This ends up bumping the prometheus client as well. Signed-off-by: Daniel Canter <dcanter@microsoft.com>
		
			
				
	
	
		
			1420 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1420 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2010 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package json implements encoding and decoding of JSON as defined in
 | 
						|
// RFC 7159. The mapping between JSON and Go values is described
 | 
						|
// in the documentation for the Marshal and Unmarshal functions.
 | 
						|
//
 | 
						|
// See "JSON and Go" for an introduction to this package:
 | 
						|
// https://golang.org/doc/articles/json_and_go.html
 | 
						|
package json
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"encoding"
 | 
						|
	"encoding/base64"
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
	"reflect"
 | 
						|
	"sort"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
	"sync"
 | 
						|
	"unicode"
 | 
						|
	"unicode/utf8"
 | 
						|
)
 | 
						|
 | 
						|
// Marshal returns the JSON encoding of v.
 | 
						|
//
 | 
						|
// Marshal traverses the value v recursively.
 | 
						|
// If an encountered value implements the Marshaler interface
 | 
						|
// and is not a nil pointer, Marshal calls its MarshalJSON method
 | 
						|
// to produce JSON. If no MarshalJSON method is present but the
 | 
						|
// value implements encoding.TextMarshaler instead, Marshal calls
 | 
						|
// its MarshalText method and encodes the result as a JSON string.
 | 
						|
// The nil pointer exception is not strictly necessary
 | 
						|
// but mimics a similar, necessary exception in the behavior of
 | 
						|
// UnmarshalJSON.
 | 
						|
//
 | 
						|
// Otherwise, Marshal uses the following type-dependent default encodings:
 | 
						|
//
 | 
						|
// Boolean values encode as JSON booleans.
 | 
						|
//
 | 
						|
// Floating point, integer, and Number values encode as JSON numbers.
 | 
						|
//
 | 
						|
// String values encode as JSON strings coerced to valid UTF-8,
 | 
						|
// replacing invalid bytes with the Unicode replacement rune.
 | 
						|
// So that the JSON will be safe to embed inside HTML <script> tags,
 | 
						|
// the string is encoded using HTMLEscape,
 | 
						|
// which replaces "<", ">", "&", U+2028, and U+2029 are escaped
 | 
						|
// to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
 | 
						|
// This replacement can be disabled when using an Encoder,
 | 
						|
// by calling SetEscapeHTML(false).
 | 
						|
//
 | 
						|
// Array and slice values encode as JSON arrays, except that
 | 
						|
// []byte encodes as a base64-encoded string, and a nil slice
 | 
						|
// encodes as the null JSON value.
 | 
						|
//
 | 
						|
// Struct values encode as JSON objects.
 | 
						|
// Each exported struct field becomes a member of the object, using the
 | 
						|
// field name as the object key, unless the field is omitted for one of the
 | 
						|
// reasons given below.
 | 
						|
//
 | 
						|
// The encoding of each struct field can be customized by the format string
 | 
						|
// stored under the "json" key in the struct field's tag.
 | 
						|
// The format string gives the name of the field, possibly followed by a
 | 
						|
// comma-separated list of options. The name may be empty in order to
 | 
						|
// specify options without overriding the default field name.
 | 
						|
//
 | 
						|
// The "omitempty" option specifies that the field should be omitted
 | 
						|
// from the encoding if the field has an empty value, defined as
 | 
						|
// false, 0, a nil pointer, a nil interface value, and any empty array,
 | 
						|
// slice, map, or string.
 | 
						|
//
 | 
						|
// As a special case, if the field tag is "-", the field is always omitted.
 | 
						|
// Note that a field with name "-" can still be generated using the tag "-,".
 | 
						|
//
 | 
						|
// Examples of struct field tags and their meanings:
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "myName".
 | 
						|
//   Field int `json:"myName"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "myName" and
 | 
						|
//   // the field is omitted from the object if its value is empty,
 | 
						|
//   // as defined above.
 | 
						|
//   Field int `json:"myName,omitempty"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "Field" (the default), but
 | 
						|
//   // the field is skipped if empty.
 | 
						|
//   // Note the leading comma.
 | 
						|
//   Field int `json:",omitempty"`
 | 
						|
//
 | 
						|
//   // Field is ignored by this package.
 | 
						|
//   Field int `json:"-"`
 | 
						|
//
 | 
						|
//   // Field appears in JSON as key "-".
 | 
						|
//   Field int `json:"-,"`
 | 
						|
//
 | 
						|
// The "string" option signals that a field is stored as JSON inside a
 | 
						|
// JSON-encoded string. It applies only to fields of string, floating point,
 | 
						|
// integer, or boolean types. This extra level of encoding is sometimes used
 | 
						|
// when communicating with JavaScript programs:
 | 
						|
//
 | 
						|
//    Int64String int64 `json:",string"`
 | 
						|
//
 | 
						|
// The key name will be used if it's a non-empty string consisting of
 | 
						|
// only Unicode letters, digits, and ASCII punctuation except quotation
 | 
						|
// marks, backslash, and comma.
 | 
						|
//
 | 
						|
// Anonymous struct fields are usually marshaled as if their inner exported fields
 | 
						|
// were fields in the outer struct, subject to the usual Go visibility rules amended
 | 
						|
// as described in the next paragraph.
 | 
						|
// An anonymous struct field with a name given in its JSON tag is treated as
 | 
						|
// having that name, rather than being anonymous.
 | 
						|
// An anonymous struct field of interface type is treated the same as having
 | 
						|
// that type as its name, rather than being anonymous.
 | 
						|
//
 | 
						|
// The Go visibility rules for struct fields are amended for JSON when
 | 
						|
// deciding which field to marshal or unmarshal. If there are
 | 
						|
// multiple fields at the same level, and that level is the least
 | 
						|
// nested (and would therefore be the nesting level selected by the
 | 
						|
// usual Go rules), the following extra rules apply:
 | 
						|
//
 | 
						|
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
 | 
						|
// even if there are multiple untagged fields that would otherwise conflict.
 | 
						|
//
 | 
						|
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
 | 
						|
//
 | 
						|
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
 | 
						|
//
 | 
						|
// Handling of anonymous struct fields is new in Go 1.1.
 | 
						|
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
 | 
						|
// an anonymous struct field in both current and earlier versions, give the field
 | 
						|
// a JSON tag of "-".
