full diff: https://github.com/gotestyourself/gotest.tools/compare/v2.3.0...v3.0.2 Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
		
			
				
	
	
		
			424 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			424 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
/*Package difflib is a partial port of Python difflib module.
 | 
						|
 | 
						|
Original source: https://github.com/pmezard/go-difflib
 | 
						|
 | 
						|
This file is trimmed to only the parts used by this repository.
 | 
						|
*/
 | 
						|
package difflib // import "gotest.tools/v3/internal/difflib"
 | 
						|
 | 
						|
func min(a, b int) int {
 | 
						|
	if a < b {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
func max(a, b int) int {
 | 
						|
	if a > b {
 | 
						|
		return a
 | 
						|
	}
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
// Match stores line numbers of size of match
 | 
						|
type Match struct {
 | 
						|
	A    int
 | 
						|
	B    int
 | 
						|
	Size int
 | 
						|
}
 | 
						|
 | 
						|
// OpCode identifies the type of diff
 | 
						|
type OpCode struct {
 | 
						|
	Tag byte
 | 
						|
	I1  int
 | 
						|
	I2  int
 | 
						|
	J1  int
 | 
						|
	J2  int
 | 
						|
}
 | 
						|
 | 
						|
// SequenceMatcher compares sequence of strings. The basic
 | 
						|
// algorithm predates, and is a little fancier than, an algorithm
 | 
						|
// published in the late 1980's by Ratcliff and Obershelp under the
 | 
						|
// hyperbolic name "gestalt pattern matching".  The basic idea is to find
 | 
						|
// the longest contiguous matching subsequence that contains no "junk"
 | 
						|
// elements (R-O doesn't address junk).  The same idea is then applied
 | 
						|
// recursively to the pieces of the sequences to the left and to the right
 | 
						|
// of the matching subsequence.  This does not yield minimal edit
 | 
						|
// sequences, but does tend to yield matches that "look right" to people.
 | 
						|
//
 | 
						|
// SequenceMatcher tries to compute a "human-friendly diff" between two
 | 
						|
// sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
 | 
						|
// longest *contiguous* & junk-free matching subsequence.  That's what
 | 
						|
// catches peoples' eyes.  The Windows(tm) windiff has another interesting
 | 
						|
// notion, pairing up elements that appear uniquely in each sequence.
 | 
						|
// That, and the method here, appear to yield more intuitive difference
 | 
						|
// reports than does diff.  This method appears to be the least vulnerable
 | 
						|
// to synching up on blocks of "junk lines", though (like blank lines in
 | 
						|
// ordinary text files, or maybe "<P>" lines in HTML files).  That may be
 | 
						|
// because this is the only method of the 3 that has a *concept* of
 | 
						|
// "junk" <wink>.
 | 
						|
//
 | 
						|
// Timing:  Basic R-O is cubic time worst case and quadratic time expected
 | 
						|
// case.  SequenceMatcher is quadratic time for the worst case and has
 | 
						|
// expected-case behavior dependent in a complicated way on how many
 | 
						|
// elements the sequences have in common; best case time is linear.
 | 
						|
type SequenceMatcher struct {
 | 
						|
	a              []string
 | 
						|
	b              []string
 | 
						|
	b2j            map[string][]int
 | 
						|
	IsJunk         func(string) bool
 | 
						|
	autoJunk       bool
 | 
						|
	bJunk          map[string]struct{}
 | 
						|
	matchingBlocks []Match
 | 
						|
	fullBCount     map[string]int
 | 
						|
	bPopular       map[string]struct{}
 | 
						|
	opCodes        []OpCode
 | 
						|
}
 | 
						|
 | 
						|
// NewMatcher returns a new SequenceMatcher
 | 
						|
func NewMatcher(a, b []string) *SequenceMatcher {
 | 
						|
	m := SequenceMatcher{autoJunk: true}
 | 
						|
	m.SetSeqs(a, b)
 | 
						|
	return &m
 | 
						|
}
 | 
						|
 | 
						|
// SetSeqs sets two sequences to be compared.
