Bump cel-go to v0.10.0

This commit is contained in:
Joe Betz
2022-03-07 20:47:04 -05:00
parent f93be6584e
commit 2a6b85c395
66 changed files with 3332 additions and 817 deletions

View File

@@ -24,6 +24,7 @@ go_library(
"//common/types:go_default_library",
"//common/types/pb:go_default_library",
"//common/types/ref:go_default_library",
"//common/types/traits:go_default_library",
"//interpreter:go_default_library",
"//interpreter/functions:go_default_library",
"//parser:go_default_library",
@@ -34,6 +35,9 @@ go_library(
"@org_golang_google_protobuf//reflect/protoregistry:go_default_library",
"@org_golang_google_protobuf//types/descriptorpb:go_default_library",
"@org_golang_google_protobuf//types/dynamicpb:go_default_library",
"@org_golang_google_protobuf//types/known/anypb:go_default_library",
"@org_golang_google_protobuf//types/known/durationpb:go_default_library",
"@org_golang_google_protobuf//types/known/timestamppb:go_default_library",
],
)
@@ -41,6 +45,7 @@ go_test(
name = "go_default_test",
srcs = [
"cel_test.go",
"io_test.go",
],
data = [
"//cel/testdata:gen_test_fds",
@@ -56,9 +61,11 @@ go_test(
"//common/types/ref:go_default_library",
"//common/types/traits:go_default_library",
"//interpreter/functions:go_default_library",
"//test:go_default_library",
"//test/proto2pb:go_default_library",
"//test/proto3pb:go_default_library",
"@io_bazel_rules_go//proto/wkt:descriptor_go_proto",
"@org_golang_google_genproto//googleapis/api/expr/v1alpha1:go_default_library",
"@org_golang_google_protobuf//types/known/structpb:go_default_library",
],
)

View File

@@ -16,6 +16,7 @@ package cel
import (
"errors"
"fmt"
"sync"
"github.com/google/cel-go/checker"
@@ -89,13 +90,17 @@ type Env struct {
adapter ref.TypeAdapter
provider ref.TypeProvider
features map[int]bool
// program options tied to the environment.
progOpts []ProgramOption
// Internal parser representation
prsr *parser.Parser
// Internal checker representation
chk *checker.Env
chkErr error
once sync.Once
chk *checker.Env
chkErr error
chkOnce sync.Once
// Program options tied to the environment
progOpts []ProgramOption
}
// NewEnv creates a program environment configured with the standard library of CEL functions and
@@ -147,18 +152,22 @@ func (e *Env) Check(ast *Ast) (*Ast, *Issues) {
pe, _ := AstToParsedExpr(ast)
// Construct the internal checker env, erroring if there is an issue adding the declarations.
e.once.Do(func() {
ce := checker.NewEnv(e.Container, e.provider)
ce.EnableDynamicAggregateLiterals(true)
if e.HasFeature(FeatureDisableDynamicAggregateLiterals) {
ce.EnableDynamicAggregateLiterals(false)
}
err := ce.Add(e.declarations...)
e.chkOnce.Do(func() {
ce, err := checker.NewEnv(e.Container, e.provider,
checker.HomogeneousAggregateLiterals(
e.HasFeature(featureDisableDynamicAggregateLiterals)),
checker.CrossTypeNumericComparisons(
e.HasFeature(featureCrossTypeNumericComparisons)))
if err != nil {
e.chkErr = err
} else {
e.chk = ce
return
}
err = ce.Add(e.declarations...)
if err != nil {
e.chkErr = err
return
}
e.chk = ce
})
// The once call will ensure that this value is set or nil for all invocations.
if e.chkErr != nil {
@@ -207,11 +216,10 @@ func (e *Env) CompileSource(src common.Source) (*Ast, *Issues) {
return nil, iss
}
checked, iss2 := e.Check(ast)
iss = iss.Append(iss2)
if iss.Err() != nil {
return nil, iss
if iss2.Err() != nil {
return nil, iss2
}
return checked, iss
return checked, iss2
}
// Extend the current environment with additional options to produce a new Env.
@@ -280,8 +288,8 @@ func (e *Env) Extend(opts ...EnvOption) (*Env, error) {
// HasFeature checks whether the environment enables the given feature
// flag, as enumerated in options.go.
func (e *Env) HasFeature(flag int) bool {
_, has := e.features[flag]
return has
enabled, has := e.features[flag]
return has && enabled
}
// Parse parses the input expression value `txt` to a Ast and/or a set of Issues.