 | 
						|
//
 | 
						|
// Map values encode as JSON objects. The map's key type must either be a
 | 
						|
// string, an integer type, or implement encoding.TextMarshaler. The map keys
 | 
						|
// are sorted and used as JSON object keys by applying the following rules,
 | 
						|
// subject to the UTF-8 coercion described for string values above:
 | 
						|
//   - keys of any string type are used directly
 | 
						|
//   - encoding.TextMarshalers are marshaled
 | 
						|
//   - integer keys are converted to strings
 | 
						|
//
 | 
						|
// Pointer values encode as the value pointed to.
 | 
						|
// A nil pointer encodes as the null JSON value.
 | 
						|
//
 | 
						|
// Interface values encode as the value contained in the interface.
 | 
						|
// A nil interface value encodes as the null JSON value.
 | 
						|
//
 | 
						|
// Channel, complex, and function values cannot be encoded in JSON.
 | 
						|
// Attempting to encode such a value causes Marshal to return
 | 
						|
// an UnsupportedTypeError.
 | 
						|
//
 | 
						|
// JSON cannot represent cyclic data structures and Marshal does not
 | 
						|
// handle them. Passing cyclic structures to Marshal will result in
 | 
						|
// an error.
 | 
						|
//
 | 
						|
func Marshal(v interface{}) ([]byte, error) {
 | 
						|
	e := newEncodeState()
 | 
						|
 | 
						|
	err := e.marshal(v, encOpts{escapeHTML: true})
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	buf := append([]byte(nil), e.Bytes()...)
 | 
						|
 | 
						|
	encodeStatePool.Put(e)
 | 
						|
 | 
						|
	return buf, nil
 | 
						|
}
 | 
						|
 | 
						|
// MarshalIndent is like Marshal but applies Indent to format the output.
 | 
						|
// Each JSON element in the output will begin on a new line beginning with prefix
 | 
						|
// followed by one or more copies of indent according to the indentation nesting.
 | 
						|
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
 | 
						|
	b, err := Marshal(v)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	var buf bytes.Buffer
 | 
						|
	err = Indent(&buf, b, prefix, indent)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	return buf.Bytes(), nil
 | 
						|
}
 | 
						|
 | 
						|
// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
 | 
						|
// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
 | 
						|
// so that the JSON will be safe to embed inside HTML <script> tags.
 | 
						|
// For historical reasons, web browsers don't honor standard HTML
 | 
						|
// escaping within <script> tags, so an alternative JSON encoding must
 | 
						|
// be used.
 | 
						|
func HTMLEscape(dst *bytes.Buffer, src []byte) {
 | 
						|
	// The characters can only appear in string literals,
 | 
						|
	// so just scan the string one byte at a time.
 | 
						|
	start := 0
 | 
						|
	for i, c := range src {
 | 
						|
		if c == '<' || c == '>' || c == '&' {
 | 
						|
			if start < i {
 | 
						|
				dst.Write(src[start:i])
 | 
						|
			}
 | 
						|
			dst.WriteString(`\u00`)
 | 
						|
			dst.WriteByte(hex[c>>4])
 | 
						|
			dst.WriteByte(hex[c&0xF])
 | 
						|
			start = i + 1
 | 
						|
		}
 | 
						|
		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
 | 
						|
		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
 | 
						|
			if start < i {
 | 
						|
				dst.Write(src[start:i])
 | 
						|
			}
 | 
						|
			dst.WriteString(`\u202`)
 | 
						|
			dst.WriteByte(hex[src[i+2]&0xF])
 | 
						|
			start = i + 3
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if start < len(src) {
 | 
						|
		dst.Write(src[start:])
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Marshaler is the interface implemented by types that
 | 
						|
// can marshal themselves into valid JSON.
 | 
						|
type Marshaler interface {
 | 
						|
	MarshalJSON() ([]byte, error)
 | 
						|
}
 | 
						|
 | 
						|
// An UnsupportedTypeError is returned by Marshal when attempting
 | 
						|
// to encode an unsupported value type.
 | 
						|
type UnsupportedTypeError struct {
 | 
						|
	Type reflect.Type
 | 
						|
}
 | 
						|
 | 
						|
func (e *UnsupportedTypeError) Error() string {
 | 
						|
	return "json: unsupported type: " + e.Type.String()
 | 
						|
}
 | 
						|
 | 
						|
// An UnsupportedValueError is returned by Marshal when attempting
 | 
						|
// to encode an unsupported value.
 | 
						|
type UnsupportedValueError struct {
 | 
						|
	Value reflect.Value
 | 
						|
	Str   string
 | 
						|
}
 | 
						|
 | 
						|
func (e *UnsupportedValueError) Error() string {
 | 
						|
	return "json: unsupported value: " + e.Str
 | 
						|
}
 | 
						|
 | 
						|
// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
 | 
						|
// attempting to encode a string value with invalid UTF-8 sequences.
 | 
						|
// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
 | 
						|
// replacing invalid bytes with the Unicode replacement rune U+FFFD.
 | 
						|
//
 | 
						|
// Deprecated: No longer used; kept for compatibility.
 | 
						|
type InvalidUTF8Error struct {
 | 
						|
	S string // the whole string value that caused the error
 | 
						|
}
 | 
						|
 | 
						|
func (e *InvalidUTF8Error) Error() string {
 | 
						|
	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
 | 
						|
}
 | 
						|
 | 
						|
// A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
 | 
						|
type MarshalerError struct {
 | 
						|
	Type       reflect.Type
 | 
						|
	Err        error
 | 
						|
	sourceFunc string
 | 
						|
}
 | 
						|
 | 
						|
func (e *MarshalerError) Error() string {
 | 
						|
	srcFunc := e.sourceFunc
 | 
						|
	if srcFunc == "" {
 | 
						|
		srcFunc = "MarshalJSON"
 | 
						|
	}
 | 
						|
	return "json: error calling " + srcFunc +
 | 
						|
		" for type " + e.Type.String() +
 | 
						|
		": " + e.Err.Error()
 | 
						|
}
 | 
						|
 | 
						|
// Unwrap returns the underlying error.
 | 
						|
func (e *MarshalerError) Unwrap() error { return e.Err }
 | 
						|
 | 
						|
var hex = "0123456789abcdef"
 | 
						|
 | 
						|
// An encodeState encodes JSON into a bytes.Buffer.
