Bump cel-go to v0.10.0
This commit is contained in:
423
vendor/github.com/google/cel-go/cel/program.go
generated
vendored
423
vendor/github.com/google/cel-go/cel/program.go
generated
vendored
@@ -15,14 +15,16 @@
|
||||
package cel
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"math"
|
||||
"sync"
|
||||
|
||||
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
|
||||
|
||||
"github.com/google/cel-go/common/types"
|
||||
"github.com/google/cel-go/common/types/ref"
|
||||
"github.com/google/cel-go/interpreter"
|
||||
|
||||
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
|
||||
)
|
||||
|
||||
// Program is an evaluable view of an Ast.
|
||||
@@ -31,7 +33,7 @@ type Program interface {
|
||||
//
|
||||
// The vars value may either be an `interpreter.Activation` or a `map[string]interface{}`.
|
||||
//
|
||||
// If the `OptTrackState` or `OptExhaustiveEval` flags are used, the `details` response will
|
||||
// If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will
|
||||
// be non-nil. Given this caveat on `details`, the return state from evaluation will be:
|
||||
//
|
||||
// * `val`, `details`, `nil` - Successful evaluation of a non-error result.
|
||||
@@ -41,7 +43,16 @@ type Program interface {
|
||||
// An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption`
|
||||
// or `ProgramOption` values used in the creation of the evaluation environment or executable
|
||||
// program.
|
||||
Eval(vars interface{}) (ref.Val, *EvalDetails, error)
|
||||
Eval(interface{}) (ref.Val, *EvalDetails, error)
|
||||
|
||||
// ContextEval evaluates the program with a set of input variables and a context object in order
|
||||
// to support cancellation and timeouts. This method must be used in conjunction with the
|
||||
// InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation.
|
||||
//
|
||||
// The vars value may eitehr be an `interpreter.Activation` or `map[string]interface{}`.
|
||||
//
|
||||
// The output contract for `ContextEval` is otherwise identical to the `Eval` method.
|
||||
ContextEval(context.Context, interface{}) (ref.Val, *EvalDetails, error)
|
||||
}
|
||||
|
||||
// NoVars returns an empty Activation.
|
||||
@@ -81,7 +92,8 @@ func AttributePattern(varName string) *interpreter.AttributePattern {
|
||||
|
||||
// EvalDetails holds additional information observed during the Eval() call.
|
||||
type EvalDetails struct {
|
||||
state interpreter.EvalState
|
||||
state interpreter.EvalState
|
||||
costTracker *interpreter.CostTracker
|
||||
}
|
||||
|
||||
// State of the evaluation, non-nil if the OptTrackState or OptExhaustiveEval is specified
|
||||
@@ -90,24 +102,43 @@ func (ed *EvalDetails) State() interpreter.EvalState {
|
||||
return ed.state
|
||||
}
|
||||
|
||||
func (ed *EvalDetails) ActualCost() *uint64 {
|
||||
if ed.costTracker == nil {
|
||||
return nil
|
||||
}
|
||||
cost := ed.costTracker.ActualCost()
|
||||
return &cost
|
||||
}
|
||||
|
||||
// prog is the internal implementation of the Program interface.
|
||||
type prog struct {
|
||||
*Env
|
||||
evalOpts EvalOption
|
||||
decorators []interpreter.InterpretableDecorator
|
||||
defaultVars interpreter.Activation
|
||||
dispatcher interpreter.Dispatcher
|
||||
interpreter interpreter.Interpreter
|
||||
interpretable interpreter.Interpretable
|
||||
attrFactory interpreter.AttributeFactory
|
||||
evalOpts EvalOption
|
||||
defaultVars interpreter.Activation
|
||||
dispatcher interpreter.Dispatcher
|
||||
interpreter interpreter.Interpreter
|
||||
interruptCheckFrequency uint
|
||||
|
||||
// Intermediate state used to configure the InterpretableDecorator set provided
|
||||
// to the initInterpretable call.
|
||||
decorators []interpreter.InterpretableDecorator
|
||||
regexOptimizations []*interpreter.RegexOptimization
|
||||
|
||||
// Interpretable configured from an Ast and aggregate decorator set based on program options.