@@ -301,7 +309,7 @@ func (e *Env) Parse(txt string) (*Ast, *Issues) {
// It is possible to have both non-nil Ast and Issues values returned from this call; however,
// the mere presence of an Ast does not imply that it is valid for use.
func (e *Env) ParseSource(src common.Source) (*Ast, *Issues) {
res, errs := parser.ParseWithMacros(src, e.macros)
res, errs := e.prsr.Parse(src)
if len(errs.GetErrors()) > 0 {
return nil, &Issues{errs: errs}
}
@@ -325,11 +333,6 @@ func (e *Env) Program(ast *Ast, opts ...ProgramOption) (Program, error) {
return newProgram(e, ast, optSet)
}
// SetFeature sets the given feature flag, as enumerated in options.go.
func (e *Env) SetFeature(flag int) {
e.features[flag] = true
}
// TypeAdapter returns the `ref.TypeAdapter` configured for the environment.
func (e *Env) TypeAdapter() ref.TypeAdapter {
return e.adapter
@@ -402,6 +405,16 @@ func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error) {
return checked, nil
}
// EstimateCost estimates the cost of a type checked CEL expression using the length estimates of input data and
// extension functions provided by estimator.
func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator) (checker.CostEstimate, error) {
checked, err := AstToCheckedExpr(ast)
if err != nil {
return checker.CostEstimate{}, fmt.Errorf("EsimateCost could not inspect Ast: %v", err)
}
return checker.Cost(checked, estimator), nil
}
// configure applies a series of EnvOptions to the current environment.
func (e *Env) configure(opts []EnvOption) (*Env, error) {
// Customized the environment using the provided EnvOption values. If an error is
@@ -413,6 +426,14 @@ func (e *Env) configure(opts []EnvOption) (*Env, error) {
return nil, err
}
}
prsrOpts := []parser.Option{parser.Macros(e.macros...)}
if e.HasFeature(featureEnableMacroCallTracking) {
prsrOpts = append(prsrOpts, parser.PopulateMacroCalls(true))
}
e.prsr, err = parser.NewParser(prsrOpts...)
if err != nil {
return nil, err
}
return e, nil
}
@@ -454,6 +475,9 @@ func (i *Issues) Append(other *Issues) *Issues {
if i == nil {
return other
}
if other == nil {
return i
}
return NewIssues(i.errs.Append(other.errs.GetErrors()))
}

View File

@@ -15,12 +15,20 @@
package cel
import (
"errors"
"fmt"
"reflect"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/parser"
"google.golang.org/protobuf/proto"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
anypb "google.golang.org/protobuf/types/known/anypb"
)
// CheckedExprToAst converts a checked expression proto message to an Ast.
@@ -120,3 +128,153 @@ func AstToString(a *Ast) (string, error) {
info := a.SourceInfo()
return parser.Unparse(expr, info)
}
// RefValueToValue converts between ref.Val and api.expr.Value.
// The result Value is the serialized proto form. The ref.Val must not be error or unknown.
func RefValueToValue(res ref.Val) (*exprpb.Value, error) {
switch res.Type() {
case types.BoolType:
return &exprpb.Value{
Kind: &exprpb.Value_BoolValue{BoolValue: res.Value().(bool)}}, nil
case types.BytesType:
return &exprpb.Value{
Kind: &exprpb.Value_BytesValue{BytesValue: res.Value().([]byte)}}, nil
case types.DoubleType:
return &exprpb.Value{
Kind: &exprpb.Value_DoubleValue{DoubleValue: res.Value().(float64)}}, nil
case types.IntType:
return &exprpb.Value{
Kind: &exprpb.Value_Int64Value{Int64Value: res.Value().(int64)}}, nil
case types.ListType:
l := res.(traits.Lister)
sz := l.Size().(types.Int)
elts := make([]*exprpb.Value, 0, int64(sz))
for i := types.Int(0); i < sz; i++ {
v, err := RefValueToValue(l.Get(i))
if err != nil {
return nil, err
}
elts = append(elts, v)
}
return &exprpb.Value{
Kind: &exprpb.Value_ListValue{
ListValue: &exprpb.ListValue{Values: elts}}}, nil
case types.MapType:
mapper := res.(traits.Mapper)
sz := mapper.Size().(types.Int)
entries := make([]*exprpb.MapValue_Entry, 0, int64(sz))
for it := mapper.Iterator(); it.HasNext().(types.Bool); {
k := it.Next()
v := mapper.Get(k)
kv, err := RefValueToValue(k)
if err != nil {
return nil, err
}
vv, err := RefValueToValue(v)
if err != nil {
return nil, err
}
entries = append(entries, &exprpb.MapValue_Entry{Key: kv, Value: vv})
}
return &exprpb.Value{
Kind: &exprpb.Value_MapValue{
MapValue: &exprpb.MapValue{Entries: entries}}}, nil
case types.NullType:
return &exprpb.Value{
Kind: &exprpb.Value_NullValue{}}, nil
case types.StringType:
return &exprpb.Value{
Kind: &exprpb.Value_StringValue{StringValue: res.Value().(string)}}, nil
case types.TypeType:
typeName := res.(ref.Type).TypeName()
return &exprpb.Value{Kind: &exprpb.Value_TypeValue{TypeValue: typeName}}, nil
case types.UintType:
return &exprpb.Value{
Kind: &exprpb.Value_Uint64Value{Uint64Value: res.Value().(uint64)}}, nil
default:
any, err := res.ConvertToNative(anyPbType)
if err != nil {
return nil, err
}
return &exprpb.Value{
Kind: &exprpb.Value_ObjectValue{ObjectValue: any.(*anypb.Any)}}, nil
}
}
var (
typeNameToTypeValue = map[string]*types.TypeValue{
"bool": types.BoolType,
"bytes": types.BytesType,
"double": types.DoubleType,
"null_type": types.NullType,
"int": types.IntType,
"list": types.ListType,
"map": types.MapType,
"string": types.StringType,
"type": types.TypeType,
"uint": types.UintType,
}
anyPbType = reflect.TypeOf(&anypb.Any{})
)
// ValueToRefValue converts between exprpb.Value and ref.Val.