 | 
						|
type encodeState struct {
 | 
						|
	bytes.Buffer // accumulated output
 | 
						|
	scratch      [64]byte
 | 
						|
 | 
						|
	// Keep track of what pointers we've seen in the current recursive call
 | 
						|
	// path, to avoid cycles that could lead to a stack overflow. Only do
 | 
						|
	// the relatively expensive map operations if ptrLevel is larger than
 | 
						|
	// startDetectingCyclesAfter, so that we skip the work if we're within a
 | 
						|
	// reasonable amount of nested pointers deep.
 | 
						|
	ptrLevel uint
 | 
						|
	ptrSeen  map[interface{}]struct{}
 | 
						|
}
 | 
						|
 | 
						|
const startDetectingCyclesAfter = 1000
 | 
						|
 | 
						|
var encodeStatePool sync.Pool
 | 
						|
 | 
						|
func newEncodeState() *encodeState {
 | 
						|
	if v := encodeStatePool.Get(); v != nil {
 | 
						|
		e := v.(*encodeState)
 | 
						|
		e.Reset()
 | 
						|
		if len(e.ptrSeen) > 0 {
 | 
						|
			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
 | 
						|
		}
 | 
						|
		e.ptrLevel = 0
 | 
						|
		return e
 | 
						|
	}
 | 
						|
	return &encodeState{ptrSeen: make(map[interface{}]struct{})}
 | 
						|
}
 | 
						|
 | 
						|
// jsonError is an error wrapper type for internal use only.
 | 
						|
// Panics with errors are wrapped in jsonError so that the top-level recover
 | 
						|
// can distinguish intentional panics from this package.
 | 
						|
type jsonError struct{ error }
 | 
						|
 | 
						|
func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
 | 
						|
	defer func() {
 | 
						|
		if r := recover(); r != nil {
 | 
						|
			if je, ok := r.(jsonError); ok {
 | 
						|
				err = je.error
 | 
						|
			} else {
 | 
						|
				panic(r)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}()
 | 
						|
	e.reflectValue(reflect.ValueOf(v), opts)
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// error aborts the encoding by panicking with err wrapped in jsonError.
 | 
						|
func (e *encodeState) error(err error) {
 | 
						|
	panic(jsonError{err})
 | 
						|
}
 | 
						|
 | 
						|
func isEmptyValue(v reflect.Value) bool {
 | 
						|
	switch v.Kind() {
 | 
						|
	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
 | 
						|
		return v.Len() == 0
 | 
						|
	case reflect.Bool:
 | 
						|
		return !v.Bool()
 | 
						|
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
						|
		return v.Int() == 0
 | 
						|
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
		return v.Uint() == 0
 | 
						|
	case reflect.Float32, reflect.Float64:
 | 
						|
		return v.Float() == 0
 | 
						|
	case reflect.Interface, reflect.Ptr:
 | 
						|
		return v.IsNil()
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
 | 
						|
	valueEncoder(v)(e, v, opts)
 | 
						|
}
 | 
						|
 | 
						|
type encOpts struct {
 | 
						|
	// quoted causes primitive fields to be encoded inside JSON strings.
 | 
						|
	quoted bool
 | 
						|
	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
 | 
						|
	escapeHTML bool
 | 
						|
}
 | 
						|
 | 
						|
type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
 | 
						|
 | 
						|
var encoderCache sync.Map // map[reflect.Type]encoderFunc
 | 
						|
 | 
						|
func valueEncoder(v reflect.Value) encoderFunc {
 | 
						|
	if !v.IsValid() {
 | 
						|
		return invalidValueEncoder
 | 
						|
	}
 | 
						|
	return typeEncoder(v.Type())
 | 
						|
}
 | 
						|
 | 
						|
func typeEncoder(t reflect.Type) encoderFunc {
 | 
						|
	if fi, ok := encoderCache.Load(t); ok {
 | 
						|
		return fi.(encoderFunc)
 | 
						|
	}
 | 
						|
 | 
						|
	// To deal with recursive types, populate the map with an
 | 
						|
	// indirect func before we build it. This type waits on the
 | 
						|
	// real func (f) to be ready and then calls it. This indirect
 | 
						|
	// func is only used for recursive types.
 | 
						|
	var (
 | 
						|
		wg sync.WaitGroup
 | 
						|
		f  encoderFunc
 | 
						|
	)
 | 
						|
	wg.Add(1)
 | 
						|
	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
		wg.Wait()
 | 
						|
		f(e, v, opts)
 | 
						|
	}))
 | 
						|
	if loaded {
 | 
						|
		return fi.(encoderFunc)
 | 
						|
	}
 | 
						|
 | 
						|
	// Compute the real encoder and replace the indirect func with it.
 | 
						|
	f = newTypeEncoder(t, true)
 | 
						|
	wg.Done()
 | 
						|
	encoderCache.Store(t, f)
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	marshalerType     = reflect.TypeOf((*Marshaler)(nil)).Elem()
 | 
						|
	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
 | 
						|
)
 | 
						|
 | 
						|
// newTypeEncoder constructs an encoderFunc for a type.
 | 
						|
// The returned encoder only checks CanAddr when allowAddr is true.
 | 
						|
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
 | 
						|
	// If we have a non-pointer value whose type implements
 | 
						|
	// Marshaler with a value receiver, then we're better off taking
 | 
						|
	// the address of the value - otherwise we end up with an
 | 
						|
	// allocation as we cast the value to an interface.
 | 
						|
	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(marshalerType) {
 | 
						|
		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
 | 
						|
	}
 | 
						|
	if t.Implements(marshalerType) {
 | 
						|
		return marshalerEncoder
 | 
						|
	}
 | 
						|
	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(textMarshalerType) {
 | 
						|
		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
 | 
						|
	}
 | 
						|
	if t.Implements(textMarshalerType) {
 | 
						|
		return textMarshalerEncoder
 | 
						|
	}
 | 
						|
 | 
						|
	switch t.Kind() {
 | 
						|
	case reflect.Bool:
 | 
						|
		return boolEncoder
 | 
						|
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
						|
		return intEncoder
 | 
						|
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
		return uintEncoder
 | 
						|
	case reflect.Float32:
 | 
						|
		return float32Encoder
 | 
						|
	case reflect.Float64:
 | 
						|
		return float64Encoder
 | 
						|
	case reflect.String:
 | 
						|
		return stringEncoder
 | 
						|
	case reflect.Interface:
 | 
						|
		return interfaceEncoder
 | 
						|
	case reflect.Struct:
 | 
						|
		return newStructEncoder(t)
 | 
						|
	case reflect.Map:
 | 
						|
		return newMapEncoder(t)
 | 
						|
	case reflect.Slice:
 | 
						|
		return newSliceEncoder(t)
 | 
						|
	case reflect.Array:
 | 
						|
		return newArrayEncoder(t)
 | 
						|
	case reflect.Ptr:
 | 
						|
		return newPtrEncoder(t)
 | 
						|
	default:
 | 
						|
		return unsupportedTypeEncoder
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
 | 
						|
	e.WriteString("null")
 | 
						|
}
 | 
						|
 | 
						|
func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.Kind() == reflect.Ptr && v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m, ok := v.Interface().(Marshaler)
 | 
						|
	if !ok {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	b, err := m.MarshalJSON()
 | 
						|
	if err == nil {
 | 
						|
		// copy JSON into buffer, checking validity.
