e2e: use Ginkgo context

All code must use the context from Ginkgo when doing API calls or polling for a
change, otherwise the code would not return immediately when the test gets
aborted.
This commit is contained in:
Patrick Ohly
2022-12-12 10:11:10 +01:00
parent bf1d1dfd0f
commit 2f6c4f5eab
418 changed files with 11489 additions and 11369 deletions

View File

@@ -68,9 +68,9 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
f := framework.NewDefaultFramework("density-test")
f.NamespacePodSecurityEnforceLevel = admissionapi.LevelPrivileged
ginkgo.BeforeEach(func() {
ginkgo.BeforeEach(func(ctx context.Context) {
// Start a standalone cadvisor pod using 'createSync', the pod is running when it returns
e2epod.NewPodClient(f).CreateSync(getCadvisorPod())
e2epod.NewPodClient(f).CreateSync(ctx, getCadvisorPod())
// Resource collector monitors fine-grain CPU/memory usage by a standalone Cadvisor with
// 1s housingkeeping interval
rc = NewResourceCollector(containerStatsPollingPeriod)
@@ -109,13 +109,13 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
itArg.createMethod = "batch"
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
batchLag, e2eLags := runDensityBatchTest(f, rc, itArg, testInfo, false)
batchLag, e2eLags := runDensityBatchTest(ctx, f, rc, itArg, testInfo, false)
ginkgo.By("Verifying latency")
logAndVerifyLatency(batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, true)
logAndVerifyLatency(ctx, batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, true)
ginkgo.By("Verifying resource")
logAndVerifyResource(f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, true)
logAndVerifyResource(ctx, f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, true)
})
}
})
@@ -167,13 +167,13 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
itArg.createMethod = "batch"
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
batchLag, e2eLags := runDensityBatchTest(f, rc, itArg, testInfo, true)
batchLag, e2eLags := runDensityBatchTest(ctx, f, rc, itArg, testInfo, true)
ginkgo.By("Verifying latency")
logAndVerifyLatency(batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
logAndVerifyLatency(ctx, batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
ginkgo.By("Verifying resource")
logAndVerifyResource(f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
logAndVerifyResource(ctx, f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
})
}
})
@@ -205,7 +205,7 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
// It makes the pod startup latency of Kubelet (creation throughput as well) under-estimated.
// Here we set API QPS limit from default 5 to 60 in order to test real Kubelet performance.
// Note that it will cause higher resource usage.
tempSetCurrentKubeletConfig(f, func(cfg *kubeletconfig.KubeletConfiguration) {
tempSetCurrentKubeletConfig(f, func(ctx context.Context, cfg *kubeletconfig.KubeletConfiguration) {
framework.Logf("Old QPS limit is: %d", cfg.KubeAPIQPS)
// Set new API QPS limit
cfg.KubeAPIQPS = int32(itArg.APIQPSLimit)
@@ -213,13 +213,13 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
ginkgo.It(desc, func(ctx context.Context) {
itArg.createMethod = "batch"
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
batchLag, e2eLags := runDensityBatchTest(f, rc, itArg, testInfo, true)
batchLag, e2eLags := runDensityBatchTest(ctx, f, rc, itArg, testInfo, true)
ginkgo.By("Verifying latency")
logAndVerifyLatency(batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
logAndVerifyLatency(ctx, batchLag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
ginkgo.By("Verifying resource")
logAndVerifyResource(f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
logAndVerifyResource(ctx, f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
})
})
}
@@ -252,13 +252,13 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
ginkgo.It(desc, func(ctx context.Context) {
itArg.createMethod = "sequence"
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
batchlag, e2eLags := runDensitySeqTest(f, rc, itArg, testInfo)
batchlag, e2eLags := runDensitySeqTest(ctx, f, rc, itArg, testInfo)
ginkgo.By("Verifying latency")
logAndVerifyLatency(batchlag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, true)
logAndVerifyLatency(ctx, batchlag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, true)
ginkgo.By("Verifying resource")
logAndVerifyResource(f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, true)
logAndVerifyResource(ctx, f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, true)
})
}
})
@@ -285,13 +285,13 @@ var _ = SIGDescribe("Density [Serial] [Slow]", func() {
ginkgo.It(desc, func(ctx context.Context) {
itArg.createMethod = "sequence"
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
batchlag, e2eLags := runDensitySeqTest(f, rc, itArg, testInfo)
batchlag, e2eLags := runDensitySeqTest(ctx, f, rc, itArg, testInfo)
ginkgo.By("Verifying latency")
logAndVerifyLatency(batchlag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
logAndVerifyLatency(ctx, batchlag, e2eLags, itArg.podStartupLimits, itArg.podBatchStartupLimit, testInfo, false)
ginkgo.By("Verifying resource")
logAndVerifyResource(f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
logAndVerifyResource(ctx, f, rc, itArg.cpuLimits, itArg.memLimits, testInfo, false)
})
}
})
@@ -327,7 +327,7 @@ func (dt *densityTest) getTestName() string {
}
// runDensityBatchTest runs the density batch pod creation test
func runDensityBatchTest(f *framework.Framework, rc *ResourceCollector, testArg densityTest, testInfo map[string]string,
func runDensityBatchTest(ctx context.Context, f *framework.Framework, rc *ResourceCollector, testArg densityTest, testInfo map[string]string,
isLogTimeSeries bool) (time.Duration, []e2emetrics.PodLatencyData) {
const (
podType = "density_test_pod"
@@ -343,7 +343,7 @@ func runDensityBatchTest(f *framework.Framework, rc *ResourceCollector, testArg
pods := newTestPods(testArg.podsNr, true, imageutils.GetPauseImageName(), podType)
// the controller watches the change of pod status
controller := newInformerWatchPod(f, mutex, watchTimes, podType)
controller := newInformerWatchPod(ctx, f, mutex, watchTimes, podType)
go controller.Run(stopCh)
defer close(stopCh)
@@ -357,11 +357,11 @@ func runDensityBatchTest(f *framework.Framework, rc *ResourceCollector, testArg
ginkgo.By("Creating a batch of pods")
// It returns a map['pod name']'creation time' containing the creation timestamps
createTimes := createBatchPodWithRateControl(f, pods, testArg.interval)
createTimes := createBatchPodWithRateControl(ctx, f, pods, testArg.interval)
ginkgo.By("Waiting for all Pods to be observed by the watch...")