func ValueToRefValue(adapter ref.TypeAdapter, v *exprpb.Value) (ref.Val, error) {
switch v.Kind.(type) {
case *exprpb.Value_NullValue:
return types.NullValue, nil
case *exprpb.Value_BoolValue:
return types.Bool(v.GetBoolValue()), nil
case *exprpb.Value_Int64Value:
return types.Int(v.GetInt64Value()), nil
case *exprpb.Value_Uint64Value:
return types.Uint(v.GetUint64Value()), nil
case *exprpb.Value_DoubleValue:
return types.Double(v.GetDoubleValue()), nil
case *exprpb.Value_StringValue:
return types.String(v.GetStringValue()), nil
case *exprpb.Value_BytesValue:
return types.Bytes(v.GetBytesValue()), nil
case *exprpb.Value_ObjectValue:
any := v.GetObjectValue()
msg, err := anypb.UnmarshalNew(any, proto.UnmarshalOptions{DiscardUnknown: true})
if err != nil {
return nil, err
}
return adapter.NativeToValue(msg.(proto.Message)), nil
case *exprpb.Value_MapValue:
m := v.GetMapValue()
entries := make(map[ref.Val]ref.Val)
for _, entry := range m.Entries {
key, err := ValueToRefValue(adapter, entry.Key)
if err != nil {
return nil, err
}
pb, err := ValueToRefValue(adapter, entry.Value)
if err != nil {
return nil, err
}
entries[key] = pb
}
return adapter.NativeToValue(entries), nil
case *exprpb.Value_ListValue:
l := v.GetListValue()
elts := make([]ref.Val, len(l.Values))
for i, e := range l.Values {
rv, err := ValueToRefValue(adapter, e)
if err != nil {
return nil, err
}
elts[i] = rv
}
return adapter.NativeToValue(elts), nil
case *exprpb.Value_TypeValue:
typeName := v.GetTypeValue()
tv, ok := typeNameToTypeValue[typeName]
if ok {
return tv, nil
}
return types.NewObjectTypeValue(typeName), nil
}
return nil, errors.New("unknown value")
}

View File

@@ -17,6 +17,12 @@ package cel
import (
"fmt"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protodesc"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
"google.golang.org/protobuf/types/dynamicpb"
"github.com/google/cel-go/checker/decls"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/types/pb"
@@ -24,11 +30,6 @@ import (
"github.com/google/cel-go/interpreter"
"github.com/google/cel-go/interpreter/functions"
"github.com/google/cel-go/parser"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protodesc"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
"google.golang.org/protobuf/types/dynamicpb"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
descpb "google.golang.org/protobuf/types/descriptorpb"
@@ -45,7 +46,13 @@ const (
// provided as variables to the expression, as well as via conversion
// of well-known dynamic types, or with unchecked expressions.
// Affects checking. Provides a subset of standard behavior.
FeatureDisableDynamicAggregateLiterals
featureDisableDynamicAggregateLiterals
// Enable the tracking of function call expressions replaced by macros.
featureEnableMacroCallTracking
// Enable the use of cross-type numeric comparisons at the type-checker.
featureCrossTypeNumericComparisons
)
// EnvOption is a functional interface for configuring the environment.
@@ -96,16 +103,6 @@ func Declarations(decls ...*exprpb.Decl) EnvOption {
}
}
// Features sets the given feature flags. See list of Feature constants above.
func Features(flags ...int) EnvOption {
return func(e *Env) (*Env, error) {
for _, flag := range flags {
e.SetFeature(flag)
}
return e, nil
}
}
// HomogeneousAggregateLiterals option ensures that list and map literal entry types must agree
// during type-checking.
