provider.ID.Data1)
data2 := make([]byte, 2)
binary.BigEndian.PutUint16(data2, provider.ID.Data2)
data3 := make([]byte, 2)
binary.BigEndian.PutUint16(data3, provider.ID.Data3)
return fmt.Sprintf(
"%s-%s-%s-%s-%s",
hex.EncodeToString(data1),
hex.EncodeToString(data2),
hex.EncodeToString(data3),
hex.EncodeToString(provider.ID.Data4[:2]),
hex.EncodeToString(provider.ID.Data4[2:]))
}
type providerHandle windows.Handle
// ProviderState informs the provider EnableCallback what action is being
// performed.
type ProviderState uint32
const (
// ProviderStateDisable indicates the provider is being disabled.
ProviderStateDisable ProviderState = iota
// ProviderStateEnable indicates the provider is being enabled.
ProviderStateEnable
// ProviderStateCaptureState indicates the provider is having its current
// state snap-shotted.
ProviderStateCaptureState
)
type eventInfoClass uint32
const (
eventInfoClassProviderBinaryTrackInfo eventInfoClass = iota
eventInfoClassProviderSetReserved1
eventInfoClassProviderSetTraits
eventInfoClassProviderUseDescriptorType
)
// EnableCallback is the form of the callback function that receives provider
// enable/disable notifications from ETW.
type EnableCallback func(*windows.GUID, ProviderState, Level, uint64, uint64, uintptr)
func providerCallback(sourceID *windows.GUID, state ProviderState, level Level, matchAnyKeyword uint64, matchAllKeyword uint64, filterData uintptr, i uintptr) {
provider := providers.getProvider(uint(i))
switch state {
case ProviderStateDisable:
provider.enabled = false
case ProviderStateEnable:
provider.enabled = true
provider.level = level
provider.keywordAny = matchAnyKeyword
provider.keywordAll = matchAllKeyword
}
if provider.callback != nil {
provider.callback(sourceID, state, level, matchAnyKeyword, matchAllKeyword, filterData)
}
}
// providerCallbackAdapter acts as the first-level callback from the C/ETW side
// for provider notifications. Because Go has trouble with callback arguments of
// different size, it has only pointer-sized arguments, which are then cast to
// the appropriate types when calling providerCallback.
func providerCallbackAdapter(sourceID *windows.GUID, state uintptr, level uintptr, matchAnyKeyword uintptr, matchAllKeyword uintptr, filterData uintptr, i uintptr) uintptr {
providerCallback(sourceID, ProviderState(state), Level(level), uint64(matchAnyKeyword), uint64(matchAllKeyword), filterData, i)
return 0
}
// providerIDFromName generates a provider ID based on the provider name. It
// uses the same algorithm as used by .NET's EventSource class, which is based
// on RFC 4122. More information on the algorithm can be found here:
// https://blogs.msdn.microsoft.com/dcook/2015/09/08/etw-provider-names-and-guids/
// The algorithm is roughly:
// Hash = Sha1(namespace + arg.ToUpper().ToUtf16be())
// Guid = Hash[0..15], with Hash[7] tweaked according to RFC 4122
func providerIDFromName(name string) *windows.GUID {
buffer := sha1.New()
namespace := []byte{0x48, 0x2C, 0x2D, 0xB2, 0xC3, 0x90, 0x47, 0xC8, 0x87, 0xF8, 0x1A, 0x15, 0xBF, 0xC1, 0x30, 0xFB}
buffer.Write(namespace)
binary.Write(buffer, binary.BigEndian, utf16.Encode([]rune(strings.ToUpper(name))))
sum := buffer.Sum(nil)
sum[7] = (sum[7] & 0xf) | 0x50
return &windows.GUID{
Data1: binary.LittleEndian.Uint32(sum[0:4]),
Data2: binary.LittleEndian.Uint16(sum[4:6]),
Data3: binary.LittleEndian.Uint16(sum[6:8]),
Data4: [8]byte{sum[8], sum[9], sum[10], sum[11], sum[12], sum[13], sum[14], sum[15]},
}
}
// NewProvider creates and registers a new ETW provider. The provider ID is
// generated based on the provider name.
func NewProvider(name string, callback EnableCallback) (provider *Provider, err error) {
return NewProviderWithID(name, providerIDFromName(name), callback)
}
// NewProviderWithID creates and registers a new ETW provider, allowing the
// provider ID to be manually specified. This is most useful when there is an
// existing provider ID that must be used to conform to existing diagnostic
// infrastructure.
func NewProviderWithID(name string, id *windows.GUID, callback EnableCallback) (provider *Provider, err error) {
providerCallbackOnce.Do(func() {
globalProviderCallback = windows.NewCallback(providerCallbackAdapter)
})
provider = providers.newProvider()
defer func() {
if err != nil {
providers.removeProvider(provider)
}
}()
provider.ID = id
provider.callback = callback
if err := eventRegister(provider.ID, globalProviderCallback, uintptr(provider.index), &provider.handle); err != nil {
