automated link fixes

This commit is contained in:
Mike Danese
2015-07-14 09:37:37 -07:00
parent 14c3fc5afe
commit 3eff8fce41
96 changed files with 287 additions and 287 deletions

View File

@@ -27,7 +27,7 @@ This example also has a few code and configuration files needed. To avoid typin
This is a somewhat long tutorial. If you want to jump straight to the "do it now" commands, please see the [tl; dr](#tl-dr) at the end.
### Simple Single Pod Cassandra Node
In Kubernetes, the atomic unit of an application is a [_Pod_](../../docs/pods.md). A Pod is one or more containers that _must_ be scheduled onto the same host. All containers in a pod share a network namespace, and may optionally share mounted volumes.
In Kubernetes, the atomic unit of an application is a [_Pod_](../../docs/user-guide/pods.md). A Pod is one or more containers that _must_ be scheduled onto the same host. All containers in a pod share a network namespace, and may optionally share mounted volumes.
In this simple case, we define a single container running Cassandra for our pod:
```yaml
@@ -75,7 +75,7 @@ You may also note that we are setting some Cassandra parameters (```MAX_HEAP_SIZ
In theory could create a single Cassandra pod right now but since `KubernetesSeedProvider` needs to learn what nodes are in the Cassandra deployment we need to create a service first.
### Cassandra Service
In Kubernetes a _[Service](../../docs/services.md)_ describes a set of Pods that perform the same task. For example, the set of Pods in a Cassandra cluster can be a Kubernetes Service, or even just the single Pod we created above. An important use for a Service is to create a load balancer which distributes traffic across members of the set of Pods. But a _Service_ can also be used as a standing query which makes a dynamically changing set of Pods (or the single Pod we've already created) available via the Kubernetes API. This is the way that we use initially use Services with Cassandra.
In Kubernetes a _[Service](../../docs/user-guide/services.md)_ describes a set of Pods that perform the same task. For example, the set of Pods in a Cassandra cluster can be a Kubernetes Service, or even just the single Pod we created above. An important use for a Service is to create a load balancer which distributes traffic across members of the set of Pods. But a _Service_ can also be used as a standing query which makes a dynamically changing set of Pods (or the single Pod we've already created) available via the Kubernetes API. This is the way that we use initially use Services with Cassandra.
Here is the service description:
```yaml
@@ -145,7 +145,7 @@ subsets:
### Adding replicated nodes
Of course, a single node cluster isn't particularly interesting. The real power of Kubernetes and Cassandra lies in easily building a replicated, scalable Cassandra cluster.
In Kubernetes a _[Replication Controller](../../docs/replication-controller.md)_ is responsible for replicating sets of identical pods. Like a _Service_ it has a selector query which identifies the members of it's set. Unlike a _Service_ it also has a desired number of replicas, and it will create or delete _Pods_ to ensure that the number of _Pods_ matches up with it's desired state.
In Kubernetes a _[Replication Controller](../../docs/user-guide/replication-controller.md)_ is responsible for replicating sets of identical pods. Like a _Service_ it has a selector query which identifies the members of it's set. Unlike a _Service_ it also has a desired number of replicas, and it will create or delete _Pods_ to ensure that the number of _Pods_ matches up with it's desired state.
Replication controllers will "adopt" existing pods that match their selector query, so let's create a replication controller with a single replica to adopt our existing Cassandra pod.