|
||||
interpretable interpreter.Interpretable
|
||||
callCostEstimator interpreter.ActualCostEstimator
|
||||
costLimit *uint64
|
||||
}
|
||||
|
||||
// progFactory is a helper alias for marking a program creation factory function.
|
||||
type progFactory func(interpreter.EvalState) (Program, error)
|
||||
|
||||
// progGen holds a reference to a progFactory instance and implements the Program interface.
|
||||
type progGen struct {
|
||||
factory progFactory
|
||||
func (p *prog) clone() *prog {
|
||||
return &prog{
|
||||
Env: p.Env,
|
||||
evalOpts: p.evalOpts,
|
||||
defaultVars: p.defaultVars,
|
||||
dispatcher: p.dispatcher,
|
||||
interpreter: p.interpreter,
|
||||
interruptCheckFrequency: p.interruptCheckFrequency,
|
||||
}
|
||||
}
|
||||
|
||||
// newProgram creates a program instance with an environment, an ast, and an optional list of
|
||||
@@ -129,9 +160,6 @@ func newProgram(e *Env, ast *Ast, opts []ProgramOption) (Program, error) {
|
||||
// Configure the program via the ProgramOption values.
|
||||
var err error
|
||||
for _, opt := range opts {
|
||||
if opt == nil {
|
||||
return nil, fmt.Errorf("program options should be non-nil")
|
||||
}
|
||||
p, err = opt(p)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -139,97 +167,86 @@ func newProgram(e *Env, ast *Ast, opts []ProgramOption) (Program, error) {
|
||||
}
|
||||
|
||||
// Set the attribute factory after the options have been set.
|
||||
var attrFactory interpreter.AttributeFactory
|
||||
if p.evalOpts&OptPartialEval == OptPartialEval {
|
||||
p.attrFactory = interpreter.NewPartialAttributeFactory(e.Container, e.adapter, e.provider)
|
||||
attrFactory = interpreter.NewPartialAttributeFactory(e.Container, e.adapter, e.provider)
|
||||
} else {
|
||||
p.attrFactory = interpreter.NewAttributeFactory(e.Container, e.adapter, e.provider)
|
||||
attrFactory = interpreter.NewAttributeFactory(e.Container, e.adapter, e.provider)
|
||||
}
|
||||
|
||||
interp := interpreter.NewInterpreter(disp, e.Container, e.provider, e.adapter, p.attrFactory)
|
||||
interp := interpreter.NewInterpreter(disp, e.Container, e.provider, e.adapter, attrFactory)
|
||||
p.interpreter = interp
|
||||
|
||||
// Translate the EvalOption flags into InterpretableDecorator instances.
|
||||
decorators := make([]interpreter.InterpretableDecorator, len(p.decorators))
|
||||
copy(decorators, p.decorators)
|
||||
|
||||
// Enable interrupt checking if there's a non-zero check frequency
|
||||
if p.interruptCheckFrequency > 0 {
|
||||
decorators = append(decorators, interpreter.InterruptableEval())
|
||||
}
|
||||
// Enable constant folding first.
|
||||
if p.evalOpts&OptOptimize == OptOptimize {
|
||||
decorators = append(decorators, interpreter.Optimize())
|
||||
p.regexOptimizations = append(p.regexOptimizations, interpreter.MatchesRegexOptimization)
|
||||
}
|
||||
// Enable exhaustive eval over state tracking since it offers a superset of features.
|
||||
if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval {
|
||||
// State tracking requires that each Eval() call operate on an isolated EvalState
|
||||
// object; hence, the presence of the factory.
|
||||
factory := func(state interpreter.EvalState) (Program, error) {
|
||||
decs := append(decorators, interpreter.ExhaustiveEval(state))
|
||||
clone := &prog{
|
||||
evalOpts: p.evalOpts,
|
||||
defaultVars: p.defaultVars,
|
||||
Env: e,
|
||||
dispatcher: disp,
|
||||
interpreter: interp}
|
||||
return initInterpretable(clone, ast, decs)
|
||||
// Enable regex compilation of constants immediately after folding constants.