return nil, err
}
metadata := &bytes.Buffer{}
binary.Write(metadata, binary.LittleEndian, uint16(0)) // Write empty size for buffer (to update later)
metadata.WriteString(name)
metadata.WriteByte(0) // Null terminator for name
binary.LittleEndian.PutUint16(metadata.Bytes(), uint16(metadata.Len())) // Update the size at the beginning of the buffer
provider.metadata = metadata.Bytes()
if err := eventSetInformation(
provider.handle,
eventInfoClassProviderSetTraits,
uintptr(unsafe.Pointer(&provider.metadata[0])),
uint32(len(provider.metadata))); err != nil {
return nil, err
}
return provider, nil
}
// Close unregisters the provider.
func (provider *Provider) Close() error {
providers.removeProvider(provider)
return eventUnregister(provider.handle)
}
// IsEnabled calls IsEnabledForLevelAndKeywords with LevelAlways and all
// keywords set.
func (provider *Provider) IsEnabled() bool {
return provider.IsEnabledForLevelAndKeywords(LevelAlways, ^uint64(0))
}
// IsEnabledForLevel calls IsEnabledForLevelAndKeywords with the specified level
// and all keywords set.
func (provider *Provider) IsEnabledForLevel(level Level) bool {
return provider.IsEnabledForLevelAndKeywords(level, ^uint64(0))
}
// IsEnabledForLevelAndKeywords allows event producer code to check if there are
// any event sessions that are interested in an event, based on the event level
// and keywords. Although this check happens automatically in the ETW
// infrastructure, it can be useful to check if an event will actually be
// consumed before doing expensive work to build the event data.
func (provider *Provider) IsEnabledForLevelAndKeywords(level Level, keywords uint64) bool {
if !provider.enabled {
return false
}
// ETW automatically sets the level to 255 if it is specified as 0, so we
// don't need to worry about the level=0 (all events) case.
if level > provider.level {
return false
}
if keywords != 0 && (keywords&provider.keywordAny == 0 || keywords&provider.keywordAll != provider.keywordAll) {
return false
}
return true
}
// WriteEvent writes a single ETW event from the provider. The event is
// constructed based on the EventOpt and FieldOpt values that are passed as
// opts.
func (provider *Provider) WriteEvent(name string, eventOpts []EventOpt, fieldOpts []FieldOpt) error {
options := eventOptions{descriptor: NewEventDescriptor()}
em := &EventMetadata{}
ed := &EventData{}
// We need to evaluate the EventOpts first since they might change tags, and
// we write out the tags before evaluating FieldOpts.
for _, opt := range eventOpts {
opt(&options)
}
if !provider.IsEnabledForLevelAndKeywords(options.descriptor.Level, options.descriptor.Keyword) {
return nil
}
em.WriteEventHeader(name, options.tags)
for _, opt := range fieldOpts {
opt(em, ed)
}
// Don't pass a data blob if there is no event data. There will always be
// event metadata (e.g. for the name) so we don't need to do this check for
// the metadata.
dataBlobs := [][]byte{}
if len(ed.Bytes()) > 0 {
dataBlobs = [][]byte{ed.Bytes()}
}
return provider.WriteEventRaw(options.descriptor, nil, nil, [][]byte{em.Bytes()}, dataBlobs)
}
// WriteEventRaw writes a single ETW event from the provider. This function is
// less abstracted than WriteEvent, and presents a fairly direct interface to
// the event writing functionality. It expects a series of event metadata and
// event data blobs to be passed in, which must conform to the TraceLogging
// schema. The functions on EventMetadata and EventData can help with creating
// these blobs. The blobs of each type are effectively concatenated together by
// the ETW infrastructure.
func (provider *Provider) WriteEventRaw(
descriptor *EventDescriptor,
activityID *windows.GUID,
relatedActivityID *windows.GUID,
metadataBlobs [][]byte,
dataBlobs [][]byte) error {
dataDescriptorCount := uint32(1 + len(metadataBlobs) + len(dataBlobs))
dataDescriptors := make([]eventDataDescriptor, 0, dataDescriptorCount)
dataDescriptors = append(dataDescriptors, newEventDataDescriptor(eventDataDescriptorTypeProviderMetadata, provider.metadata))
for _, blob := range metadataBlobs {
dataDescriptors = append(dataDescriptors, newEventDataDescriptor(eventDataDescriptorTypeEventMetadata, blob))
}
for _, blob := range dataBlobs {
dataDescriptors = append(dataDescriptors, newEventDataDescriptor(eventDataDescriptorTypeUserData, blob))
}
return eventWriteTransfer(provider.handle, descriptor, activityID, relatedActivityID, dataDescriptorCount, &dataDescriptors[0])
}