//
@@ -113,7 +110,7 @@ func Features(flags ...int) EnvOption {
// expression, as well as via conversion of well-known dynamic types, or with unchecked
// expressions.
func HomogeneousAggregateLiterals() EnvOption {
return Features(FeatureDisableDynamicAggregateLiterals)
return features(featureDisableDynamicAggregateLiterals, true)
}
// Macros option extends the macro set configured in the environment.
@@ -334,8 +331,7 @@ func Functions(funcs ...*functions.Overload) ProgramOption {
// The vars value may either be an `interpreter.Activation` instance or a `map[string]interface{}`.
func Globals(vars interface{}) ProgramOption {
return func(p *prog) (*prog, error) {
defaultVars, err :=
interpreter.NewActivation(vars)
defaultVars, err := interpreter.NewActivation(vars)
if err != nil {
return nil, err
}
@@ -344,6 +340,16 @@ func Globals(vars interface{}) ProgramOption {
}
}
// OptimizeRegex provides a way to replace the InterpretableCall for regex functions. This can be used
// to compile regex string constants at program creation time and report any errors and then use the
// compiled regex for all regex function invocations.
func OptimizeRegex(regexOptimizations ...*interpreter.RegexOptimization) ProgramOption {
return func(p *prog) (*prog, error) {
p.regexOptimizations = append(p.regexOptimizations, regexOptimizations...)
return p, nil
}
}
// EvalOption indicates an evaluation option that may affect the evaluation behavior or information
// in the output result.
type EvalOption int
@@ -356,7 +362,9 @@ const (
OptExhaustiveEval EvalOption = 1<<iota | OptTrackState
// OptOptimize precomputes functions and operators with constants as arguments at program
// creation time. This flag is useful when the expression will be evaluated repeatedly against
// creation time. It also pre-compiles regex pattern constants passed to 'matches', reports any compilation errors
// at program creation and uses the compiled regex pattern for all 'matches' function invocations.
// This flag is useful when the expression will be evaluated repeatedly against
// a series of different inputs.
OptOptimize EvalOption = 1 << iota
@@ -365,8 +373,12 @@ const (
// member graph.
//
// By itself, OptPartialEval does not change evaluation behavior unless the input to the
// Program Eval is an PartialVars.
// Program Eval() call is created via PartialVars().
OptPartialEval EvalOption = 1 << iota
// OptTrackCost enables the runtime cost calculation while validation and return cost within evalDetails
// cost calculation is available via func ActualCost()
OptTrackCost EvalOption = 1 << iota
)
// EvalOptions sets one or more evaluation options which may affect the evaluation or Result.
@@ -379,6 +391,36 @@ func EvalOptions(opts ...EvalOption) ProgramOption {
}
}
// InterruptCheckFrequency configures the number of iterations within a comprehension to evaluate
// before checking whether the function evaluation has been interrupted.
func InterruptCheckFrequency(checkFrequency uint) ProgramOption {
return func(p *prog) (*prog, error) {
p.interruptCheckFrequency = checkFrequency
return p, nil
}
}
// CostTracking enables cost tracking and registers a ActualCostEstimator that can optionally provide a runtime cost estimate for any function calls.
func CostTracking(costEstimator interpreter.ActualCostEstimator) ProgramOption {
return func(p *prog) (*prog, error) {
p.callCostEstimator = costEstimator
p.evalOpts |= OptTrackCost
return p, nil
}
}
// CostLimit enables cost tracking and sets configures program evaluation to exit early with a
// "runtime cost limit exceeded" error if the runtime cost exceeds the costLimit.
// The CostLimit is a metric that corresponds to the number and estimated expense of operations
// performed while evaluating an expression. It is indicative of CPU usage, not memory usage.
func CostLimit(costLimit uint64) ProgramOption {
return func(p *prog) (*prog, error) {
p.costLimit = &costLimit
p.evalOpts |= OptTrackCost
return p, nil
}
}
func fieldToCELType(field protoreflect.FieldDescriptor) (*exprpb.Type, error) {
if field.Kind() == protoreflect.MessageKind {
msgName := (string)(field.Message().FullName())
@@ -411,19 +453,19 @@ func fieldToDecl(field protoreflect.FieldDescriptor) (*exprpb.Decl, error) {
return nil, err
}
return decls.NewVar(name, decls.NewMapType(keyType, valueType)), nil
} else if field.IsList() {
}
if field.IsList() {
elemType, err := fieldToCELType(field)
if err != nil {
return nil, err
}
return decls.NewVar(name, decls.NewListType(elemType)), nil
} else {
celType, err := fieldToCELType(field)
if err != nil {
return nil, err
}
return decls.NewVar(name, celType), nil
}
celType, err := fieldToCELType(field)
if err != nil {
return nil, err
}
return decls.NewVar(name, celType), nil
}
// DeclareContextProto returns an option to extend CEL environment with declarations from the given context proto.