 | 
						|
		err = compact(&e.Buffer, b, opts.escapeHTML)
 | 
						|
	}
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	va := v.Addr()
 | 
						|
	if va.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := va.Interface().(Marshaler)
 | 
						|
	b, err := m.MarshalJSON()
 | 
						|
	if err == nil {
 | 
						|
		// copy JSON into buffer, checking validity.
 | 
						|
		err = compact(&e.Buffer, b, opts.escapeHTML)
 | 
						|
	}
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.Kind() == reflect.Ptr && v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m, ok := v.Interface().(encoding.TextMarshaler)
 | 
						|
	if !ok {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	b, err := m.MarshalText()
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
 | 
						|
	}
 | 
						|
	e.stringBytes(b, opts.escapeHTML)
 | 
						|
}
 | 
						|
 | 
						|
func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	va := v.Addr()
 | 
						|
	if va.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	m := va.Interface().(encoding.TextMarshaler)
 | 
						|
	b, err := m.MarshalText()
 | 
						|
	if err != nil {
 | 
						|
		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
 | 
						|
	}
 | 
						|
	e.stringBytes(b, opts.escapeHTML)
 | 
						|
}
 | 
						|
 | 
						|
func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	if v.Bool() {
 | 
						|
		e.WriteString("true")
 | 
						|
	} else {
 | 
						|
		e.WriteString("false")
 | 
						|
	}
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type floatEncoder int // number of bits
 | 
						|
 | 
						|
func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	f := v.Float()
 | 
						|
	if math.IsInf(f, 0) || math.IsNaN(f) {
 | 
						|
		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
 | 
						|
	}
 | 
						|
 | 
						|
	// Convert as if by ES6 number to string conversion.
 | 
						|
	// This matches most other JSON generators.
 | 
						|
	// See golang.org/issue/6384 and golang.org/issue/14135.
 | 
						|
	// Like fmt %g, but the exponent cutoffs are different
 | 
						|
	// and exponents themselves are not padded to two digits.
 | 
						|
	b := e.scratch[:0]
 | 
						|
	abs := math.Abs(f)
 | 
						|
	fmt := byte('f')
 | 
						|
	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
 | 
						|
	if abs != 0 {
 | 
						|
		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
 | 
						|
			fmt = 'e'
 | 
						|
		}
 | 
						|
	}
 | 
						|
	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
 | 
						|
	if fmt == 'e' {
 | 
						|
		// clean up e-09 to e-9
 | 
						|
		n := len(b)
 | 
						|
		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
 | 
						|
			b[n-2] = b[n-1]
 | 
						|
			b = b[:n-1]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
	e.Write(b)
 | 
						|
	if opts.quoted {
 | 
						|
		e.WriteByte('"')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
var (
 | 
						|
	float32Encoder = (floatEncoder(32)).encode
 | 
						|
	float64Encoder = (floatEncoder(64)).encode
 | 
						|
)
 | 
						|
 | 
						|
func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.Type() == numberType {
 | 
						|
		numStr := v.String()
 | 
						|
		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
 | 
						|
		// we keep compatibility so check validity after this.
 | 
						|
		if numStr == "" {
 | 
						|
			numStr = "0" // Number's zero-val
 | 
						|
		}
 | 
						|
		if !isValidNumber(numStr) {
 | 
						|
			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
 | 
						|
		}
 | 
						|
		if opts.quoted {
 | 
						|
			e.WriteByte('"')
 | 
						|
		}
 | 
						|
		e.WriteString(numStr)
 | 
						|
		if opts.quoted {
 | 
						|
			e.WriteByte('"')
 | 
						|
		}
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if opts.quoted {
 | 
						|
		e2 := newEncodeState()
 | 
						|
		// Since we encode the string twice, we only need to escape HTML
 | 
						|
		// the first time.
 | 
						|
		e2.string(v.String(), opts.escapeHTML)
 | 
						|
		e.stringBytes(e2.Bytes(), false)
 | 
						|
		encodeStatePool.Put(e2)
 | 
						|
	} else {
 | 
						|
		e.string(v.String(), opts.escapeHTML)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// isValidNumber reports whether s is a valid JSON number literal.
 | 
						|
func isValidNumber(s string) bool {
 | 
						|
	// This function implements the JSON numbers grammar.
 | 
						|
	// See https://tools.ietf.org/html/rfc7159#section-6
 | 
						|
	// and https://www.json.org/img/number.png
 | 
						|
 | 
						|
	if s == "" {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	// Optional -
 | 
						|
	if s[0] == '-' {
 | 
						|
		s = s[1:]
 | 
						|
		if s == "" {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Digits
 | 
						|
	switch {
 | 
						|
	default:
 | 
						|
		return false
 | 
						|
 | 
						|
	case s[0] == '0':
 | 
						|
		s = s[1:]
 | 
						|
 | 
						|
	case '1' <= s[0] && s[0] <= '9':
 | 
						|
		s = s[1:]
 | 
						|
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
 | 
						|
			s = s[1:]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// . followed by 1 or more digits.
 | 
						|
	if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
 | 
						|
		s = s[2:]
 | 
						|
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
 | 
						|
			s = s[1:]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// e or E followed by an optional - or + and
 | 
						|
	// 1 or more digits.
 | 
						|
	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
 | 
						|
		s = s[1:]
 | 
						|
		if s[0] == '+' || s[0] == '-' {
 | 
						|
			s = s[1:]
 | 
						|
			if s == "" {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
 | 
						|
			s = s[1:]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Make sure we are at the end.