View File

@ -0,0 +1,52 @@
package etw
import (
"sync"
)
// Because the provider callback function needs to be able to access the
// provider data when it is invoked by ETW, we need to keep provider data stored
// in a global map based on an index. The index is passed as the callback
// context to ETW.
type providerMap struct {
m map[uint]*Provider
i uint
lock sync.Mutex
once sync.Once
}
var providers = providerMap{
m: make(map[uint]*Provider),
}
func (p *providerMap) newProvider() *Provider {
p.lock.Lock()
defer p.lock.Unlock()
i := p.i
p.i++
provider := &Provider{
index: i,
}
p.m[i] = provider
return provider
}
func (p *providerMap) removeProvider(provider *Provider) {
p.lock.Lock()
defer p.lock.Unlock()
delete(p.m, provider.index)
}
func (p *providerMap) getProvider(index uint) *Provider {
p.lock.Lock()
defer p.lock.Unlock()
return p.m[index]
}
var providerCallbackOnce sync.Once
var globalProviderCallback uintptr

View File

@ -0,0 +1,16 @@
// +build 386 arm
package etw
import (
"unsafe"
)
// byteptr64 defines a struct containing a pointer. The struct is guaranteed to
// be 64 bits, regardless of the actual size of a pointer on the platform. This
// is intended for use with certain Windows APIs that expect a pointer as a
// ULONGLONG.
type ptr64 struct {
ptr unsafe.Pointer
_ uint32
}

View File

@ -0,0 +1,15 @@
// +build amd64 arm64
package etw
import (
"unsafe"
)
// byteptr64 defines a struct containing a pointer. The struct is guaranteed to
// be 64 bits, regardless of the actual size of a pointer on the platform. This
// is intended for use with certain Windows APIs that expect a pointer as a
// ULONGLONG.
type ptr64 struct {
ptr unsafe.Pointer
}