@@ -449,3 +491,22 @@ func DeclareContextProto(descriptor protoreflect.MessageDescriptor) EnvOption {
return Types(dynamicpb.NewMessage(descriptor))(e)
}
}
// EnableMacroCallTracking ensures that call expressions which are replaced by macros
// are tracked in the `SourceInfo` of parsed and checked expressions.
func EnableMacroCallTracking() EnvOption {
return features(featureEnableMacroCallTracking, true)
}
// CrossTypeNumericComparisons makes it possible to compare across numeric types, e.g. double < int
func CrossTypeNumericComparisons(enabled bool) EnvOption {
return features(featureCrossTypeNumericComparisons, enabled)
}
// features sets the given feature flags. See list of Feature constants above.
func features(flag int, enabled bool) EnvOption {
return func(e *Env) (*Env, error) {
e.features[flag] = enabled
return e, nil
}
}

View File

@@ -15,14 +15,16 @@
package cel
import (
"context"
"fmt"
"math"
"sync"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/interpreter"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
// Program is an evaluable view of an Ast.
@@ -31,7 +33,7 @@ type Program interface {
//
// The vars value may either be an `interpreter.Activation` or a `map[string]interface{}`.
//
// If the `OptTrackState` or `OptExhaustiveEval` flags are used, the `details` response will
// If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will
// be non-nil. Given this caveat on `details`, the return state from evaluation will be:
//
// * `val`, `details`, `nil` - Successful evaluation of a non-error result.
@@ -41,7 +43,16 @@ type Program interface {
// An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption`
// or `ProgramOption` values used in the creation of the evaluation environment or executable
// program.
Eval(vars interface{}) (ref.Val, *EvalDetails, error)
Eval(interface{}) (ref.Val, *EvalDetails, error)
// ContextEval evaluates the program with a set of input variables and a context object in order
// to support cancellation and timeouts. This method must be used in conjunction with the
// InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation.
//
// The vars value may eitehr be an `interpreter.Activation` or `map[string]interface{}`.
//
// The output contract for `ContextEval` is otherwise identical to the `Eval` method.
ContextEval(context.Context, interface{}) (ref.Val, *EvalDetails, error)
}
// NoVars returns an empty Activation.
@@ -81,7 +92,8 @@ func AttributePattern(varName string) *interpreter.AttributePattern {
// EvalDetails holds additional information observed during the Eval() call.
type EvalDetails struct {
state interpreter.EvalState
state interpreter.EvalState
costTracker *interpreter.CostTracker
}
// State of the evaluation, non-nil if the OptTrackState or OptExhaustiveEval is specified
@@ -90,24 +102,43 @@ func (ed *EvalDetails) State() interpreter.EvalState {
return ed.state
}
func (ed *EvalDetails) ActualCost() *uint64 {
if ed.costTracker == nil {
return nil
}
cost := ed.costTracker.ActualCost()
return &cost
}
// prog is the internal implementation of the Program interface.
type prog struct {
*Env
evalOpts EvalOption
decorators []interpreter.InterpretableDecorator
defaultVars interpreter.Activation
dispatcher interpreter.Dispatcher
interpreter interpreter.Interpreter
interpretable interpreter.Interpretable
attrFactory interpreter.AttributeFactory
evalOpts EvalOption
defaultVars interpreter.Activation
dispatcher interpreter.Dispatcher
interpreter interpreter.Interpreter
interruptCheckFrequency uint
// Intermediate state used to configure the InterpretableDecorator set provided
// to the initInterpretable call.
decorators []interpreter.InterpretableDecorator
regexOptimizations []*interpreter.RegexOptimization
// Interpretable configured from an Ast and aggregate decorator set based on program options.
interpretable interpreter.Interpretable
callCostEstimator interpreter.ActualCostEstimator
costLimit *uint64
}
// progFactory is a helper alias for marking a program creation factory function.
type progFactory func(interpreter.EvalState) (Program, error)
// progGen holds a reference to a progFactory instance and implements the Program interface.
type progGen struct {
factory progFactory
func (p *prog) clone() *prog {
return &prog{
Env: p.Env,
evalOpts: p.evalOpts,
defaultVars: p.defaultVars,
dispatcher: p.dispatcher,
interpreter: p.interpreter,
interruptCheckFrequency: p.interruptCheckFrequency,
}
}
// newProgram creates a program instance with an environment, an ast, and an optional list of
@@ -129,9 +160,6 @@ func newProgram(e *Env, ast *Ast, opts []ProgramOption) (Program, error) {
// Configure the program via the ProgramOption values.