|
||||
if len(p.regexOptimizations) > 0 {
|
||||
decorators = append(decorators, interpreter.CompileRegexConstants(p.regexOptimizations...))
|
||||
}
|
||||
|
||||
// Enable exhaustive eval, state tracking and cost tracking last since they require a factory.
|
||||
if p.evalOpts&(OptExhaustiveEval|OptTrackState|OptTrackCost) != 0 {
|
||||
factory := func(state interpreter.EvalState, costTracker *interpreter.CostTracker) (Program, error) {
|
||||
costTracker.Estimator = p.callCostEstimator
|
||||
costTracker.Limit = p.costLimit
|
||||
decs := decorators
|
||||
var observers []interpreter.EvalObserver
|
||||
|
||||
if p.evalOpts&(OptExhaustiveEval|OptTrackState) != 0 {
|
||||
// EvalStateObserver is required for OptExhaustiveEval.
|
||||
observers = append(observers, interpreter.EvalStateObserver(state))
|
||||
}
|
||||
if p.evalOpts&OptTrackCost == OptTrackCost {
|
||||
observers = append(observers, interpreter.CostObserver(costTracker))
|
||||
}
|
||||
|
||||
// Enable exhaustive eval over a basic observer since it offers a superset of features.
|
||||
if p.evalOpts&OptExhaustiveEval == OptExhaustiveEval {
|
||||
decs = append(decs, interpreter.ExhaustiveEval(), interpreter.Observe(observers...))
|
||||
} else if len(observers) > 0 {
|
||||
decs = append(decs, interpreter.Observe(observers...))
|
||||
}
|
||||
|
||||
return p.clone().initInterpretable(ast, decs)
|
||||
}
|
||||
return initProgGen(factory)
|
||||
return newProgGen(factory)
|
||||
}
|
||||
// Enable state tracking last since it too requires the factory approach but is less
|
||||
// featured than the ExhaustiveEval decorator.
|
||||
if p.evalOpts&OptTrackState == OptTrackState {
|
||||
factory := func(state interpreter.EvalState) (Program, error) {
|
||||
decs := append(decorators, interpreter.TrackState(state))
|
||||
clone := &prog{
|
||||
evalOpts: p.evalOpts,
|
||||
defaultVars: p.defaultVars,
|
||||
Env: e,
|
||||
dispatcher: disp,
|
||||
interpreter: interp}
|
||||
return initInterpretable(clone, ast, decs)
|
||||
}
|
||||
return initProgGen(factory)
|
||||
}
|
||||
return initInterpretable(p, ast, decorators)
|
||||
return p.initInterpretable(ast, decorators)
|
||||
}
|
||||
|
||||
// initProgGen tests the factory object by calling it once and returns a factory-based Program if
|
||||
// the test is successful.
|
||||
func initProgGen(factory progFactory) (Program, error) {
|
||||
// Test the factory to make sure that configuration errors are spotted at config
|
||||
_, err := factory(interpreter.NewEvalState())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &progGen{factory: factory}, nil
|
||||
}
|
||||
|
||||
// initIterpretable creates a checked or unchecked interpretable depending on whether the Ast
|
||||
// has been run through the type-checker.
|
||||
func initInterpretable(
|
||||
p *prog,
|
||||
ast *Ast,
|
||||
decorators []interpreter.InterpretableDecorator) (Program, error) {
|
||||
var err error
|
||||
// Unchecked programs do not contain type and reference information and may be
|
||||
// slower to execute than their checked counterparts.
|
||||
func (p *prog) initInterpretable(ast *Ast, decs []interpreter.InterpretableDecorator) (*prog, error) {
|
||||
// Unchecked programs do not contain type and reference information and may be slower to execute.
|
||||
if !ast.IsChecked() {
|
||||
p.interpretable, err =
|
||||
p.interpreter.NewUncheckedInterpretable(ast.Expr(), decorators...)