View File

@ -0,0 +1,78 @@
// Code generated by 'go generate'; DO NOT EDIT.
package etw
import (
"syscall"
"unsafe"
"golang.org/x/sys/windows"
)
var _ unsafe.Pointer
// Do the interface allocations only once for common
// Errno values.
const (
errnoERROR_IO_PENDING = 997
)
var (
errERROR_IO_PENDING error = syscall.Errno(errnoERROR_IO_PENDING)
)
// errnoErr returns common boxed Errno values, to prevent
// allocations at runtime.
func errnoErr(e syscall.Errno) error {
switch e {
case 0:
return nil
case errnoERROR_IO_PENDING:
return errERROR_IO_PENDING
}
// TODO: add more here, after collecting data on the common
// error values see on Windows. (perhaps when running
// all.bat?)
return e
}
var (
modadvapi32 = windows.NewLazySystemDLL("advapi32.dll")
procEventRegister = modadvapi32.NewProc("EventRegister")
procEventUnregister = modadvapi32.NewProc("EventUnregister")
procEventWriteTransfer = modadvapi32.NewProc("EventWriteTransfer")
procEventSetInformation = modadvapi32.NewProc("EventSetInformation")
)
func eventRegister(providerId *windows.GUID, callback uintptr, callbackContext uintptr, providerHandle *providerHandle) (win32err error) {
r0, _, _ := syscall.Syscall6(procEventRegister.Addr(), 4, uintptr(unsafe.Pointer(providerId)), uintptr(callback), uintptr(callbackContext), uintptr(unsafe.Pointer(providerHandle)), 0, 0)
if r0 != 0 {
win32err = syscall.Errno(r0)
}
return
}
func eventUnregister(providerHandle providerHandle) (win32err error) {
r0, _, _ := syscall.Syscall(procEventUnregister.Addr(), 1, uintptr(providerHandle), 0, 0)
if r0 != 0 {
win32err = syscall.Errno(r0)
}
return
}
func eventWriteTransfer(providerHandle providerHandle, descriptor *EventDescriptor, activityID *windows.GUID, relatedActivityID *windows.GUID, dataDescriptorCount uint32, dataDescriptors *eventDataDescriptor) (win32err error) {
r0, _, _ := syscall.Syscall6(procEventWriteTransfer.Addr(), 6, uintptr(providerHandle), uintptr(unsafe.Pointer(descriptor)), uintptr(unsafe.Pointer(activityID)), uintptr(unsafe.Pointer(relatedActivityID)), uintptr(dataDescriptorCount), uintptr(unsafe.Pointer(dataDescriptors)))
if r0 != 0 {
win32err = syscall.Errno(r0)
}
return
}
func eventSetInformation(providerHandle providerHandle, class eventInfoClass, information uintptr, length uint32) (win32err error) {
r0, _, _ := syscall.Syscall6(procEventSetInformation.Addr(), 4, uintptr(providerHandle), uintptr(class), uintptr(information), uintptr(length), 0, 0)
if r0 != 0 {
win32err = syscall.Errno(r0)
}
return
}