 | 
						|
func (m *SequenceMatcher) SetSeqs(a, b []string) {
 | 
						|
	m.SetSeq1(a)
 | 
						|
	m.SetSeq2(b)
 | 
						|
}
 | 
						|
 | 
						|
// SetSeq1 sets the first sequence to be compared. The second sequence to be compared is
 | 
						|
// not changed.
 | 
						|
//
 | 
						|
// SequenceMatcher computes and caches detailed information about the second
 | 
						|
// sequence, so if you want to compare one sequence S against many sequences,
 | 
						|
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
 | 
						|
// sequences.
 | 
						|
//
 | 
						|
// See also SetSeqs() and SetSeq2().
 | 
						|
func (m *SequenceMatcher) SetSeq1(a []string) {
 | 
						|
	if &a == &m.a {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m.a = a
 | 
						|
	m.matchingBlocks = nil
 | 
						|
	m.opCodes = nil
 | 
						|
}
 | 
						|
 | 
						|
// SetSeq2 sets the second sequence to be compared. The first sequence to be compared is
 | 
						|
// not changed.
 | 
						|
func (m *SequenceMatcher) SetSeq2(b []string) {
 | 
						|
	if &b == &m.b {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m.b = b
 | 
						|
	m.matchingBlocks = nil
 | 
						|
	m.opCodes = nil
 | 
						|
	m.fullBCount = nil
 | 
						|
	m.chainB()
 | 
						|
}
 | 
						|
 | 
						|
func (m *SequenceMatcher) chainB() {
 | 
						|
	// Populate line -> index mapping
 | 
						|
	b2j := map[string][]int{}
 | 
						|
	for i, s := range m.b {
 | 
						|
		indices := b2j[s]
 | 
						|
		indices = append(indices, i)
 | 
						|
		b2j[s] = indices
 | 
						|
	}
 | 
						|
 | 
						|
	// Purge junk elements
 | 
						|
	m.bJunk = map[string]struct{}{}
 | 
						|
	if m.IsJunk != nil {
 | 
						|
		junk := m.bJunk
 | 
						|
		for s := range b2j {
 | 
						|
			if m.IsJunk(s) {
 | 
						|
				junk[s] = struct{}{}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for s := range junk {
 | 
						|
			delete(b2j, s)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Purge remaining popular elements
 | 
						|
	popular := map[string]struct{}{}
 | 
						|
	n := len(m.b)
 | 
						|
	if m.autoJunk && n >= 200 {
 | 
						|
		ntest := n/100 + 1
 | 
						|
		for s, indices := range b2j {
 | 
						|
			if len(indices) > ntest {
 | 
						|
				popular[s] = struct{}{}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for s := range popular {
 | 
						|
			delete(b2j, s)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	m.bPopular = popular
 | 
						|
	m.b2j = b2j
 | 
						|
}
 | 
						|
 | 
						|
func (m *SequenceMatcher) isBJunk(s string) bool {
 | 
						|
	_, ok := m.bJunk[s]
 | 
						|
	return ok
 | 
						|
}
 | 
						|
 | 
						|
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
 | 
						|
//
 | 
						|
// If IsJunk is not defined:
 | 
						|
//
 | 
						|
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
 | 
						|
//     alo <= i <= i+k <= ahi
 | 
						|
//     blo <= j <= j+k <= bhi
 | 
						|
// and for all (i',j',k') meeting those conditions,
 | 
						|
//     k >= k'
 | 
						|
//     i <= i'
 | 
						|
//     and if i == i', j <= j'
 | 
						|
//
 | 
						|
// In other words, of all maximal matching blocks, return one that
 | 
						|
// starts earliest in a, and of all those maximal matching blocks that
 | 
						|
// start earliest in a, return the one that starts earliest in b.