 | 
						|
	return s == ""
 | 
						|
}
 | 
						|
 | 
						|
func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	e.reflectValue(v.Elem(), opts)
 | 
						|
}
 | 
						|
 | 
						|
func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
 | 
						|
	e.error(&UnsupportedTypeError{v.Type()})
 | 
						|
}
 | 
						|
 | 
						|
type structEncoder struct {
 | 
						|
	fields structFields
 | 
						|
}
 | 
						|
 | 
						|
type structFields struct {
 | 
						|
	list      []field
 | 
						|
	nameIndex map[string]int
 | 
						|
}
 | 
						|
 | 
						|
func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	next := byte('{')
 | 
						|
FieldLoop:
 | 
						|
	for i := range se.fields.list {
 | 
						|
		f := &se.fields.list[i]
 | 
						|
 | 
						|
		// Find the nested struct field by following f.index.
 | 
						|
		fv := v
 | 
						|
		for _, i := range f.index {
 | 
						|
			if fv.Kind() == reflect.Ptr {
 | 
						|
				if fv.IsNil() {
 | 
						|
					continue FieldLoop
 | 
						|
				}
 | 
						|
				fv = fv.Elem()
 | 
						|
			}
 | 
						|
			fv = fv.Field(i)
 | 
						|
		}
 | 
						|
 | 
						|
		if f.omitEmpty && isEmptyValue(fv) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		e.WriteByte(next)
 | 
						|
		next = ','
 | 
						|
		if opts.escapeHTML {
 | 
						|
			e.WriteString(f.nameEscHTML)
 | 
						|
		} else {
 | 
						|
			e.WriteString(f.nameNonEsc)
 | 
						|
		}
 | 
						|
		opts.quoted = f.quoted
 | 
						|
		f.encoder(e, fv, opts)
 | 
						|
	}
 | 
						|
	if next == '{' {
 | 
						|
		e.WriteString("{}")
 | 
						|
	} else {
 | 
						|
		e.WriteByte('}')
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func newStructEncoder(t reflect.Type) encoderFunc {
 | 
						|
	se := structEncoder{fields: cachedTypeFields(t)}
 | 
						|
	return se.encode
 | 
						|
}
 | 
						|
 | 
						|
type mapEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
 | 
						|
		// We're a large number of nested ptrEncoder.encode calls deep;
 | 
						|
		// start checking if we've run into a pointer cycle.
 | 
						|
		ptr := v.Pointer()
 | 
						|
		if _, ok := e.ptrSeen[ptr]; ok {
 | 
						|
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
 | 
						|
		}
 | 
						|
		e.ptrSeen[ptr] = struct{}{}
 | 
						|
		defer delete(e.ptrSeen, ptr)
 | 
						|
	}
 | 
						|
	e.WriteByte('{')
 | 
						|
 | 
						|
	// Extract and sort the keys.
 | 
						|
	sv := make([]reflectWithString, v.Len())
 | 
						|
	mi := v.MapRange()
 | 
						|
	for i := 0; mi.Next(); i++ {
 | 
						|
		sv[i].k = mi.Key()
 | 
						|
		sv[i].v = mi.Value()
 | 
						|
		if err := sv[i].resolve(); err != nil {
 | 
						|
			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
 | 
						|
		}
 | 
						|
	}
 | 
						|
	sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })
 | 
						|
 | 
						|
	for i, kv := range sv {
 | 
						|
		if i > 0 {
 | 
						|
			e.WriteByte(',')
 | 
						|
		}
 | 
						|
		e.string(kv.ks, opts.escapeHTML)
 | 
						|
		e.WriteByte(':')
 | 
						|
		me.elemEnc(e, kv.v, opts)
 | 
						|
	}
 | 
						|
	e.WriteByte('}')
 | 
						|
	e.ptrLevel--
 | 
						|
}
 | 
						|
 | 
						|
func newMapEncoder(t reflect.Type) encoderFunc {
 | 
						|
	switch t.Key().Kind() {
 | 
						|
	case reflect.String,
 | 
						|
		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
 | 
						|
		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
	default:
 | 
						|
		if !t.Key().Implements(textMarshalerType) {
 | 
						|
			return unsupportedTypeEncoder
 | 
						|
		}
 | 
						|
	}
 | 
						|
	me := mapEncoder{typeEncoder(t.Elem())}
 | 
						|
	return me.encode
 | 
						|
}
 | 
						|
 | 
						|
func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	s := v.Bytes()
 | 
						|
	e.WriteByte('"')
 | 
						|
	encodedLen := base64.StdEncoding.EncodedLen(len(s))
 | 
						|
	if encodedLen <= len(e.scratch) {
 | 
						|
		// If the encoded bytes fit in e.scratch, avoid an extra
 | 
						|
		// allocation and use the cheaper Encoding.Encode.
 | 
						|
		dst := e.scratch[:encodedLen]
 | 
						|
		base64.StdEncoding.Encode(dst, s)
 | 
						|
		e.Write(dst)
 | 
						|
	} else if encodedLen <= 1024 {
 | 
						|
		// The encoded bytes are short enough to allocate for, and
 | 
						|
		// Encoding.Encode is still cheaper.
 | 
						|
		dst := make([]byte, encodedLen)
 | 
						|
		base64.StdEncoding.Encode(dst, s)
 | 
						|
		e.Write(dst)
 | 
						|
	} else {
 | 
						|
		// The encoded bytes are too long to cheaply allocate, and
 | 
						|
		// Encoding.Encode is no longer noticeably cheaper.
 | 
						|
		enc := base64.NewEncoder(base64.StdEncoding, e)
 | 
						|
		enc.Write(s)
 | 
						|
		enc.Close()
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
}
 | 
						|
 | 
						|
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
 | 
						|
type sliceEncoder struct {
 | 
						|
	arrayEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
 | 
						|
		// We're a large number of nested ptrEncoder.encode calls deep;
 | 
						|
		// start checking if we've run into a pointer cycle.
 | 
						|
		// Here we use a struct to memorize the pointer to the first element of the slice
 | 
						|
		// and its length.
 | 
						|
		ptr := struct {
 | 
						|
			ptr uintptr
 | 
						|
			len int
 | 
						|
		}{v.Pointer(), v.Len()}
 | 
						|
		if _, ok := e.ptrSeen[ptr]; ok {
 | 
						|
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
 | 
						|
		}
 | 
						|
		e.ptrSeen[ptr] = struct{}{}
 | 
						|
		defer delete(e.ptrSeen, ptr)
 | 
						|
	}
 | 
						|
	se.arrayEnc(e, v, opts)
 | 
						|
	e.ptrLevel--
 | 
						|
}
 | 
						|
 | 
						|
func newSliceEncoder(t reflect.Type) encoderFunc {
 | 
						|
	// Byte slices get special treatment; arrays don't.