gomega.Eventually(func() bool {
gomega.Eventually(ctx, func() bool {
return len(watchTimes) == testArg.podsNr
}, 10*time.Minute, 10*time.Second).Should(gomega.BeTrue())
@@ -401,7 +401,7 @@ func runDensityBatchTest(f *framework.Framework, rc *ResourceCollector, testArg
batchLag := lastRunning.Time.Sub(firstCreate.Time)
rc.Stop()
deletePodsSync(f, pods)
deletePodsSync(ctx, f, pods)
// Log time series data.
if isLogTimeSeries {
@@ -410,13 +410,13 @@ func runDensityBatchTest(f *framework.Framework, rc *ResourceCollector, testArg
// Log throughput data.
logPodCreateThroughput(batchLag, e2eLags, testArg.podsNr, testInfo)
deletePodsSync(f, []*v1.Pod{getCadvisorPod()})
deletePodsSync(ctx, f, []*v1.Pod{getCadvisorPod()})
return batchLag, e2eLags
}
// runDensitySeqTest runs the density sequential pod creation test
func runDensitySeqTest(f *framework.Framework, rc *ResourceCollector, testArg densityTest, testInfo map[string]string) (time.Duration, []e2emetrics.PodLatencyData) {
func runDensitySeqTest(ctx context.Context, f *framework.Framework, rc *ResourceCollector, testArg densityTest, testInfo map[string]string) (time.Duration, []e2emetrics.PodLatencyData) {
const (
podType = "density_test_pod"
sleepBeforeCreatePods = 30 * time.Second
@@ -427,43 +427,43 @@ func runDensitySeqTest(f *framework.Framework, rc *ResourceCollector, testArg de
ginkgo.By("Creating a batch of background pods")
// CreatBatch is synchronized, all pods are running when it returns
e2epod.NewPodClient(f).CreateBatch(bgPods)
e2epod.NewPodClient(f).CreateBatch(ctx, bgPods)
time.Sleep(sleepBeforeCreatePods)
rc.Start()
// Create pods sequentially (back-to-back). e2eLags have been sorted.
batchlag, e2eLags := createBatchPodSequential(f, testPods, podType)
batchlag, e2eLags := createBatchPodSequential(ctx, f, testPods, podType)
rc.Stop()
deletePodsSync(f, append(bgPods, testPods...))
deletePodsSync(ctx, f, append(bgPods, testPods...))
// Log throughput data.
logPodCreateThroughput(batchlag, e2eLags, testArg.podsNr, testInfo)
deletePodsSync(f, []*v1.Pod{getCadvisorPod()})
deletePodsSync(ctx, f, []*v1.Pod{getCadvisorPod()})
return batchlag, e2eLags
}
// createBatchPodWithRateControl creates a batch of pods concurrently, uses one goroutine for each creation.
// between creations there is an interval for throughput control
func createBatchPodWithRateControl(f *framework.Framework, pods []*v1.Pod, interval time.Duration) map[string]metav1.Time {
func createBatchPodWithRateControl(ctx context.Context, f *framework.Framework, pods []*v1.Pod, interval time.Duration) map[string]metav1.Time {
createTimes := make(map[string]metav1.Time)
for i := range pods {
pod := pods[i]
createTimes[pod.ObjectMeta.Name] = metav1.Now()
go e2epod.NewPodClient(f).Create(pod)
go e2epod.NewPodClient(f).Create(ctx, pod)
time.Sleep(interval)
}
return createTimes
}
// getPodStartLatency gets prometheus metric 'pod start latency' from kubelet
func getPodStartLatency(node string) (e2emetrics.KubeletLatencyMetrics, error) {
func getPodStartLatency(ctx context.Context, node string) (e2emetrics.KubeletLatencyMetrics, error) {
latencyMetrics := e2emetrics.KubeletLatencyMetrics{}
ms, err := e2emetrics.GrabKubeletMetricsWithoutProxy(node, "/metrics")
ms, err := e2emetrics.GrabKubeletMetricsWithoutProxy(ctx, node, "/metrics")
framework.ExpectNoError(err, "Failed to get kubelet metrics without proxy in node %s", node)
for _, samples := range ms {
@@ -482,7 +482,7 @@ func getPodStartLatency(node string) (e2emetrics.KubeletLatencyMetrics, error) {
}
// newInformerWatchPod creates an informer to check whether all pods are running.