 | 
						|
//
 | 
						|
// If IsJunk is defined, first the longest matching block is
 | 
						|
// determined as above, but with the additional restriction that no
 | 
						|
// junk element appears in the block.  Then that block is extended as
 | 
						|
// far as possible by matching (only) junk elements on both sides.  So
 | 
						|
// the resulting block never matches on junk except as identical junk
 | 
						|
// happens to be adjacent to an "interesting" match.
 | 
						|
//
 | 
						|
// If no blocks match, return (alo, blo, 0).
 | 
						|
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
 | 
						|
	// CAUTION:  stripping common prefix or suffix would be incorrect.
 | 
						|
	// E.g.,
 | 
						|
	//    ab
 | 
						|
	//    acab
 | 
						|
	// Longest matching block is "ab", but if common prefix is
 | 
						|
	// stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
 | 
						|
	// strip, so ends up claiming that ab is changed to acab by
 | 
						|
	// inserting "ca" in the middle.  That's minimal but unintuitive:
 | 
						|
	// "it's obvious" that someone inserted "ac" at the front.
 | 
						|
	// Windiff ends up at the same place as diff, but by pairing up
 | 
						|
	// the unique 'b's and then matching the first two 'a's.
 | 
						|
	besti, bestj, bestsize := alo, blo, 0
 | 
						|
 | 
						|
	// find longest junk-free match
 | 
						|
	// during an iteration of the loop, j2len[j] = length of longest
 | 
						|
	// junk-free match ending with a[i-1] and b[j]
 | 
						|
	j2len := map[int]int{}
 | 
						|
	for i := alo; i != ahi; i++ {
 | 
						|
		// look at all instances of a[i] in b; note that because
 | 
						|
		// b2j has no junk keys, the loop is skipped if a[i] is junk
 | 
						|
		newj2len := map[int]int{}
 | 
						|
		for _, j := range m.b2j[m.a[i]] {
 | 
						|
			// a[i] matches b[j]
 | 
						|
			if j < blo {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if j >= bhi {
 | 
						|
				break
 | 
						|
			}
 | 
						|
			k := j2len[j-1] + 1
 | 
						|
			newj2len[j] = k
 | 
						|
			if k > bestsize {
 | 
						|
				besti, bestj, bestsize = i-k+1, j-k+1, k
 | 
						|
			}
 | 
						|
		}
 | 
						|
		j2len = newj2len
 | 
						|
	}
 | 
						|
 | 
						|
	// Extend the best by non-junk elements on each end.  In particular,
 | 
						|
	// "popular" non-junk elements aren't in b2j, which greatly speeds
 | 
						|
	// the inner loop above, but also means "the best" match so far
 | 
						|
	// doesn't contain any junk *or* popular non-junk elements.
 | 
						|
	for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
 | 
						|
		m.a[besti-1] == m.b[bestj-1] {
 | 
						|
		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
 | 
						|
	}
 | 
						|
	for besti+bestsize < ahi && bestj+bestsize < bhi &&
 | 
						|
		!m.isBJunk(m.b[bestj+bestsize]) &&
 | 
						|
		m.a[besti+bestsize] == m.b[bestj+bestsize] {
 | 
						|
		bestsize += 1
 | 
						|
	}
 | 
						|
 | 
						|
	// Now that we have a wholly interesting match (albeit possibly
 | 
						|
	// empty!), we may as well suck up the matching junk on each
 | 
						|
	// side of it too.  Can't think of a good reason not to, and it
 | 
						|
	// saves post-processing the (possibly considerable) expense of
 | 
						|
	// figuring out what to do with it.  In the case of an empty
 | 
						|
	// interesting match, this is clearly the right thing to do,
 | 
						|
	// because no other kind of match is possible in the regions.
