
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report containerd 11.2018
Cure53, Dr.-Ing. M. Heiderich, M. Wege, BSc. J. Hector, J. Larsson, MSc. D. Weißer,
MSc. N. Krein

Index
Introduction

Scope

Test Methodology

Part 1 (Manual Code Auditing)

Part 2 (Code-Assisted Penetration Testing)

Miscellaneous Issues

CTD-01-001 Config: Malicious config allows arbitrary directory creation (Low)

Conclusions

Introduction
“containerd is available as a daemon for Linux and Windows. It manages the complete
container lifecycle of its host system, from image transfer and storage to container
execution and supervision to low-level storage to network attachments and beyond.”

From https://containerd.io

This report documents the findings of a security assessment targeting the containerd
software. Carried out in November 2018, this project was commissioned to Cure53 by
CNCF and entailed both a penetration test and a source code audit of the open-source
containerd compound. Despite thorough investigations, the assessment only revealed
one minor flaw on the tested scope.

As for the resources, the project was completed by six members of the Cure53 team
who worked with a goals-fitting time budget of eighteen days and executed the
assessment in late November 2018. It is important to emphasize that all involved testers
boast considerable experience in having previously audited GoLang and being part of
earlier, similar CNCF projects.

Cure53, Berlin · 12/03/18 1/8

https://cure53.de/
https://containerd.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Adopting a typical setup requested by the CNCF commissioning entity, this assessment
relied on a white-box approach. This methodology means that Cure53 had full access to
all relevant code and, in addition, could take advantage of a testing infrastructure, as
well as detailed briefings with the containerd team.

Cure53 initiated the assessment with a kick-off meeting to learn more about the
expected coverage and the possible threat models applicable to this rather specific piece
of software. A Slack channel was made available for both teams to communicate during
the test. This helped to make sure that no emerging roadblocks or technical issues could
persist and negatively impact coverage.

It was quickly determined and confirmed that the actual attack surface is very small and
a large output of issues is not to be expected from this project. This is directly reflected
by the number and severity of the sole discovery, as only one issue could be spotted on
the scope. It should be underlined that this issue clearly requires a rather strong and
sophisticated attacker.

While it might seem like the audit and tests were not fruitful, they indeed managed to
comprehensively verify that the containerd team has been following the right path in
terms of keeping security promises. Cure53 ascertained robustness of implementation
and successes as regards keeping the attack surface small.

In the following sections, the report first focuses on the scope and lists all relevant code
repositories and similar items vital for the investigations. Next, the test methodology is
described in more detail to shed light on the coverage that the Cure53 team has reached
during the assessment. This also serves as means to provide transparency on how the
allocated resources were spent. From there, the report proceeds to discussing the single
finding before moving on to a concluding section, wherein Cure53 elaborates on the
general security and privacy impressions gained from assessing the containerd software
during this 2018 project

Scope
• containerd Runtime

◦ https://github.com/containerd/containerd branch release/1.2 commit 040e73f...
• containerd Kubernetes Plugin

◦ https://github.com/containerd/cri branch release/1.2 commit 8671a27...
• containerd Interaction Components

◦ https://github.com/containerd/ttrpc branch master commit f51df44...
◦ https://github.com/containerd/typeurl branch master commit 461401d...
◦ https://github.com/containerd/go-runc branch master commit 5a6d9f3...

Cure53, Berlin · 12/03/18 2/8

https://cure53.de/
https://github.com/containerd/go-runc
https://github.com/containerd/typeurl/v2
https://github.com/containerd/ttrpc
https://github.com/containerd/cri
https://github.com/containerd/containerd
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

◦ https://github.com/containerd/go-cni branch master commit 40bcf8e...
• containerd System Abstraction

◦ https://github.com/containerd/fifo branch master commit 3d5202a...
◦ https://github.com/containerd/console branch master commit 0650fd9...
◦ https://github.com/containerd/cgroups branch master commit 82cb49f...

• containerd Filesystem Interface
◦ https://github.com/containerd/continuity branch master commit bea7585...
◦ https://github.com/containerd/aufs branch master commit 1d75a7b...
◦ https://github.com/containerd/btrfs branch master commit af50828...
◦ https://github.com/containerd/zfs branch master commit 31af176...

• Supplied Test Targets
◦ Cure53 got access to two test systems on which the penetrations tests could be

conducted in a close to real-life scenario.

Test Methodology
This section describes the methodology that was used during this source code audit and
penetration tests. The project was divided into two phases with corresponding two-fold
goals and focal points that had clear reference and relevance for the scope. The first
phase concentrated mostly on manual source code reviews. These reviews aimed at
spotting insecure code constructs marked by the potential a capacity of leading to
memory corruption, information leakages and other similar flaws. The second phase of
the assessment was dedicated to classic penetration tests. During this phase, it was
examined whether the security promises made by containerd in fact hold against real-life
attack situations.

Part 1 (Manual Code Auditing)

A list of items below seeks to detail some of the noteworthy steps undertaken during the
first part of the test, which entailed the manual code audit against the sources of the
containerd software in scope. This is to underline that, in spite of the almost nonexistent
number of findings, substantial thoroughness was achieved and considerable efforts
have gone into this test. The completed steps are listed next. Note that a given realm
yielded no results unless otherwise indicated with a specific link to a finding.

• The source code and documentation of the containerd runtime implementation
was checked for attack surface. This was necessary as a defined threat model
was absent.

• The usual os.* and exec.* calls were checked bottom-up for leveragability (i.e.
unverified execution paths, etc.), but eventually abandoned for a more top-down
source-sink auditing approach.

Cure53, Berlin · 12/03/18 3/8

https://cure53.de/
https://github.com/containerd/zfs
https://github.com/containerd/btrfs
https://github.com/containerd/aufs
https://github.com/containerd/continuity
https://github.com/containerd/cgroups
https://github.com/containerd/console
https://github.com/containerd/fifo
https://github.com/containerd/go-cni
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The existing gRPC handlers were audited to gain an understanding as to how the
provided compound works together as a whole.

• The task and image endpoints were audited in particular detail to find potential
command line issues and similar problems.

• The file and path handling implementation was audited for path traversal, file
likes and unchecked overwrites.

• The debug and metrics for web backends were investigated for typical web
problems.

• The configuration file parsing was checked for problems. While it is very
simplistic and based on a TOML-parsing library, a minor flaw found in this realm
resulted in the filing of CTD-01-001.

• All execution paths that resolve to go-runc and eventually terminate in exec calls
were analyzed. The code flow was traced to check if injections were at all
possible. Since all user-input is encapsulated in structures and arrays, no
breakout points could be identified.

• Cure53 audited the implementation of import and export features to discern
problems typical for such areas but no edge cases have been found.

• The image verification implementation was analyzed for potential verification
bypasses. Again, no circumvention methods were discovered.

• The file system handlers were briefly audited and the system abstraction
components were additionally studied.

• The integration glue between cri and kubectl was audited for potential command
stacking. In addition, Cure53 looked for flaws in the environment and parser
implementation.

• The Kubelet API within the plugin was analyzed, with the team focusing on the
aspects which enumerate services (i.e. endpoints, functions, messages and
remote procedure calls); the testers were looking for malleable functionality but
were unable to locate any.

• The source code of the cri command line interface was audited to obtain an
overview of its integration. The functions were mapped to potential attack vectors
to no avail.

Part 2 (Code-Assisted Penetration Testing)

A list of items below seeks to detail some of the noteworthy steps undertaken during the
second part of the test, which encompassed code-assisted penetration testing against
the containerd system in scope. Given that the manual source code audit did not yield
significant findings, the second approach was chosen as an additional measure for
maximizing the test coverage. As for specific steps executed to enrich this phase, these
can be found listed and discussed in the following bullet points.

Cure53, Berlin · 12/03/18 4/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• After pondering the threat model with the need to delineate an attack surface, it
was decided to change the containerd’s gRPC socket owner to a non-privileged
user.

• Over the course of looking at the containerd file handlers, it was investigated if
abusing a given functionality to modify the owner of existing files was a
possibility. While theoretically feasible, the potential weakness was not
leverageable.

• Endpoints interesting for attackers were enumerated (i.e. the debug interface, the
metrics interface and the gRPC API) and tackled as regards being remotely
accessible. No vulnerabilities could be identified.

• All gRPC calls were enumerated and their execution traced to figure out how
they interacted with the file system and operating systems calls in general. A
particular focus was placed on finding logical flaws in the parsing, especially
looking for possible command injections.

• Tar archives were dissected in an attempt to create malicious archives and leak
files or follow symlinks with the potential to overwrite sensitive files, particularly
with respect to path traversal. Several selected archives were tested on their
matching importer but did not show any unwanted behaviors.

• Further investigations of the import functionality were hindered by not being able
to export properly working archives. Because of time constraints, the
investigation of the matter was ceased.

• Exposed socket and interface creation were explored for potential information
disclosure. The lack of transport security was considered insignificant since it is
all locally bound.

• The Kubernetes-plugin called cri was locally configured on the provided test
cluster. This was meant to help understand its integration and facilitate additional
testing.

• It was attempted to break the container creation by extending and manipulating
remote procedure calls. The approaches entailed stacking additional illicit
parameters but did not lead to noticeable misbehaviors.

Cure53, Berlin · 12/03/18 5/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

CTD-01-001 Config: Malicious config allows arbitrary directory creation (Low)

It was discovered that a malicious configuration file makes it possible to create a
persistent arbitrary directory on the filesystem. What is more, the owner and group ID
can also be set arbitrarily in this context.

This could potentially allow a low-privileged user to write configuration files. For instance,
a new directory in /etc/cron.d/ can be created and set to be owned by a non-root user,
effectively allowing said user to write cron files.

On the test system provided, cron refused to execute such a cron job due to ownership
of the directory (i.e. non-root owner). However, other applications may implicitly trust the
content of /etc/ since it is usually owned by root.

The code excerpt below - with the relevant parts highlighted - demonstrates the issue.

Affected File:
containerd/sys/socket_unix.go

Affected Code:
func GetLocalListener(path string, uid, gid int) (net.Listener, error) {

// Ensure parent directory is created
if err := mkdirAs(filepath.Dir(path), uid, gid); err != nil {

return nil, err
}

l, err := CreateUnixSocket(path)
[...]
func mkdirAs(path string, uid, gid int) error {

if _, err := os.Stat(path); err == nil || !os.IsNotExist(err) {
return err

}

if err := os.Mkdir(path, 0770); err != nil {
return err

}

return os.Chown(path, uid, gid)

Cure53, Berlin · 12/03/18 6/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}

As can be seen above, during the creation of the parent directory, the owner of the
directory is simply changed to the provided user and group ID. A Proof-of-Concept (PoC)
configuration file furnished below results in a directory created in /etc/cron.d/. The user
and group ID of that directory are set to 1000, meaning the Cure53 user on the test
system.

PoC Config:
[grpc]
 address = "/etc/cron.d/new_dir/containerd.sock"
 uid = 1000
 gid = 1000

It is recommended for the parent directory to always inherit the owner of the directory
used for the creation of the new directory.

Conclusions
The results of this CNCF-commissioned assessment testify to security being a well-
handled priority in the development and deployment of the containerd software. After
investigating the scope for eighteen days in November 2018, six members of the Cure53
team could only identify one, Miscellaneous, Low-ranking finding.

While the scope of this test and the architecture of the system were rather well-defined,
a threat model was not communicated to Cure53 by the development team. Therefore, it
took more effort than originally expected to delineate an adequate attack surface. To
enable fulfillment of the project goals, a completely unhindered access to two test setups
was given to Cure53. One of them was a more traditional container-based test system
and one entailed a more advanced, Kubernetes-based test cluster.

The assessment status and progress were reported on a dedicated messaging channel,
furnished and managed by the Docker community. All communications were fluent,
highly productive and kept to a required minimum. The headlines of the discovered
issues were posted in the messaging channel before the end of the audit, well in
advance of the delivery of this final report.

Both the containerd container runtime and the Kubernetes cri plugin are very well written
from a security standpoint. The choice of the Go language made it difficult to find any
sort of memory corruptions or similar bugs during this assignment, ultimately leading to
no such problems being uncovered. The majority of the code was written in a clean
manner, thus easing the process of the code audit.

Cure53, Berlin · 12/03/18 7/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To give some details on the proceedings, the containerd container runtime, along with
the Kubernetes cri plugin were audited and penetration tested after an initial examination
of the documentation and the two provided test setups. As side items, Cure53 looked at
the interaction components, namely ttrpc, typeurl, go-runc and go-cni, as well as further
skimming the system fifo, console and cgroups abstractions. Further, the filesystem
interfaces, notably continuity, aufs, btrfs and zfs, were also briefly analyzed.

In the core assessment, the maintainer-provided test setups were modified to enable
unprivileged interface access with a potential for privilege escalation. The included
testing code was used as a basis to explore different abstractions and interfaces offered
by the system. The only discovery was of a miscellaneous nature and has “Low”. As
such, it does not raise any concerns about the general shape of the application.

As security issues in Go implementations are mostly logic flaws and occasionally race
conditions, not much could be discovered within containerd and cri. This is because
neither of them is marked by complicated or complex logic. The overall amount of code
interfacing with the container environment and the orchestration cluster is significant and
of most unusual quality for a project of these dimensions.

Overall, a nearly complete absence of findings proves that the entire containerd runtime,
along with the Kubernetes-plugin, provide a robust and mature platform that can be
recommended for the wide, general deployment. While the assessment certified to good
security premise, it is recommended to finalize and extend the existing documentation
within the source code of the application and the markdowns in the repositories, as this
approach would facilitate practical maintenance in the future. To conclude, from a
security perspective the project is fit for purpose and can be used safely.

Cure53 would like to thank Philip Estes and Michael Crosby from the containerd team as
well as Chris Aniszczyk of The Linux Foundation, for their excellent project coordination,
support and assistance, both before and during this assignment. Special gratitude also
need to be extended to The Linux Foundation for sponsoring this project.

Cure53, Berlin · 12/03/18 8/8

https://cure53.de/
mailto:mario@cure53.de