|
||||
interpretable, err :=
|
||||
p.interpreter.NewUncheckedInterpretable(ast.Expr(), decs...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.interpretable = interpretable
|
||||
return p, nil
|
||||
}
|
||||
// When the AST has been checked it contains metadata that can be used to speed up program
|
||||
// execution.
|
||||
var checked *exprpb.CheckedExpr
|
||||
checked, err = AstToCheckedExpr(ast)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.interpretable, err = p.interpreter.NewInterpretable(checked, decorators...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// When the AST has been checked it contains metadata that can be used to speed up program execution.
|
||||
var checked *exprpb.CheckedExpr
|
||||
checked, err := AstToCheckedExpr(ast)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
interpretable, err := p.interpreter.NewInterpretable(checked, decs...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
p.interpretable = interpretable
|
||||
return p, nil
|
||||
}
|
||||
|
||||
@@ -240,13 +257,24 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
|
||||
// function.
|
||||
defer func() {
|
||||
if r := recover(); r != nil {
|
||||
err = fmt.Errorf("internal error: %v", r)
|
||||
switch t := r.(type) {
|
||||
case interpreter.EvalCancelledError:
|
||||
err = t
|
||||
default:
|
||||
err = fmt.Errorf("internal error: %v", r)
|
||||
}
|
||||
}
|
||||
}()
|
||||
// Build a hierarchical activation if there are default vars set.
|
||||
vars, err := interpreter.NewActivation(input)
|
||||
if err != nil {
|
||||
return
|
||||
var vars interpreter.Activation
|
||||
switch v := input.(type) {
|
||||
case interpreter.Activation:
|
||||
vars = v
|
||||
case map[string]interface{}:
|
||||
vars = activationPool.Setup(v)
|
||||
defer activationPool.Put(vars)
|
||||
default:
|
||||
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
|
||||
}
|
||||
if p.defaultVars != nil {
|
||||
vars = interpreter.NewHierarchicalActivation(p.defaultVars, vars)
|
||||
@@ -261,23 +289,63 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
|
||||
return
|
||||
}
|
||||
|
||||
// ContextEval implements the Program interface.
|
||||
func (p *prog) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
|
||||
// Configure the input, making sure to wrap Activation inputs in the special ctxActivation which
|
||||
// exposes the #interrupted variable and manages rate-limited checks of the ctx.Done() state.
|
||||
var vars interpreter.Activation
|
||||
switch v := input.(type) {
|
||||
case interpreter.Activation:
|
||||
vars = ctxActivationPool.Setup(v, ctx.Done(), p.interruptCheckFrequency)
|
||||
defer ctxActivationPool.Put(vars)
|
||||
case map[string]interface{}:
|
||||
rawVars := activationPool.Setup(v)
|
||||
defer activationPool.Put(rawVars)
|
||||
vars = ctxActivationPool.Setup(rawVars, ctx.Done(), p.interruptCheckFrequency)
|
||||
defer ctxActivationPool.Put(vars)
|
||||
default:
|
||||
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
|
||||
}
|
||||
return p.Eval(vars)
|
||||
}
|
||||
|
||||
// Cost implements the Coster interface method.
|
||||
func (p *prog) Cost() (min, max int64) {
|
||||
return estimateCost(p.interpretable)
|
||||
}
|
||||
|
||||
// progFactory is a helper alias for marking a program creation factory function.
|
||||
type progFactory func(interpreter.EvalState, *interpreter.CostTracker) (Program, error)
|
||||
|
||||
// progGen holds a reference to a progFactory instance and implements the Program interface.
|
||||
type progGen struct {
|
||||
factory progFactory
|
||||
}
|
||||
|
||||
// newProgGen tests the factory object by calling it once and returns a factory-based Program if
|
||||
// the test is successful.
|
||||
func newProgGen(factory progFactory) (Program, error) {
|
||||
// Test the factory to make sure that configuration errors are spotted at config
|
||||
_, err := factory(interpreter.NewEvalState(), &interpreter.CostTracker{})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &progGen{factory: factory}, nil
|
||||
}
|
||||
|
||||
// Eval implements the Program interface method.