func newInformerWatchPod(f *framework.Framework, mutex *sync.Mutex, watchTimes map[string]metav1.Time, podType string) cache.Controller {
func newInformerWatchPod(ctx context.Context, f *framework.Framework, mutex *sync.Mutex, watchTimes map[string]metav1.Time, podType string) cache.Controller {
ns := f.Namespace.Name
checkPodRunning := func(p *v1.Pod) {
mutex.Lock()
@@ -500,12 +500,12 @@ func newInformerWatchPod(f *framework.Framework, mutex *sync.Mutex, watchTimes m
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": podType}).String()
obj, err := f.ClientSet.CoreV1().Pods(ns).List(context.TODO(), options)
obj, err := f.ClientSet.CoreV1().Pods(ns).List(ctx, options)
return runtime.Object(obj), err
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": podType}).String()
return f.ClientSet.CoreV1().Pods(ns).Watch(context.TODO(), options)
return f.ClientSet.CoreV1().Pods(ns).Watch(ctx, options)
},
},
&v1.Pod{},
@@ -527,7 +527,7 @@ func newInformerWatchPod(f *framework.Framework, mutex *sync.Mutex, watchTimes m
}
// createBatchPodSequential creates pods back-to-back in sequence.
func createBatchPodSequential(f *framework.Framework, pods []*v1.Pod, podType string) (time.Duration, []e2emetrics.PodLatencyData) {
func createBatchPodSequential(ctx context.Context, f *framework.Framework, pods []*v1.Pod, podType string) (time.Duration, []e2emetrics.PodLatencyData) {
var (
mutex = &sync.Mutex{}
watchTimes = make(map[string]metav1.Time, 0)
@@ -537,7 +537,7 @@ func createBatchPodSequential(f *framework.Framework, pods []*v1.Pod, podType st
init = true
)
// the controller watches the change of pod status
controller := newInformerWatchPod(f, mutex, watchTimes, podType)
controller := newInformerWatchPod(ctx, f, mutex, watchTimes, podType)
go controller.Run(stopCh)
defer close(stopCh)
@@ -547,8 +547,8 @@ func createBatchPodSequential(f *framework.Framework, pods []*v1.Pod, podType st
for _, pod := range pods {
create := metav1.Now()
createTimes[pod.Name] = create
p := e2epod.NewPodClient(f).Create(pod)
framework.ExpectNoError(wait.PollImmediate(2*time.Second, framework.PodStartTimeout, podWatchedRunning(watchTimes, p.Name)))
p := e2epod.NewPodClient(f).Create(ctx, pod)
framework.ExpectNoError(wait.PollImmediateWithContext(ctx, 2*time.Second, framework.PodStartTimeout, podWatchedRunning(watchTimes, p.Name)))
e2eLags = append(e2eLags,
e2emetrics.PodLatencyData{Name: pod.Name, Latency: watchTimes[pod.Name].Time.Sub(create.Time)})
}
@@ -574,8 +574,8 @@ func createBatchPodSequential(f *framework.Framework, pods []*v1.Pod, podType st
}
// podWatchedRunning verifies whether the pod becomes Running, as the watchTime was set by informer
func podWatchedRunning(watchTimes map[string]metav1.Time, podName string) wait.ConditionFunc {
return func() (done bool, err error) {
func podWatchedRunning(watchTimes map[string]metav1.Time, podName string) wait.ConditionWithContextFunc {
return func(ctx context.Context) (done bool, err error) {
if _, found := watchTimes[podName]; found {
return true, nil
}
@@ -616,12 +616,12 @@ func printLatencies(latencies []e2emetrics.PodLatencyData, header string) {
}
// logAndVerifyLatency verifies that whether pod creation latency satisfies the limit.
func logAndVerifyLatency(batchLag time.Duration, e2eLags []e2emetrics.PodLatencyData, podStartupLimits e2emetrics.LatencyMetric,
func logAndVerifyLatency(ctx context.Context, batchLag time.Duration, e2eLags []e2emetrics.PodLatencyData, podStartupLimits e2emetrics.LatencyMetric,
podBatchStartupLimit time.Duration, testInfo map[string]string, isVerify bool) {
printLatencies(e2eLags, "worst client e2e total latencies")
// TODO(coufon): do not trust 'kubelet' metrics since they are not reset!
latencyMetrics, _ := getPodStartLatency(kubeletAddr)
latencyMetrics, _ := getPodStartLatency(ctx, kubeletAddr)
framework.Logf("Kubelet Prometheus metrics (not reset):\n%s", framework.PrettyPrintJSON(latencyMetrics))
podStartupLatency := extractLatencyMetrics(e2eLags)