 | 
						|
	if t.Elem().Kind() == reflect.Uint8 {
 | 
						|
		p := reflect.PtrTo(t.Elem())
 | 
						|
		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
 | 
						|
			return encodeByteSlice
 | 
						|
		}
 | 
						|
	}
 | 
						|
	enc := sliceEncoder{newArrayEncoder(t)}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type arrayEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	e.WriteByte('[')
 | 
						|
	n := v.Len()
 | 
						|
	for i := 0; i < n; i++ {
 | 
						|
		if i > 0 {
 | 
						|
			e.WriteByte(',')
 | 
						|
		}
 | 
						|
		ae.elemEnc(e, v.Index(i), opts)
 | 
						|
	}
 | 
						|
	e.WriteByte(']')
 | 
						|
}
 | 
						|
 | 
						|
func newArrayEncoder(t reflect.Type) encoderFunc {
 | 
						|
	enc := arrayEncoder{typeEncoder(t.Elem())}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type ptrEncoder struct {
 | 
						|
	elemEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.IsNil() {
 | 
						|
		e.WriteString("null")
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
 | 
						|
		// We're a large number of nested ptrEncoder.encode calls deep;
 | 
						|
		// start checking if we've run into a pointer cycle.
 | 
						|
		ptr := v.Interface()
 | 
						|
		if _, ok := e.ptrSeen[ptr]; ok {
 | 
						|
			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
 | 
						|
		}
 | 
						|
		e.ptrSeen[ptr] = struct{}{}
 | 
						|
		defer delete(e.ptrSeen, ptr)
 | 
						|
	}
 | 
						|
	pe.elemEnc(e, v.Elem(), opts)
 | 
						|
	e.ptrLevel--
 | 
						|
}
 | 
						|
 | 
						|
func newPtrEncoder(t reflect.Type) encoderFunc {
 | 
						|
	enc := ptrEncoder{typeEncoder(t.Elem())}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
type condAddrEncoder struct {
 | 
						|
	canAddrEnc, elseEnc encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
 | 
						|
	if v.CanAddr() {
 | 
						|
		ce.canAddrEnc(e, v, opts)
 | 
						|
	} else {
 | 
						|
		ce.elseEnc(e, v, opts)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// newCondAddrEncoder returns an encoder that checks whether its value
 | 
						|
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
 | 
						|
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
 | 
						|
	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
 | 
						|
	return enc.encode
 | 
						|
}
 | 
						|
 | 
						|
func isValidTag(s string) bool {
 | 
						|
	if s == "" {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for _, c := range s {
 | 
						|
		switch {
 | 
						|
		case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
 | 
						|
			// Backslash and quote chars are reserved, but
 | 
						|
			// otherwise any punctuation chars are allowed
 | 
						|
			// in a tag name.
 | 
						|
		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func typeByIndex(t reflect.Type, index []int) reflect.Type {
 | 
						|
	for _, i := range index {
 | 
						|
		if t.Kind() == reflect.Ptr {
 | 
						|
			t = t.Elem()
 | 
						|
		}
 | 
						|
		t = t.Field(i).Type
 | 
						|
	}
 | 
						|
	return t
 | 
						|
}
 | 
						|
 | 
						|
type reflectWithString struct {
 | 
						|
	k  reflect.Value
 | 
						|
	v  reflect.Value
 | 
						|
	ks string
 | 
						|
}
 | 
						|
 | 
						|
func (w *reflectWithString) resolve() error {
 | 
						|
	if w.k.Kind() == reflect.String {
 | 
						|
		w.ks = w.k.String()
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
 | 
						|
		if w.k.Kind() == reflect.Ptr && w.k.IsNil() {
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
		buf, err := tm.MarshalText()
 | 
						|
		w.ks = string(buf)
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	switch w.k.Kind() {
 | 
						|
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
 | 
						|
		w.ks = strconv.FormatInt(w.k.Int(), 10)
 | 
						|
		return nil
 | 
						|
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
 | 
						|
		w.ks = strconv.FormatUint(w.k.Uint(), 10)
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	panic("unexpected map key type")
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: keep in sync with stringBytes below.
 | 
						|
func (e *encodeState) string(s string, escapeHTML bool) {
 | 
						|
	e.WriteByte('"')
 | 
						|
	start := 0
 | 
						|
	for i := 0; i < len(s); {
 | 
						|
		if b := s[i]; b < utf8.RuneSelf {
 | 
						|
			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
 | 
						|
				i++
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteByte('\\')
 | 
						|
			switch b {
 | 
						|
			case '\\', '"':
 | 
						|
				e.WriteByte(b)
 | 
						|
			case '\n':
 | 
						|
				e.WriteByte('n')
 | 
						|
			case '\r':
 | 
						|
				e.WriteByte('r')
 | 
						|
			case '\t':
 | 
						|
				e.WriteByte('t')
 | 
						|
			default:
 | 
						|
				// This encodes bytes < 0x20 except for \t, \n and \r.
 | 
						|
				// If escapeHTML is set, it also escapes <, >, and &
 | 
						|
				// because they can lead to security holes when
 | 
						|
				// user-controlled strings are rendered into JSON
 | 
						|
				// and served to some browsers.
 | 
						|
				e.WriteString(`u00`)
 | 
						|
				e.WriteByte(hex[b>>4])
 | 
						|
				e.WriteByte(hex[b&0xF])
 | 
						|
			}
 | 
						|
			i++
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c, size := utf8.DecodeRuneInString(s[i:])
 | 
						|
		if c == utf8.RuneError && size == 1 {
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\ufffd`)
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// U+2028 is LINE SEPARATOR.
 | 
						|
		// U+2029 is PARAGRAPH SEPARATOR.
 | 
						|
		// They are both technically valid characters in JSON strings,
 | 
						|
		// but don't work in JSONP, which has to be evaluated as JavaScript,
 | 
						|
		// and can lead to security holes there. It is valid JSON to
 | 
						|
		// escape them, so we do so unconditionally.