var err error
for _, opt := range opts {
if opt == nil {
return nil, fmt.Errorf("program options should be non-nil")
}
p, err = opt(p)
if err != nil {
return nil, err
@@ -139,97 +167,86 @@ func newProgram(e *Env, ast *Ast, opts []ProgramOption) (Program, error) {
}
// Set the attribute factory after the options have been set.
var attrFactory interpreter.AttributeFactory
if p.evalOpts&OptPartialEval == OptPartialEval {
p.attrFactory = interpreter.NewPartialAttributeFactory(e.Container, e.adapter, e.provider)
attrFactory = interpreter.NewPartialAttributeFactory(e.Container, e.adapter, e.provider)
} else {
p.attrFactory = interpreter.NewAttributeFactory(e.Container, e.adapter, e.provider)
attrFactory = interpreter.NewAttributeFactory(e.Container, e.adapter, e.provider)
}
interp := interpreter.NewInterpreter(disp, e.Container, e.provider, e.adapter, p.attrFactory)
interp := interpreter.NewInterpreter(disp, e.Container, e.provider, e.adapter, attrFactory)
p.interpreter = interp
// Translate the EvalOption flags into InterpretableDecorator instances.
decorators := make([]interpreter.InterpretableDecorator, len(p.decorators))
copy(decorators, p.decorators)
// Enable interrupt checking if there's a non-zero check frequency
if p.interruptCheckFrequency > 0 {
decorators = append(decorators, interpreter.InterruptableEval())
}
// Enable constant folding first.
if p.evalOpts&OptOptimize == OptOptimize {
decorators = append(decorators, interpreter.Optimize())
p.regexOptimizations = append(p.regexOptimizations, interpreter.MatchesRegexOptimization)
}
// Enable exhaustive eval over state tracking since it offers a superset of features.
if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval {
// State tracking requires that each Eval() call operate on an isolated EvalState
// object; hence, the presence of the factory.
factory := func(state interpreter.EvalState) (Program, error) {
decs := append(decorators, interpreter.ExhaustiveEval(state))
clone := &prog{
evalOpts: p.evalOpts,
defaultVars: p.defaultVars,
Env: e,
dispatcher: disp,
interpreter: interp}
return initInterpretable(clone, ast, decs)
// Enable regex compilation of constants immediately after folding constants.
if len(p.regexOptimizations) > 0 {
decorators = append(decorators, interpreter.CompileRegexConstants(p.regexOptimizations...))
}
// Enable exhaustive eval, state tracking and cost tracking last since they require a factory.
if p.evalOpts&(OptExhaustiveEval|OptTrackState|OptTrackCost) != 0 {
factory := func(state interpreter.EvalState, costTracker *interpreter.CostTracker) (Program, error) {
costTracker.Estimator = p.callCostEstimator
costTracker.Limit = p.costLimit
decs := decorators
var observers []interpreter.EvalObserver
if p.evalOpts&(OptExhaustiveEval|OptTrackState) != 0 {
// EvalStateObserver is required for OptExhaustiveEval.
observers = append(observers, interpreter.EvalStateObserver(state))
}
if p.evalOpts&OptTrackCost == OptTrackCost {
observers = append(observers, interpreter.CostObserver(costTracker))
}
// Enable exhaustive eval over a basic observer since it offers a superset of features.
if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval {
decs = append(decs, interpreter.ExhaustiveEval(), interpreter.Observe(observers...))
} else if len(observers) > 0 {
decs = append(decs, interpreter.Observe(observers...))
}
return p.clone().initInterpretable(ast, decs)
}
return initProgGen(factory)
return newProgGen(factory)
}
// Enable state tracking last since it too requires the factory approach but is less
// featured than the ExhaustiveEval decorator.
if p.evalOpts&OptTrackState == OptTrackState {
factory := func(state interpreter.EvalState) (Program, error) {
decs := append(decorators, interpreter.TrackState(state))
clone := &prog{
evalOpts: p.evalOpts,
defaultVars: p.defaultVars,
Env: e,
dispatcher: disp,
interpreter: interp}
return initInterpretable(clone, ast, decs)
}
return initProgGen(factory)
}
return initInterpretable(p, ast, decorators)
return p.initInterpretable(ast, decorators)
}
// initProgGen tests the factory object by calling it once and returns a factory-based Program if
// the test is successful.
func initProgGen(factory progFactory) (Program, error) {
// Test the factory to make sure that configuration errors are spotted at config
_, err := factory(interpreter.NewEvalState())
if err != nil {
return nil, err
}
return &progGen{factory: factory}, nil
}
// initIterpretable creates a checked or unchecked interpretable depending on whether the Ast
// has been run through the type-checker.