View File

@ -0,0 +1,192 @@
package etwlogrus
import (
"fmt"
"reflect"
"github.com/Microsoft/go-winio/internal/etw"
"github.com/sirupsen/logrus"
)
// Hook is a Logrus hook which logs received events to ETW.
type Hook struct {
provider *etw.Provider
}
// NewHook registers a new ETW provider and returns a hook to log from it.
func NewHook(providerName string) (*Hook, error) {
hook := Hook{}
provider, err := etw.NewProvider(providerName, nil)
if err != nil {
return nil, err
}
hook.provider = provider
return &hook, nil
}
// Levels returns the set of levels that this hook wants to receive log entries
// for.
func (h *Hook) Levels() []logrus.Level {
return []logrus.Level{
logrus.TraceLevel,
logrus.DebugLevel,
logrus.InfoLevel,
logrus.WarnLevel,
logrus.ErrorLevel,
logrus.FatalLevel,
logrus.PanicLevel,
}
}
// Fire receives each Logrus entry as it is logged, and logs it to ETW.
func (h *Hook) Fire(e *logrus.Entry) error {
level := etw.Level(e.Level)
if !h.provider.IsEnabledForLevel(level) {
return nil
}
// Reserve extra space for the message field.
fields := make([]etw.FieldOpt, 0, len(e.Data)+1)
fields = append(fields, etw.StringField("Message", e.Message))
for k, v := range e.Data {
fields = append(fields, getFieldOpt(k, v))
}
// We could try to map Logrus levels to ETW levels, but we would lose some
// fidelity as there are fewer ETW levels. So instead we use the level
// directly.
return h.provider.WriteEvent(
"LogrusEntry",
etw.WithEventOpts(etw.WithLevel(level)),
fields)
}
// Currently, we support logging basic builtin types (int, string, etc), slices
// of basic builtin types, error, types derived from the basic types (e.g. "type
// foo int"), and structs (recursively logging their fields). We do not support
// slices of derived types (e.g. "[]foo").
//
// For types that we don't support, the value is formatted via fmt.Sprint, and
// we also log a message that the type is unsupported along with the formatted
// type. The intent of this is to make it easier to see which types are not
// supported in traces, so we can evaluate adding support for more types in the
// future.
func getFieldOpt(k string, v interface{}) etw.FieldOpt {
switch v := v.(type) {
case bool:
return etw.BoolField(k, v)
case []bool:
return etw.BoolArray(k, v)
case string:
return etw.StringField(k, v)
case []string:
return etw.StringArray(k, v)
case int:
return etw.IntField(k, v)
case []int:
return etw.IntArray(k, v)
case int8:
return etw.Int8Field(k, v)
case []int8:
return etw.Int8Array(k, v)
case int16:
return etw.Int16Field(k, v)
case []int16:
return etw.Int16Array(k, v)
case int32:
return etw.Int32Field(k, v)
case []int32:
return etw.Int32Array(k, v)
case int64:
return etw.Int64Field(k, v)
case []int64:
return etw.Int64Array(k, v)
case uint:
return etw.UintField(k, v)
case []uint:
return etw.UintArray(k, v)
case uint8:
return etw.Uint8Field(k, v)
case []uint8:
return etw.Uint8Array(k, v)
case uint16:
return etw.Uint16Field(k, v)
case []uint16:
return etw.Uint16Array(k, v)
case uint32:
return etw.Uint32Field(k, v)
case []uint32:
return etw.Uint32Array(k, v)
case uint64:
return etw.Uint64Field(k, v)
case []uint64:
return etw.Uint64Array(k, v)
case uintptr:
return etw.UintptrField(k, v)
case []uintptr:
return etw.UintptrArray(k, v)
case float32:
return etw.Float32Field(k, v)
case []float32:
return etw.Float32Array(k, v)
case float64:
return etw.Float64Field(k, v)
case []float64:
return etw.Float64Array(k, v)
case error:
return etw.StringField(k, v.Error())
default:
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Bool:
return getFieldOpt(k, rv.Bool())
case reflect.Int:
return getFieldOpt(k, int(rv.Int()))
case reflect.Int8:
return getFieldOpt(k, int8(rv.Int()))
case reflect.Int16:
return getFieldOpt(k, int16(rv.Int()))
case reflect.Int32:
return getFieldOpt(k, int32(rv.Int()))
case reflect.Int64:
return getFieldOpt(k, int64(rv.Int()))
case reflect.Uint:
return getFieldOpt(k, uint(rv.Uint()))
case reflect.Uint8:
return getFieldOpt(k, uint8(rv.Uint()))
case reflect.Uint16:
return getFieldOpt(k, uint16(rv.Uint()))
case reflect.Uint32:
return getFieldOpt(k, uint32(rv.Uint()))
case reflect.Uint64:
return getFieldOpt(k, uint64(rv.Uint()))
case reflect.Uintptr:
return getFieldOpt(k, uintptr(rv.Uint()))
case reflect.Float32:
return getFieldOpt(k, float32(rv.Float()))
case reflect.Float64:
return getFieldOpt(k, float64(rv.Float()))
case reflect.String:
return getFieldOpt(k, rv.String())
case reflect.Struct:
fields := make([]etw.FieldOpt, 0, rv.NumField())
for i := 0; i < rv.NumField(); i++ {
field := rv.Field(i)
if field.CanInterface() {
fields = append(fields, getFieldOpt(k, field.Interface()))
}
}
return etw.Struct(k, fields...)
}
}
return etw.StringField(k, fmt.Sprintf("(Unsupported: %T) %v", v, v))
}
// Close cleans up the hook and closes the ETW provider.
func (h *Hook) Close() error {
return h.provider.Close()
}