 | 
						|
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
 | 
						|
		if c == '\u2028' || c == '\u2029' {
 | 
						|
			if start < i {
 | 
						|
				e.WriteString(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\u202`)
 | 
						|
			e.WriteByte(hex[c&0xF])
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
	if start < len(s) {
 | 
						|
		e.WriteString(s[start:])
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
}
 | 
						|
 | 
						|
// NOTE: keep in sync with string above.
 | 
						|
func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
 | 
						|
	e.WriteByte('"')
 | 
						|
	start := 0
 | 
						|
	for i := 0; i < len(s); {
 | 
						|
		if b := s[i]; b < utf8.RuneSelf {
 | 
						|
			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
 | 
						|
				i++
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteByte('\\')
 | 
						|
			switch b {
 | 
						|
			case '\\', '"':
 | 
						|
				e.WriteByte(b)
 | 
						|
			case '\n':
 | 
						|
				e.WriteByte('n')
 | 
						|
			case '\r':
 | 
						|
				e.WriteByte('r')
 | 
						|
			case '\t':
 | 
						|
				e.WriteByte('t')
 | 
						|
			default:
 | 
						|
				// This encodes bytes < 0x20 except for \t, \n and \r.
 | 
						|
				// If escapeHTML is set, it also escapes <, >, and &
 | 
						|
				// because they can lead to security holes when
 | 
						|
				// user-controlled strings are rendered into JSON
 | 
						|
				// and served to some browsers.
 | 
						|
				e.WriteString(`u00`)
 | 
						|
				e.WriteByte(hex[b>>4])
 | 
						|
				e.WriteByte(hex[b&0xF])
 | 
						|
			}
 | 
						|
			i++
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		c, size := utf8.DecodeRune(s[i:])
 | 
						|
		if c == utf8.RuneError && size == 1 {
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\ufffd`)
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		// U+2028 is LINE SEPARATOR.
 | 
						|
		// U+2029 is PARAGRAPH SEPARATOR.
 | 
						|
		// They are both technically valid characters in JSON strings,
 | 
						|
		// but don't work in JSONP, which has to be evaluated as JavaScript,
 | 
						|
		// and can lead to security holes there. It is valid JSON to
 | 
						|
		// escape them, so we do so unconditionally.
 | 
						|
		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
 | 
						|
		if c == '\u2028' || c == '\u2029' {
 | 
						|
			if start < i {
 | 
						|
				e.Write(s[start:i])
 | 
						|
			}
 | 
						|
			e.WriteString(`\u202`)
 | 
						|
			e.WriteByte(hex[c&0xF])
 | 
						|
			i += size
 | 
						|
			start = i
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
	if start < len(s) {
 | 
						|
		e.Write(s[start:])
 | 
						|
	}
 | 
						|
	e.WriteByte('"')
 | 
						|
}
 | 
						|
 | 
						|
// A field represents a single field found in a struct.
 | 
						|
type field struct {
 | 
						|
	name      string
 | 
						|
	nameBytes []byte                 // []byte(name)
 | 
						|
	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
 | 
						|
 | 
						|
	nameNonEsc  string // `"` + name + `":`
 | 
						|
	nameEscHTML string // `"` + HTMLEscape(name) + `":`
 | 
						|
 | 
						|
	tag       bool
 | 
						|
	index     []int
 | 
						|
	typ       reflect.Type
 | 
						|
	omitEmpty bool
 | 
						|
	quoted    bool
 | 
						|
 | 
						|
	encoder encoderFunc
 | 
						|
}
 | 
						|
 | 
						|
// byIndex sorts field by index sequence.
 | 
						|
type byIndex []field
 | 
						|
 | 
						|
func (x byIndex) Len() int { return len(x) }
 | 
						|
 | 
						|
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
 | 
						|
 | 
						|
func (x byIndex) Less(i, j int) bool {
 | 
						|
	for k, xik := range x[i].index {
 | 
						|
		if k >= len(x[j].index) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		if xik != x[j].index[k] {
 | 
						|
			return xik < x[j].index[k]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return len(x[i].index) < len(x[j].index)
 | 
						|
}
 | 
						|
 | 
						|
// typeFields returns a list of fields that JSON should recognize for the given type.
 | 
						|
// The algorithm is breadth-first search over the set of structs to include - the top struct
 | 
						|
// and then any reachable anonymous structs.
 | 
						|
func typeFields(t reflect.Type) structFields {
 | 
						|
	// Anonymous fields to explore at the current level and the next.
 | 
						|
	current := []field{}
 | 
						|
	next := []field{{typ: t}}
 | 
						|
 | 
						|
	// Count of queued names for current level and the next.
 | 
						|
	var count, nextCount map[reflect.Type]int
 | 
						|
 | 
						|
	// Types already visited at an earlier level.
 | 
						|
	visited := map[reflect.Type]bool{}
 | 
						|
 | 
						|
	// Fields found.
 | 
						|
	var fields []field
 | 
						|
 | 
						|
	// Buffer to run HTMLEscape on field names.
 | 
						|
	var nameEscBuf bytes.Buffer
 | 
						|
 | 
						|
	for len(next) > 0 {
 | 
						|
		current, next = next, current[:0]
 | 
						|
		count, nextCount = nextCount, map[reflect.Type]int{}
 | 
						|
 | 
						|
		for _, f := range current {
 | 
						|
			if visited[f.typ] {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			visited[f.typ] = true
 | 
						|
 | 
						|
			// Scan f.typ for fields to include.
 | 
						|
			for i := 0; i < f.typ.NumField(); i++ {
 | 
						|
				sf := f.typ.Field(i)
 | 
						|
				if sf.Anonymous {
 | 
						|
					t := sf.Type
 | 
						|
					if t.Kind() == reflect.Ptr {
 | 
						|
						t = t.Elem()
 | 
						|
					}
 | 
						|
					if !sf.IsExported() && t.Kind() != reflect.Struct {
 | 
						|
						// Ignore embedded fields of unexported non-struct types.
 | 
						|
						continue
 | 
						|
					}
 | 
						|
					// Do not ignore embedded fields of unexported struct types
 | 
						|
					// since they may have exported fields.
 | 
						|
				} else if !sf.IsExported() {
 | 
						|
					// Ignore unexported non-embedded fields.