func initInterpretable(
p *prog,
ast *Ast,
decorators []interpreter.InterpretableDecorator) (Program, error) {
var err error
// Unchecked programs do not contain type and reference information and may be
// slower to execute than their checked counterparts.
func (p *prog) initInterpretable(ast *Ast, decs []interpreter.InterpretableDecorator) (*prog, error) {
// Unchecked programs do not contain type and reference information and may be slower to execute.
if !ast.IsChecked() {
p.interpretable, err =
p.interpreter.NewUncheckedInterpretable(ast.Expr(), decorators...)
interpretable, err :=
p.interpreter.NewUncheckedInterpretable(ast.Expr(), decs...)
if err != nil {
return nil, err
}
p.interpretable = interpretable
return p, nil
}
// When the AST has been checked it contains metadata that can be used to speed up program
// execution.
var checked *exprpb.CheckedExpr
checked, err = AstToCheckedExpr(ast)
if err != nil {
return nil, err
}
p.interpretable, err = p.interpreter.NewInterpretable(checked, decorators...)
if err != nil {
return nil, err
}
// When the AST has been checked it contains metadata that can be used to speed up program execution.
var checked *exprpb.CheckedExpr
checked, err := AstToCheckedExpr(ast)
if err != nil {
return nil, err
}
interpretable, err := p.interpreter.NewInterpretable(checked, decs...)
if err != nil {
return nil, err
}
p.interpretable = interpretable
return p, nil
}
@@ -240,13 +257,24 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
// function.
defer func() {
if r := recover(); r != nil {
err = fmt.Errorf("internal error: %v", r)
switch t := r.(type) {
case interpreter.EvalCancelledError:
err = t
default:
err = fmt.Errorf("internal error: %v", r)
}
}
}()
// Build a hierarchical activation if there are default vars set.
vars, err := interpreter.NewActivation(input)
if err != nil {
return
var vars interpreter.Activation
switch v := input.(type) {
case interpreter.Activation:
vars = v
case map[string]interface{}:
vars = activationPool.Setup(v)
defer activationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
}
if p.defaultVars != nil {
vars = interpreter.NewHierarchicalActivation(p.defaultVars, vars)
@@ -261,23 +289,63 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
return
}
// ContextEval implements the Program interface.
func (p *prog) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
// Configure the input, making sure to wrap Activation inputs in the special ctxActivation which
// exposes the #interrupted variable and manages rate-limited checks of the ctx.Done() state.
var vars interpreter.Activation
switch v := input.(type) {
case interpreter.Activation:
vars = ctxActivationPool.Setup(v, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
case map[string]interface{}:
rawVars := activationPool.Setup(v)
defer activationPool.Put(rawVars)
vars = ctxActivationPool.Setup(rawVars, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
}
return p.Eval(vars)
}
// Cost implements the Coster interface method.
func (p *prog) Cost() (min, max int64) {
return estimateCost(p.interpretable)
}
// progFactory is a helper alias for marking a program creation factory function.
type progFactory func(interpreter.EvalState, *interpreter.CostTracker) (Program, error)
// progGen holds a reference to a progFactory instance and implements the Program interface.
type progGen struct {
factory progFactory
}
// newProgGen tests the factory object by calling it once and returns a factory-based Program if
// the test is successful.
func newProgGen(factory progFactory) (Program, error) {
// Test the factory to make sure that configuration errors are spotted at config
_, err := factory(interpreter.NewEvalState(), &interpreter.CostTracker{})
if err != nil {
return nil, err
}
return &progGen{factory: factory}, nil
}
// Eval implements the Program interface method.
func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
// The factory based Eval() differs from the standard evaluation model in that it generates a
// new EvalState instance for each call to ensure that unique evaluations yield unique stateful
// results.
state := interpreter.NewEvalState()
det := &EvalDetails{state: state}
costTracker := &interpreter.CostTracker{}
det := &EvalDetails{state: state, costTracker: costTracker}
// Generate a new instance of the interpretable using the factory configured during the call to
// newProgram(). It is incredibly unlikely that the factory call will generate an error given
// the factory test performed within the Program() call.
p, err := gen.factory(state)
p, err := gen.factory(state, costTracker)
if err != nil {
return nil, det, err
}
@@ -290,20 +358,40 @@ func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
return v, det, nil
}
// ContextEval implements the Program interface method.
func (gen *progGen) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
// The factory based Eval() differs from the standard evaluation model in that it generates a
// new EvalState instance for each call to ensure that unique evaluations yield unique stateful
// results.