|
||||
func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
|
||||
// The factory based Eval() differs from the standard evaluation model in that it generates a
|
||||
// new EvalState instance for each call to ensure that unique evaluations yield unique stateful
|
||||
// results.
|
||||
state := interpreter.NewEvalState()
|
||||
det := &EvalDetails{state: state}
|
||||
costTracker := &interpreter.CostTracker{}
|
||||
det := &EvalDetails{state: state, costTracker: costTracker}
|
||||
|
||||
// Generate a new instance of the interpretable using the factory configured during the call to
|
||||
// newProgram(). It is incredibly unlikely that the factory call will generate an error given
|
||||
// the factory test performed within the Program() call.
|
||||
p, err := gen.factory(state)
|
||||
p, err := gen.factory(state, costTracker)
|
||||
if err != nil {
|
||||
return nil, det, err
|
||||
}
|
||||
@@ -290,20 +358,40 @@ func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
|
||||
return v, det, nil
|
||||
}
|
||||
|
||||
// ContextEval implements the Program interface method.
|
||||
func (gen *progGen) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
|
||||
// The factory based Eval() differs from the standard evaluation model in that it generates a
|
||||
// new EvalState instance for each call to ensure that unique evaluations yield unique stateful
|
||||
// results.
|
||||
state := interpreter.NewEvalState()
|
||||
det := &EvalDetails{state: state}
|
||||
|
||||
// Generate a new instance of the interpretable using the factory configured during the call to
|
||||
// newProgram(). It is incredibly unlikely that the factory call will generate an error given
|
||||
// the factory test performed within the Program() call.
|
||||
p, err := gen.factory(state, &interpreter.CostTracker{})
|
||||
if err != nil {
|
||||
return nil, det, err
|
||||
}
|
||||
|
||||
// Evaluate the input, returning the result and the 'state' within EvalDetails.
|
||||
v, _, err := p.ContextEval(ctx, input)
|
||||
if err != nil {
|
||||
return v, det, err
|
||||
}
|
||||
return v, det, nil
|
||||
}
|
||||
|
||||
// Cost implements the Coster interface method.
|
||||
func (gen *progGen) Cost() (min, max int64) {
|
||||
// Use an empty state value since no evaluation is performed.
|
||||
p, err := gen.factory(emptyEvalState)
|
||||
p, err := gen.factory(emptyEvalState, nil)
|
||||
if err != nil {
|
||||
return 0, math.MaxInt64
|
||||
}
|
||||
return estimateCost(p)
|
||||
}
|
||||
|
||||
var (
|
||||
emptyEvalState = interpreter.NewEvalState()
|
||||
)
|
||||
|
||||
// EstimateCost returns the heuristic cost interval for the program.
|
||||
func EstimateCost(p Program) (min, max int64) {
|
||||
return estimateCost(p)
|
||||
@@ -316,3 +404,140 @@ func estimateCost(i interface{}) (min, max int64) {
|
||||
}
|
||||
return c.Cost()
|
||||
}
|
||||
|
||||
type ctxEvalActivation struct {
|
||||
parent interpreter.Activation
|
||||
interrupt <-chan struct{}
|
||||
interruptCheckCount uint
|
||||
interruptCheckFrequency uint
|
||||
}
|
||||
|
||||
// ResolveName implements the Activation interface method, but adds a special #interrupted variable
|
||||
// which is capable of testing whether a 'done' signal is provided from a context.Context channel.