 | 
						|
	for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
 | 
						|
		m.a[besti-1] == m.b[bestj-1] {
 | 
						|
		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
 | 
						|
	}
 | 
						|
	for besti+bestsize < ahi && bestj+bestsize < bhi &&
 | 
						|
		m.isBJunk(m.b[bestj+bestsize]) &&
 | 
						|
		m.a[besti+bestsize] == m.b[bestj+bestsize] {
 | 
						|
		bestsize += 1
 | 
						|
	}
 | 
						|
 | 
						|
	return Match{A: besti, B: bestj, Size: bestsize}
 | 
						|
}
 | 
						|
 | 
						|
// GetMatchingBlocks returns a list of triples describing matching subsequences.
 | 
						|
//
 | 
						|
// Each triple is of the form (i, j, n), and means that
 | 
						|
// a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
 | 
						|
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
 | 
						|
// adjacent triples in the list, and the second is not the last triple in the
 | 
						|
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
 | 
						|
// adjacent equal blocks.
 | 
						|
//
 | 
						|
// The last triple is a dummy, (len(a), len(b), 0), and is the only
 | 
						|
// triple with n==0.
 | 
						|
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
 | 
						|
	if m.matchingBlocks != nil {
 | 
						|
		return m.matchingBlocks
 | 
						|
	}
 | 
						|
 | 
						|
	var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
 | 
						|
	matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
 | 
						|
		match := m.findLongestMatch(alo, ahi, blo, bhi)
 | 
						|
		i, j, k := match.A, match.B, match.Size
 | 
						|
		if match.Size > 0 {
 | 
						|
			if alo < i && blo < j {
 | 
						|
				matched = matchBlocks(alo, i, blo, j, matched)
 | 
						|
			}
 | 
						|
			matched = append(matched, match)
 | 
						|
			if i+k < ahi && j+k < bhi {
 | 
						|
				matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return matched
 | 
						|
	}
 | 
						|
	matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
 | 
						|
 | 
						|
	// It's possible that we have adjacent equal blocks in the
 | 
						|
	// matching_blocks list now.
 | 
						|
	nonAdjacent := []Match{}
 | 
						|
	i1, j1, k1 := 0, 0, 0
 | 
						|
	for _, b := range matched {
 | 
						|
		// Is this block adjacent to i1, j1, k1?
 | 
						|
		i2, j2, k2 := b.A, b.B, b.Size
 | 
						|
		if i1+k1 == i2 && j1+k1 == j2 {
 | 
						|
			// Yes, so collapse them -- this just increases the length of
 | 
						|
			// the first block by the length of the second, and the first
 | 
						|
			// block so lengthened remains the block to compare against.
 | 
						|
			k1 += k2
 | 
						|
		} else {
 | 
						|
			// Not adjacent.  Remember the first block (k1==0 means it's
 | 
						|
			// the dummy we started with), and make the second block the
 | 
						|
			// new block to compare against.
 | 
						|
			if k1 > 0 {
 | 
						|
				nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
 | 
						|
			}
 | 
						|
			i1, j1, k1 = i2, j2, k2
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if k1 > 0 {
 | 
						|
		nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
 | 
						|
	}
 | 
						|
 | 
						|
	nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
 | 
						|
	m.matchingBlocks = nonAdjacent
 | 
						|
	return m.matchingBlocks
 | 
						|
}
 | 
						|
 | 
						|
// GetOpCodes returns a list of 5-tuples describing how to turn a into b.
 | 
						|
//
 | 
						|
// Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
 | 
						|
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
 | 
						|
// tuple preceding it, and likewise for j1 == the previous j2.
 | 
						|
//
 | 
						|
// The tags are characters, with these meanings:
 | 
						|
//
 | 
						|
// 'r' (replace):  a[i1:i2] should be replaced by b[j1:j2]
 | 
						|
//
 | 
						|
// 'd' (delete):   a[i1:i2] should be deleted, j1==j2 in this case.