state := interpreter.NewEvalState()
det := &EvalDetails{state: state}
// Generate a new instance of the interpretable using the factory configured during the call to
// newProgram(). It is incredibly unlikely that the factory call will generate an error given
// the factory test performed within the Program() call.
p, err := gen.factory(state, &interpreter.CostTracker{})
if err != nil {
return nil, det, err
}
// Evaluate the input, returning the result and the 'state' within EvalDetails.
v, _, err := p.ContextEval(ctx, input)
if err != nil {
return v, det, err
}
return v, det, nil
}
// Cost implements the Coster interface method.
func (gen *progGen) Cost() (min, max int64) {
// Use an empty state value since no evaluation is performed.
p, err := gen.factory(emptyEvalState)
p, err := gen.factory(emptyEvalState, nil)
if err != nil {
return 0, math.MaxInt64
}
return estimateCost(p)
}
var (
emptyEvalState = interpreter.NewEvalState()
)
// EstimateCost returns the heuristic cost interval for the program.
func EstimateCost(p Program) (min, max int64) {
return estimateCost(p)
@@ -316,3 +404,140 @@ func estimateCost(i interface{}) (min, max int64) {
}
return c.Cost()
}
type ctxEvalActivation struct {
parent interpreter.Activation
interrupt <-chan struct{}
interruptCheckCount uint
interruptCheckFrequency uint
}
// ResolveName implements the Activation interface method, but adds a special #interrupted variable
// which is capable of testing whether a 'done' signal is provided from a context.Context channel.
func (a *ctxEvalActivation) ResolveName(name string) (interface{}, bool) {
if name == "#interrupted" {
a.interruptCheckCount++
if a.interruptCheckCount%a.interruptCheckFrequency == 0 {
select {
case <-a.interrupt:
return true, true
default:
return nil, false
}
}
return nil, false
}
return a.parent.ResolveName(name)
}
func (a *ctxEvalActivation) Parent() interpreter.Activation {
return a.parent
}
func newCtxEvalActivationPool() *ctxEvalActivationPool {
return &ctxEvalActivationPool{
Pool: sync.Pool{
New: func() interface{} {
return &ctxEvalActivation{}
},
},
}
}
type ctxEvalActivationPool struct {
sync.Pool
}
// Setup initializes a pooled Activation with the ability check for context.Context cancellation
func (p *ctxEvalActivationPool) Setup(vars interpreter.Activation, done <-chan struct{}, interruptCheckRate uint) *ctxEvalActivation {
a := p.Pool.Get().(*ctxEvalActivation)
a.parent = vars
a.interrupt = done
a.interruptCheckCount = 0
a.interruptCheckFrequency = interruptCheckRate
return a
}
type evalActivation struct {
vars map[string]interface{}
lazyVars map[string]interface{}
}
// ResolveName looks up the value of the input variable name, if found.
//
// Lazy bindings may be supplied within the map-based input in either of the following forms:
// - func() interface{}
// - func() ref.Val
//
// The lazy binding will only be invoked once per evaluation.
//
// Values which are not represented as ref.Val types on input may be adapted to a ref.Val using
// the ref.TypeAdapter configured in the environment.
func (a *evalActivation) ResolveName(name string) (interface{}, bool) {
v, found := a.vars[name]
if !found {
return nil, false
}
switch obj := v.(type) {
case func() ref.Val:
if resolved, found := a.lazyVars[name]; found {
return resolved, true
}
lazy := obj()
a.lazyVars[name] = lazy
return lazy, true
case func() interface{}:
if resolved, found := a.lazyVars[name]; found {
return resolved, true
}
lazy := obj()
a.lazyVars[name] = lazy
return lazy, true
default:
return obj, true
}
}
// Parent implements the interpreter.Activation interface
func (a *evalActivation) Parent() interpreter.Activation {
return nil
}
func newEvalActivationPool() *evalActivationPool {
return &evalActivationPool{
Pool: sync.Pool{
New: func() interface{} {
return &evalActivation{lazyVars: make(map[string]interface{})}
},
},
}
}
type evalActivationPool struct {
sync.Pool
}
// Setup initializes a pooled Activation object with the map input.
func (p *evalActivationPool) Setup(vars map[string]interface{}) *evalActivation {
a := p.Pool.Get().(*evalActivation)
a.vars = vars
return a
}
func (p *evalActivationPool) Put(value interface{}) {
a := value.(*evalActivation)
for k := range a.lazyVars {
delete(a.lazyVars, k)
}
p.Pool.Put(a)
}
var (
emptyEvalState = interpreter.NewEvalState()
// activationPool is an internally managed pool of Activation values that wrap map[string]interface{} inputs
activationPool = newEvalActivationPool()
// ctxActivationPool is an internally managed pool of Activation values that expose a special #interrupted variable
ctxActivationPool = newCtxEvalActivationPool()
)