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				tag := sf.Tag.Get("json")
 | 
						|
				if tag == "-" {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				name, opts := parseTag(tag)
 | 
						|
				if !isValidTag(name) {
 | 
						|
					name = ""
 | 
						|
				}
 | 
						|
				index := make([]int, len(f.index)+1)
 | 
						|
				copy(index, f.index)
 | 
						|
				index[len(f.index)] = i
 | 
						|
 | 
						|
				ft := sf.Type
 | 
						|
				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
 | 
						|
					// Follow pointer.
 | 
						|
					ft = ft.Elem()
 | 
						|
				}
 | 
						|
 | 
						|
				// Only strings, floats, integers, and booleans can be quoted.
 | 
						|
				quoted := false
 | 
						|
				if opts.Contains("string") {
 | 
						|
					switch ft.Kind() {
 | 
						|
					case reflect.Bool,
 | 
						|
						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
 | 
						|
						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
 | 
						|
						reflect.Float32, reflect.Float64,
 | 
						|
						reflect.String:
 | 
						|
						quoted = true
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				// Record found field and index sequence.
 | 
						|
				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
 | 
						|
					tagged := name != ""
 | 
						|
					if name == "" {
 | 
						|
						name = sf.Name
 | 
						|
					}
 | 
						|
					field := field{
 | 
						|
						name:      name,
 | 
						|
						tag:       tagged,
 | 
						|
						index:     index,
 | 
						|
						typ:       ft,
 | 
						|
						omitEmpty: opts.Contains("omitempty"),
 | 
						|
						quoted:    quoted,
 | 
						|
					}
 | 
						|
					field.nameBytes = []byte(field.name)
 | 
						|
					field.equalFold = foldFunc(field.nameBytes)
 | 
						|
 | 
						|
					// Build nameEscHTML and nameNonEsc ahead of time.
 | 
						|
					nameEscBuf.Reset()
 | 
						|
					nameEscBuf.WriteString(`"`)
 | 
						|
					HTMLEscape(&nameEscBuf, field.nameBytes)
 | 
						|
					nameEscBuf.WriteString(`":`)
 | 
						|
					field.nameEscHTML = nameEscBuf.String()
 | 
						|
					field.nameNonEsc = `"` + field.name + `":`
 | 
						|
 | 
						|
					fields = append(fields, field)
 | 
						|
					if count[f.typ] > 1 {
 | 
						|
						// If there were multiple instances, add a second,
 | 
						|
						// so that the annihilation code will see a duplicate.
 | 
						|
						// It only cares about the distinction between 1 or 2,
 | 
						|
						// so don't bother generating any more copies.
 | 
						|
						fields = append(fields, fields[len(fields)-1])
 | 
						|
					}
 | 
						|
					continue
 | 
						|
				}
 | 
						|
 | 
						|
				// Record new anonymous struct to explore in next round.
 | 
						|
				nextCount[ft]++
 | 
						|
				if nextCount[ft] == 1 {
 | 
						|
					next = append(next, field{name: ft.Name(), index: index, typ: ft})
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sort.Slice(fields, func(i, j int) bool {
 | 
						|
		x := fields
 | 
						|
		// sort field by name, breaking ties with depth, then
 | 
						|
		// breaking ties with "name came from json tag", then
 | 
						|
		// breaking ties with index sequence.
 | 
						|
		if x[i].name != x[j].name {
 | 
						|
			return x[i].name < x[j].name
 | 
						|
		}
 | 
						|
		if len(x[i].index) != len(x[j].index) {
 | 
						|
			return len(x[i].index) < len(x[j].index)
 | 
						|
		}
 | 
						|
		if x[i].tag != x[j].tag {
 | 
						|
			return x[i].tag
 | 
						|
		}
 | 
						|
		return byIndex(x).Less(i, j)
 | 
						|
	})
 | 
						|
 | 
						|
	// Delete all fields that are hidden by the Go rules for embedded fields,
 | 
						|
	// except that fields with JSON tags are promoted.
 | 
						|
 | 
						|
	// The fields are sorted in primary order of name, secondary order
 | 
						|
	// of field index length. Loop over names; for each name, delete
 | 
						|
	// hidden fields by choosing the one dominant field that survives.
 | 
						|
	out := fields[:0]
 | 
						|
	for advance, i := 0, 0; i < len(fields); i += advance {
 | 
						|
		// One iteration per name.
 | 
						|
		// Find the sequence of fields with the name of this first field.
 | 
						|
		fi := fields[i]
 | 
						|
		name := fi.name
 | 
						|
		for advance = 1; i+advance < len(fields); advance++ {
 | 
						|
			fj := fields[i+advance]
 | 
						|
			if fj.name != name {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if advance == 1 { // Only one field with this name
 | 
						|
			out = append(out, fi)
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		dominant, ok := dominantField(fields[i : i+advance])
 | 
						|
		if ok {
 | 
						|
			out = append(out, dominant)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	fields = out
 | 
						|
	sort.Sort(byIndex(fields))
 | 
						|
 | 
						|
	for i := range fields {
 | 
						|
		f := &fields[i]
 | 
						|
		f.encoder = typeEncoder(typeByIndex(t, f.index))
 | 
						|
	}
 | 
						|
	nameIndex := make(map[string]int, len(fields))
 | 
						|
	for i, field := range fields {
 | 
						|
		nameIndex[field.name] = i
 | 
						|
	}
 | 
						|
	return structFields{fields, nameIndex}
 | 
						|
}
 | 
						|
 | 
						|
// dominantField looks through the fields, all of which are known to
 | 
						|
// have the same name, to find the single field that dominates the
 | 
						|
// others using Go's embedding rules, modified by the presence of
 | 
						|
// JSON tags. If there are multiple top-level fields, the boolean
 | 
						|
// will be false: This condition is an error in Go and we skip all
 | 
						|
// the fields.
 | 
						|
func dominantField(fields []field) (field, bool) {
 | 
						|
	// The fields are sorted in increasing index-length order, then by presence of tag.
 | 
						|
	// That means that the first field is the dominant one. We need only check
 | 
						|
	// for error cases: two fields at top level, either both tagged or neither tagged.
 | 
						|
	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
 | 
						|
		return field{}, false
 | 
						|
	}
 | 
						|
	return fields[0], true
 | 
						|
}
 | 
						|
 | 
						|
var fieldCache sync.Map // map[reflect.Type]structFields
 | 
						|
 | 
						|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
 | 
						|
func cachedTypeFields(t reflect.Type) structFields {
 | 
						|
	if f, ok := fieldCache.Load(t); ok {
 | 
						|
		return f.(structFields)
 | 
						|
	}
 | 
						|
	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
 | 
						|
	return f.(structFields)
 | 
						|
}
 |