|
||||
func (a *ctxEvalActivation) ResolveName(name string) (interface{}, bool) {
|
||||
if name == "#interrupted" {
|
||||
a.interruptCheckCount++
|
||||
if a.interruptCheckCount%a.interruptCheckFrequency == 0 {
|
||||
select {
|
||||
case <-a.interrupt:
|
||||
return true, true
|
||||
default:
|
||||
return nil, false
|
||||
}
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
return a.parent.ResolveName(name)
|
||||
}
|
||||
|
||||
func (a *ctxEvalActivation) Parent() interpreter.Activation {
|
||||
return a.parent
|
||||
}
|
||||
|
||||
func newCtxEvalActivationPool() *ctxEvalActivationPool {
|
||||
return &ctxEvalActivationPool{
|
||||
Pool: sync.Pool{
|
||||
New: func() interface{} {
|
||||
return &ctxEvalActivation{}
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
type ctxEvalActivationPool struct {
|
||||
sync.Pool
|
||||
}
|
||||
|
||||
// Setup initializes a pooled Activation with the ability check for context.Context cancellation
|
||||
func (p *ctxEvalActivationPool) Setup(vars interpreter.Activation, done <-chan struct{}, interruptCheckRate uint) *ctxEvalActivation {
|
||||
a := p.Pool.Get().(*ctxEvalActivation)
|
||||
a.parent = vars
|
||||
a.interrupt = done
|
||||
a.interruptCheckCount = 0
|
||||
a.interruptCheckFrequency = interruptCheckRate
|
||||
return a
|
||||
}
|
||||
|
||||
type evalActivation struct {
|
||||
vars map[string]interface{}
|
||||
lazyVars map[string]interface{}
|
||||
}
|
||||
|
||||
// ResolveName looks up the value of the input variable name, if found.
|
||||
//
|
||||
// Lazy bindings may be supplied within the map-based input in either of the following forms:
|
||||
// - func() interface{}
|
||||
// - func() ref.Val
|
||||
//
|
||||
// The lazy binding will only be invoked once per evaluation.
|
||||
//
|
||||
// Values which are not represented as ref.Val types on input may be adapted to a ref.Val using
|
||||
// the ref.TypeAdapter configured in the environment.
|
||||
func (a *evalActivation) ResolveName(name string) (interface{}, bool) {
|
||||
v, found := a.vars[name]
|
||||
if !found {
|
||||
return nil, false
|
||||
}
|
||||
switch obj := v.(type) {
|
||||
case func() ref.Val:
|
||||
if resolved, found := a.lazyVars[name]; found {
|
||||
return resolved, true
|
||||
}
|
||||
lazy := obj()
|
||||
a.lazyVars[name] = lazy
|
||||
return lazy, true
|
||||
case func() interface{}:
|
||||
if resolved, found := a.lazyVars[name]; found {
|
||||
return resolved, true
|
||||
}
|
||||
lazy := obj()
|
||||
a.lazyVars[name] = lazy
|
||||
return lazy, true
|
||||
default:
|
||||
return obj, true
|
||||
}
|
||||
}
|
||||
|
||||
// Parent implements the interpreter.Activation interface
|
||||
func (a *evalActivation) Parent() interpreter.Activation {
|
||||
return nil
|
||||
}
|
||||
|
||||
func newEvalActivationPool() *evalActivationPool {
|
||||
return &evalActivationPool{
|
||||
Pool: sync.Pool{
|
||||
New: func() interface{} {
|
||||
return &evalActivation{lazyVars: make(map[string]interface{})}
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
type evalActivationPool struct {
|
||||
sync.Pool
|
||||
}
|
||||
|
||||
// Setup initializes a pooled Activation object with the map input.
|
||||
func (p *evalActivationPool) Setup(vars map[string]interface{}) *evalActivation {
|
||||
a := p.Pool.Get().(*evalActivation)
|
||||
a.vars = vars
|
||||
return a
|
||||
}
|
||||
|
||||
func (p *evalActivationPool) Put(value interface{}) {
|
||||
a := value.(*evalActivation)
|
||||
for k := range a.lazyVars {
|
||||
delete(a.lazyVars, k)
|
||||
}
|
||||
p.Pool.Put(a)
|
||||
}
|
||||
|
||||
var (
|
||||
emptyEvalState = interpreter.NewEvalState()
|
||||
|
||||
// activationPool is an internally managed pool of Activation values that wrap map[string]interface{} inputs
|
||||
activationPool = newEvalActivationPool()
|
||||
|
||||
// ctxActivationPool is an internally managed pool of Activation values that expose a special #interrupted variable
|
||||
ctxActivationPool = newCtxEvalActivationPool()
|
||||
)
|
||||
|
Reference in New Issue
Block a user