Merge pull request #10681 from thockin/relative-docs-links

Make docs links be relative so we can version them
This commit is contained in:
Victor Marmol
2015-07-08 11:17:37 -07:00
14 changed files with 34 additions and 34 deletions

View File

@@ -11,7 +11,7 @@ You need two machines with CentOS installed on them.
## Starting a cluster
This is a getting started guide for CentOS. It is a manual configuration so you understand all the underlying packages / services / ports, etc...
This guide will only get ONE minion working. Multiple minions requires a functional [networking configuration](http://docs.k8s.io/networking.md) done outside of kubernetes. Although the additional kubernetes configuration requirements should be obvious.
This guide will only get ONE minion working. Multiple minions requires a functional [networking configuration](../../networking.md) done outside of kubernetes. Although the additional kubernetes configuration requirements should be obvious.
The kubernetes package provides a few services: kube-apiserver, kube-scheduler, kube-controller-manager, kubelet, kube-proxy. These services are managed by systemd and the configuration resides in a central location: /etc/kubernetes. We will break the services up between the hosts. The first host, centos-master, will be the kubernetes master. This host will run the kube-apiserver, kube-controller-manager, and kube-scheduler. In addition, the master will also run _etcd_. The remaining host, centos-minion will be the minion and run kubelet, proxy, cadvisor and docker.

View File

@@ -15,7 +15,7 @@ CloudStack is a software to build public and private clouds based on hardware vi
[CoreOS](http://coreos.com) templates for CloudStack are built [nightly](http://stable.release.core-os.net/amd64-usr/current/). CloudStack operators need to [register](http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/latest/templates.html) this template in their cloud before proceeding with these Kubernetes deployment instructions.
This guide uses an [Ansible playbook](https://github.com/runseb/ansible-kubernetes).
This is a completely automated, a single playbook deploys Kubernetes based on the coreOS [instructions](http://docs.k8s.io/getting-started-guides/coreos/coreos_multinode_cluster.md).
This is a completely automated, a single playbook deploys Kubernetes based on the coreOS [instructions](./coreos/coreos_multinode_cluster.md).
This [Ansible](http://ansibleworks.com) playbook deploys Kubernetes on a CloudStack based Cloud using CoreOS images. The playbook, creates an ssh key pair, creates a security group and associated rules and finally starts coreOS instances configured via cloud-init.

View File

@@ -213,7 +213,7 @@ Now for the good stuff!
## Cloud Configs
The following config files are tailored for the OFFLINE version of a Kubernetes deployment.
These are based on the work found here: [master.yml](http://docs.k8s.io/getting-started-guides/coreos/cloud-configs/master.yaml), [node.yml](http://docs.k8s.io/getting-started-guides/coreos/cloud-configs/node.yaml)
These are based on the work found here: [master.yml](./cloud-configs/master.yaml), [node.yml](./cloud-configs/node.yaml)
To make the setup work, you need to replace a few placeholders:

View File

@@ -33,7 +33,7 @@ docker run --net=host -d gcr.io/google_containers/etcd:2.0.9 /usr/local/bin/etcd
docker run --net=host -d -v /var/run/docker.sock:/var/run/docker.sock gcr.io/google_containers/hyperkube:v0.18.2 /hyperkube kubelet --api_servers=http://localhost:8080 --v=2 --address=0.0.0.0 --enable_server --hostname_override=127.0.0.1 --config=/etc/kubernetes/manifests
```
This actually runs the kubelet, which in turn runs a [pod](http://docs.k8s.io/pods.md) that contains the other master components.
This actually runs the kubelet, which in turn runs a [pod](../pods.md) that contains the other master components.
### Step Three: Run the service proxy
*Note, this could be combined with master above, but it requires --privileged for iptables manipulation*

View File

@@ -13,7 +13,7 @@ Getting started on [Fedora](http://fedoraproject.org)
This is a getting started guide for Fedora. It is a manual configuration so you understand all the underlying packages / services / ports, etc...
This guide will only get ONE node (previously minion) working. Multiple nodes require a functional [networking configuration](http://docs.k8s.io/networking.md) done outside of kubernetes. Although the additional kubernetes configuration requirements should be obvious.
This guide will only get ONE node (previously minion) working. Multiple nodes require a functional [networking configuration](../../networking.md) done outside of kubernetes. Although the additional kubernetes configuration requirements should be obvious.
The kubernetes package provides a few services: kube-apiserver, kube-scheduler, kube-controller-manager, kubelet, kube-proxy. These services are managed by systemd and the configuration resides in a central location: /etc/kubernetes. We will break the services up between the hosts. The first host, fed-master, will be the kubernetes master. This host will run the kube-apiserver, kube-controller-manager, and kube-scheduler. In addition, the master will also run _etcd_ (not needed if _etcd_ runs on a different host but this guide assumes that _etcd_ and kubernetes master run on the same host). The remaining host, fed-node will be the node and run kubelet, proxy and docker.

View File

@@ -85,8 +85,8 @@ cluster/kubectl.sh get replicationcontrollers
### Running a user defined pod
Note the difference between a [container](http://docs.k8s.io/containers.md)
and a [pod](http://docs.k8s.io/pods.md). Since you only asked for the former, kubernetes will create a wrapper pod for you.
Note the difference between a [container](../containers.md)
and a [pod](../pods.md). Since you only asked for the former, kubernetes will create a wrapper pod for you.
However you cannot view the nginx start page on localhost. To verify that nginx is running you need to run `curl` within the docker container (try `docker exec`).
You can control the specifications of a pod via a user defined manifest, and reach nginx through your browser on the port specified therein: