364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2017, The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE.md file.
 | 
						|
 | 
						|
// Package diff implements an algorithm for producing edit-scripts.
 | 
						|
// The edit-script is a sequence of operations needed to transform one list
 | 
						|
// of symbols into another (or vice-versa). The edits allowed are insertions,
 | 
						|
// deletions, and modifications. The summation of all edits is called the
 | 
						|
// Levenshtein distance as this problem is well-known in computer science.
 | 
						|
//
 | 
						|
// This package prioritizes performance over accuracy. That is, the run time
 | 
						|
// is more important than obtaining a minimal Levenshtein distance.
 | 
						|
package diff
 | 
						|
 | 
						|
// EditType represents a single operation within an edit-script.
 | 
						|
type EditType uint8
 | 
						|
 | 
						|
const (
 | 
						|
	// Identity indicates that a symbol pair is identical in both list X and Y.
 | 
						|
	Identity EditType = iota
 | 
						|
	// UniqueX indicates that a symbol only exists in X and not Y.
 | 
						|
	UniqueX
 | 
						|
	// UniqueY indicates that a symbol only exists in Y and not X.
 | 
						|
	UniqueY
 | 
						|
	// Modified indicates that a symbol pair is a modification of each other.
 | 
						|
	Modified
 | 
						|
)
 | 
						|
 | 
						|
// EditScript represents the series of differences between two lists.
 | 
						|
type EditScript []EditType
 | 
						|
 | 
						|
// String returns a human-readable string representing the edit-script where
 | 
						|
// Identity, UniqueX, UniqueY, and Modified are represented by the
 | 
						|
// '.', 'X', 'Y', and 'M' characters, respectively.
 | 
						|
func (es EditScript) String() string {
 | 
						|
	b := make([]byte, len(es))
 | 
						|
	for i, e := range es {
 | 
						|
		switch e {
 | 
						|
		case Identity:
 | 
						|
			b[i] = '.'
 | 
						|
		case UniqueX:
 | 
						|
			b[i] = 'X'
 | 
						|
		case UniqueY:
 | 
						|
			b[i] = 'Y'
 | 
						|
		case Modified:
 | 
						|
			b[i] = 'M'
 | 
						|
		default:
 | 
						|
			panic("invalid edit-type")
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return string(b)
 | 
						|
}
 | 
						|
 | 
						|
// stats returns a histogram of the number of each type of edit operation.
 | 
						|
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
 | 
						|
	for _, e := range es {
 | 
						|
		switch e {
 | 
						|
		case Identity:
 | 
						|
			s.NI++
 | 
						|
		case UniqueX:
 | 
						|
			s.NX++
 | 
						|
		case UniqueY:
 | 
						|
			s.NY++
 | 
						|
		case Modified:
 | 
						|
			s.NM++
 | 
						|
		default:
 | 
						|
			panic("invalid edit-type")
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
 | 
						|
// lists X and Y are equal.
 | 
						|
func (es EditScript) Dist() int { return len(es) - es.stats().NI }
 | 
						|
 | 
						|
// LenX is the length of the X list.
 | 
						|
func (es EditScript) LenX() int { return len(es) - es.stats().NY }
 | 
						|
 | 
						|
// LenY is the length of the Y list.
 | 
						|
func (es EditScript) LenY() int { return len(es) - es.stats().NX }
 | 
						|
 | 
						|
// EqualFunc reports whether the symbols at indexes ix and iy are equal.
 | 
						|
// When called by Difference, the index is guaranteed to be within nx and ny.
 | 
						|
type EqualFunc func(ix int, iy int) Result
 | 
						|
 | 
						|
// Result is the result of comparison.
 | 
						|
// NSame is the number of sub-elements that are equal.
 | 
						|
// NDiff is the number of sub-elements that are not equal.
 | 
						|
type Result struct{ NSame, NDiff int }
 | 
						|
 | 
						|
// Equal indicates whether the symbols are equal. Two symbols are equal
 | 
						|
// if and only if NDiff == 0. If Equal, then they are also Similar.
 | 
						|
func (r Result) Equal() bool { return r.NDiff == 0 }
 | 
						|
 | 
						|
// Similar indicates whether two symbols are similar and may be represented
 | 
						|
// by using the Modified type. As a special case, we consider binary comparisons
 | 
						|
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
 | 
						|
//
 | 
						|
// The exact ratio of NSame to NDiff to determine similarity may change.
 | 
						|
func (r Result) Similar() bool {
 | 
						|
	// Use NSame+1 to offset NSame so that binary comparisons are similar.
 | 
						|
	return r.NSame+1 >= r.NDiff
 | 
						|
}
 | 
						|
 | 
						|
// Difference reports whether two lists of lengths nx and ny are equal
 | 
						|
// given the definition of equality provided as f.
 | 
						|
//
 | 
						|
// This function returns an edit-script, which is a sequence of operations
 | 
						|
// needed to convert one list into the other. The following invariants for
 | 
						|
// the edit-script are maintained:
 | 
						|
//	• eq == (es.Dist()==0)
 | 
						|
//	• nx == es.LenX()
 | 
						|
//	• ny == es.LenY()
 | 
						|
//
 | 
						|
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
 | 
						|
// produces an edit-script with a minimal Levenshtein distance). This algorithm
 | 
						|
// favors performance over optimality. The exact output is not guaranteed to
 | 
						|
// be stable and may change over time.
 | 
						|
func Difference(nx, ny int, f EqualFunc) (es EditScript) {
 | 
						|
	// This algorithm is based on traversing what is known as an "edit-graph".
 | 
						|
	// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
 | 
						|
	// by Eugene W. Myers. Since D can be as large as N itself, this is
 | 
						|
	// effectively O(N^2). Unlike the algorithm from that paper, we are not
 | 
						|
	// interested in the optimal path, but at least some "decent" path.
 | 
						|
	//
 | 
						|
	// For example, let X and Y be lists of symbols:
 | 
						|
	//	X = [A B C A B B A]
 | 
						|
	//	Y = [C B A B A C]
 | 
						|
	//
 | 
						|
	// The edit-graph can be drawn as the following:
 | 
						|
	//	   A B C A B B A
 | 
						|
	//	  ┌─────────────┐
 | 
						|
	//	C │_|_|\|_|_|_|_│ 0
 | 
						|
	//	B │_|\|_|_|\|\|_│ 1
 | 
						|
	//	A │\|_|_|\|_|_|\│ 2
 | 
						|
	//	B │_|\|_|_|\|\|_│ 3
 | 
						|
	//	A │\|_|_|\|_|_|\│ 4
 | 
						|
	//	C │ | |\| | | | │ 5
 | 
						|
	//	  └─────────────┘ 6
 | 
						|
	//	   0 1 2 3 4 5 6 7
 | 
						|
	//
 | 
						|
	// List X is written along the horizontal axis, while list Y is written
 | 
						|
	// along the vertical axis. At any point on this grid, if the symbol in
 | 
						|
	// list X matches the corresponding symbol in list Y, then a '\' is drawn.
 | 
						|
	// The goal of any minimal edit-script algorithm is to find a path from the
 | 
						|
	// top-left corner to the bottom-right corner, while traveling through the
 | 
						|
	// fewest horizontal or vertical edges.
 | 
						|
	// A horizontal edge is equivalent to inserting a symbol from list X.
 | 
						|
	// A vertical edge is equivalent to inserting a symbol from list Y.
 | 
						|
	// A diagonal edge is equivalent to a matching symbol between both X and Y.
 | 
						|
 | 
						|
	// Invariants:
 | 
						|
	//	• 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
 | 
						|
	//	• 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
 | 
						|
	//
 | 
						|
	// In general:
 | 
						|
	//	• fwdFrontier.X < revFrontier.X
 | 
						|
	//	• fwdFrontier.Y < revFrontier.Y
 | 
						|
	// Unless, it is time for the algorithm to terminate.
 | 
						|
	fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
 | 
						|
	revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
 | 
						|
	fwdFrontier := fwdPath.point // Forward search frontier
 | 
						|
	revFrontier := revPath.point // Reverse search frontier
 | 
						|
 | 
						|
	// Search budget bounds the cost of searching for better paths.
 | 
						|
	// The longest sequence of non-matching symbols that can be tolerated is
 | 
						|
	// approximately the square-root of the search budget.
 | 
						|
	searchBudget := 4 * (nx + ny) // O(n)
 | 
						|
 | 
						|
	// The algorithm below is a greedy, meet-in-the-middle algorithm for
 | 
						|
	// computing sub-optimal edit-scripts between two lists.
 | 
						|
	//
 | 
						|
	// The algorithm is approximately as follows:
 | 
						|
	//	• Searching for differences switches back-and-forth between
 | 
						|
	//	a search that starts at the beginning (the top-left corner), and
 | 
						|
	//	a search that starts at the end (the bottom-right corner). The goal of
 | 
						|
	//	the search is connect with the search from the opposite corner.
 | 
						|
	//	• As we search, we build a path in a greedy manner, where the first
 | 
						|
	//	match seen is added to the path (this is sub-optimal, but provides a
 | 
						|
	//	decent result in practice). When matches are found, we try the next pair
 | 
						|
	//	of symbols in the lists and follow all matches as far as possible.
 | 
						|
	//	• When searching for matches, we search along a diagonal going through
 | 
						|
	//	through the "frontier" point. If no matches are found, we advance the
 | 
						|
	//	frontier towards the opposite corner.
 | 
						|
	//	• This algorithm terminates when either the X coordinates or the
 | 
						|
	//	Y coordinates of the forward and reverse frontier points ever intersect.
 | 
						|
	//
 | 
						|
	// This algorithm is correct even if searching only in the forward direction
 | 
						|
	// or in the reverse direction. We do both because it is commonly observed
 | 
						|
	// that two lists commonly differ because elements were added to the front
 | 
						|
	// or end of the other list.
 | 
						|
	//
 | 
						|
	// Running the tests with the "debug" build tag prints a visualization of
 | 
						|
	// the algorithm running in real-time. This is educational for understanding
 | 
						|
	// how the algorithm works. See debug_enable.go.
 | 
						|
	f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
 | 
						|
	for {
 | 
						|
		// Forward search from the beginning.
 | 
						|
		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
 | 
						|
			// Search in a diagonal pattern for a match.
 | 
						|
			z := zigzag(i)
 | 
						|
			p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
 | 
						|
			switch {
 | 
						|
			case p.X >= revPath.X || p.Y < fwdPath.Y:
 | 
						|
				stop1 = true // Hit top-right corner
 | 
						|
			case p.Y >= revPath.Y || p.X < fwdPath.X:
 | 
						|
				stop2 = true // Hit bottom-left corner
 | 
						|
			case f(p.X, p.Y).Equal():
 | 
						|
				// Match found, so connect the path to this point.
 | 
						|
				fwdPath.connect(p, f)
 | 
						|
				fwdPath.append(Identity)
 | 
						|
				// Follow sequence of matches as far as possible.
 | 
						|
				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
 | 
						|
					if !f(fwdPath.X, fwdPath.Y).Equal() {
 | 
						|
						break
 | 
						|
					}
 | 
						|
					fwdPath.append(Identity)
 | 
						|
				}
 | 
						|
				fwdFrontier = fwdPath.point
 | 
						|
				stop1, stop2 = true, true
 | 
						|
			default:
 | 
						|
				searchBudget-- // Match not found
 | 
						|
			}
 | 
						|
			debug.Update()
 | 
						|
		}
 | 
						|
		// Advance the frontier towards reverse point.
 | 
						|
		if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
 | 
						|
			fwdFrontier.X++
 | 
						|
		} else {
 | 
						|
			fwdFrontier.Y++
 | 
						|
		}
 | 
						|
 | 
						|
		// Reverse search from the end.
 | 
						|
		if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
 | 
						|
			// Search in a diagonal pattern for a match.
 | 
						|
			z := zigzag(i)
 | 
						|
			p := point{revFrontier.X - z, revFrontier.Y + z}
 | 
						|
			switch {
 | 
						|
			case fwdPath.X >= p.X || revPath.Y < p.Y:
 | 
						|
				stop1 = true // Hit bottom-left corner
 | 
						|
			case fwdPath.Y >= p.Y || revPath.X < p.X:
 | 
						|
				stop2 = true // Hit top-right corner
 | 
						|
			case f(p.X-1, p.Y-1).Equal():
 | 
						|
				// Match found, so connect the path to this point.
 | 
						|
				revPath.connect(p, f)
 | 
						|
				revPath.append(Identity)
 | 
						|
				// Follow sequence of matches as far as possible.
 | 
						|
				for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
 | 
						|
					if !f(revPath.X-1, revPath.Y-1).Equal() {
 | 
						|
						break
 | 
						|
					}
 | 
						|
					revPath.append(Identity)
 | 
						|
				}
 | 
						|
				revFrontier = revPath.point
 | 
						|
				stop1, stop2 = true, true
 | 
						|
			default:
 | 
						|
				searchBudget-- // Match not found
 | 
						|
			}
 | 
						|
			debug.Update()
 | 
						|
		}
 | 
						|
		// Advance the frontier towards forward point.
 | 
						|
		if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
 | 
						|
			revFrontier.X--
 | 
						|
		} else {
 | 
						|
			revFrontier.Y--
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Join the forward and reverse paths and then append the reverse path.
 | 
						|
	fwdPath.connect(revPath.point, f)
 | 
						|
	for i := len(revPath.es) - 1; i >= 0; i-- {
 | 
						|
		t := revPath.es[i]
 | 
						|
		revPath.es = revPath.es[:i]
 | 
						|
		fwdPath.append(t)
 | 
						|
	}
 | 
						|
	debug.Finish()
 | 
						|
	return fwdPath.es
 | 
						|
}
 | 
						|
 | 
						|
type path struct {
 | 
						|
	dir   int // +1 if forward, -1 if reverse
 | 
						|
	point     // Leading point of the EditScript path
 | 
						|
	es    EditScript
 | 
						|
}
 | 
						|
 | 
						|
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
 | 
						|
// to the edit-script to connect p.point to dst.
 | 
						|
func (p *path) connect(dst point, f EqualFunc) {
 | 
						|
	if p.dir > 0 {
 | 
						|
		// Connect in forward direction.
 | 
						|
		for dst.X > p.X && dst.Y > p.Y {
 | 
						|
			switch r := f(p.X, p.Y); {
 | 
						|
			case r.Equal():
 | 
						|
				p.append(Identity)
 | 
						|
			case r.Similar():
 | 
						|
				p.append(Modified)
 | 
						|
			case dst.X-p.X >= dst.Y-p.Y:
 | 
						|
				p.append(UniqueX)
 | 
						|
			default:
 | 
						|
				p.append(UniqueY)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for dst.X > p.X {
 | 
						|
			p.append(UniqueX)
 | 
						|
		}
 | 
						|
		for dst.Y > p.Y {
 | 
						|
			p.append(UniqueY)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// Connect in reverse direction.
 | 
						|
		for p.X > dst.X && p.Y > dst.Y {
 | 
						|
			switch r := f(p.X-1, p.Y-1); {
 | 
						|
			case r.Equal():
 | 
						|
				p.append(Identity)
 | 
						|
			case r.Similar():
 | 
						|
				p.append(Modified)
 | 
						|
			case p.Y-dst.Y >= p.X-dst.X:
 | 
						|
				p.append(UniqueY)
 | 
						|
			default:
 | 
						|
				p.append(UniqueX)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for p.X > dst.X {
 | 
						|
			p.append(UniqueX)
 | 
						|
		}
 | 
						|
		for p.Y > dst.Y {
 | 
						|
			p.append(UniqueY)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (p *path) append(t EditType) {
 | 
						|
	p.es = append(p.es, t)
 | 
						|
	switch t {
 | 
						|
	case Identity, Modified:
 | 
						|
		p.add(p.dir, p.dir)
 | 
						|
	case UniqueX:
 | 
						|
		p.add(p.dir, 0)
 | 
						|
	case UniqueY:
 | 
						|
		p.add(0, p.dir)
 | 
						|
	}
 | 
						|
	debug.Update()
 | 
						|
}
 | 
						|
 | 
						|
type point struct{ X, Y int }
 | 
						|
 | 
						|
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
 | 
						|
 | 
						|
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
 | 
						|
//	[0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
 | 
						|
func zigzag(x int) int {
 | 
						|
	if x&1 != 0 {
 | 
						|
		x = ^x
 | 
						|
	}
 | 
						|
	return x >> 1
 | 
						|
}
 |