 | 
						|
//
 | 
						|
// 'i' (insert):   b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
 | 
						|
//
 | 
						|
// 'e' (equal):    a[i1:i2] == b[j1:j2]
 | 
						|
func (m *SequenceMatcher) GetOpCodes() []OpCode {
 | 
						|
	if m.opCodes != nil {
 | 
						|
		return m.opCodes
 | 
						|
	}
 | 
						|
	i, j := 0, 0
 | 
						|
	matching := m.GetMatchingBlocks()
 | 
						|
	opCodes := make([]OpCode, 0, len(matching))
 | 
						|
	for _, m := range matching {
 | 
						|
		//  invariant:  we've pumped out correct diffs to change
 | 
						|
		//  a[:i] into b[:j], and the next matching block is
 | 
						|
		//  a[ai:ai+size] == b[bj:bj+size]. So we need to pump
 | 
						|
		//  out a diff to change a[i:ai] into b[j:bj], pump out
 | 
						|
		//  the matching block, and move (i,j) beyond the match
 | 
						|
		ai, bj, size := m.A, m.B, m.Size
 | 
						|
		tag := byte(0)
 | 
						|
		if i < ai && j < bj {
 | 
						|
			tag = 'r'
 | 
						|
		} else if i < ai {
 | 
						|
			tag = 'd'
 | 
						|
		} else if j < bj {
 | 
						|
			tag = 'i'
 | 
						|
		}
 | 
						|
		if tag > 0 {
 | 
						|
			opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
 | 
						|
		}
 | 
						|
		i, j = ai+size, bj+size
 | 
						|
		// the list of matching blocks is terminated by a
 | 
						|
		// sentinel with size 0
 | 
						|
		if size > 0 {
 | 
						|
			opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
 | 
						|
		}
 | 
						|
	}
 | 
						|
	m.opCodes = opCodes
 | 
						|
	return m.opCodes
 | 
						|
}
 | 
						|
 | 
						|
// GetGroupedOpCodes isolates change clusters by eliminating ranges with no changes.
 | 
						|
//
 | 
						|
// Return a generator of groups with up to n lines of context.
 | 
						|
// Each group is in the same format as returned by GetOpCodes().
 | 
						|
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
 | 
						|
	if n < 0 {
 | 
						|
		n = 3
 | 
						|
	}
 | 
						|
	codes := m.GetOpCodes()
 | 
						|
	if len(codes) == 0 {
 | 
						|
		codes = []OpCode{{'e', 0, 1, 0, 1}}
 | 
						|
	}
 | 
						|
	// Fixup leading and trailing groups if they show no changes.
 | 
						|
	if codes[0].Tag == 'e' {
 | 
						|
		c := codes[0]
 | 
						|
		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
 | 
						|
		codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
 | 
						|
	}
 | 
						|
	if codes[len(codes)-1].Tag == 'e' {
 | 
						|
		c := codes[len(codes)-1]
 | 
						|
		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
 | 
						|
		codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
 | 
						|
	}
 | 
						|
	nn := n + n
 | 
						|
	groups := [][]OpCode{}
 | 
						|
	group := []OpCode{}
 | 
						|
	for _, c := range codes {
 | 
						|
		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
 | 
						|
		// End the current group and start a new one whenever
 | 
						|
		// there is a large range with no changes.
 | 
						|
		if c.Tag == 'e' && i2-i1 > nn {
 | 
						|
			group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
 | 
						|
				j1, min(j2, j1+n)})
 | 
						|
			groups = append(groups, group)
 | 
						|
			group = []OpCode{}
 | 
						|
			i1, j1 = max(i1, i2-n), max(j1, j2-n)
 | 
						|
		}
 | 
						|
		group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
 | 
						|
	}
 | 
						|
	if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
 | 
						|
		groups = append(groups, group)
 | 
						|
	}
 | 
						|
	return groups
 | 
						|
}
 |