Bump cel-go to v0.16.0

This commit is contained in:
Joe Betz
2023-05-26 18:06:11 -04:00
parent d05b79c836
commit 5c0b59891d
198 changed files with 18207 additions and 2988 deletions

View File

@@ -23,6 +23,7 @@ go_library(
"//checker/decls:go_default_library",
"//common:go_default_library",
"//common/containers:go_default_library",
"//common/operators:go_default_library",
"//common/overloads:go_default_library",
"//common/types:go_default_library",
"//common/types/pb:go_default_library",
@@ -31,7 +32,7 @@ go_library(
"//interpreter:go_default_library",
"//interpreter/functions:go_default_library",
"//parser:go_default_library",
"@org_golang_google_genproto//googleapis/api/expr/v1alpha1:go_default_library",
"@org_golang_google_genproto_googleapis_api//expr/v1alpha1:go_default_library",
"@org_golang_google_protobuf//proto:go_default_library",
"@org_golang_google_protobuf//reflect/protodesc:go_default_library",
"@org_golang_google_protobuf//reflect/protoreflect:go_default_library",
@@ -69,7 +70,7 @@ go_test(
"//test/proto2pb:go_default_library",
"//test/proto3pb:go_default_library",
"@io_bazel_rules_go//proto/wkt:descriptor_go_proto",
"@org_golang_google_genproto//googleapis/api/expr/v1alpha1:go_default_library",
"@org_golang_google_genproto_googleapis_api//expr/v1alpha1:go_default_library",
"@org_golang_google_protobuf//proto:go_default_library",
"@org_golang_google_protobuf//types/known/structpb:go_default_library",
],

View File

@@ -139,7 +139,7 @@ var (
kind: TypeKind,
runtimeType: types.TypeType,
}
//UintType represents a uint type.
// UintType represents a uint type.
UintType = &Type{
kind: UintKind,
runtimeType: types.UintType,
@@ -222,7 +222,8 @@ func (t *Type) equals(other *Type) bool {
// - The from types are the same instance
// - The target type is dynamic
// - The fromType has the same kind and type name as the target type, and all parameters of the target type
// are IsAssignableType() from the parameters of the fromType.
//
// are IsAssignableType() from the parameters of the fromType.
func (t *Type) defaultIsAssignableType(fromType *Type) bool {
if t == fromType || t.isDyn() {
return true
@@ -312,6 +313,11 @@ func NullableType(wrapped *Type) *Type {
}
}
// OptionalType creates an abstract parameterized type instance corresponding to CEL's notion of optional.
func OptionalType(param *Type) *Type {
return OpaqueType("optional", param)
}
// OpaqueType creates an abstract parameterized type with a given name.
func OpaqueType(name string, params ...*Type) *Type {
return &Type{
@@ -365,7 +371,9 @@ func Variable(name string, t *Type) EnvOption {
//
// - Overloads are searched in the order they are declared
// - Dynamic dispatch for lists and maps is limited by inspection of the list and map contents
// at runtime. Empty lists and maps will result in a 'default dispatch'
//
// at runtime. Empty lists and maps will result in a 'default dispatch'
//
// - In the event that a default dispatch occurs, the first overload provided is the one invoked
//
// If you intend to use overloads which differentiate based on the key or element type of a list or
@@ -405,7 +413,7 @@ func Function(name string, opts ...FunctionOpt) EnvOption {
// FunctionOpt defines a functional option for configuring a function declaration.
type FunctionOpt func(*functionDecl) (*functionDecl, error)
// SingletonUnaryBinding creates a singleton function defintion to be used for all function overloads.
// SingletonUnaryBinding creates a singleton function definition to be used for all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
@@ -431,7 +439,17 @@ func SingletonUnaryBinding(fn functions.UnaryOp, traits ...int) FunctionOpt {
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
//
// Deprecated: use SingletonBinaryBinding
func SingletonBinaryImpl(fn functions.BinaryOp, traits ...int) FunctionOpt {
return SingletonBinaryBinding(fn, traits...)
}
// SingletonBinaryBinding creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonBinaryBinding(fn functions.BinaryOp, traits ...int) FunctionOpt {
trait := 0
for _, t := range traits {
trait = trait | t
@@ -453,7 +471,17 @@ func SingletonBinaryImpl(fn functions.BinaryOp, traits ...int) FunctionOpt {
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
//
// Deprecated: use SingletonFunctionBinding
func SingletonFunctionImpl(fn functions.FunctionOp, traits ...int) FunctionOpt {
return SingletonFunctionBinding(fn, traits...)
}
// SingletonFunctionBinding creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonFunctionBinding(fn functions.FunctionOp, traits ...int) FunctionOpt {
trait := 0
for _, t := range traits {
trait = trait | t
@@ -720,9 +748,8 @@ func (f *functionDecl) addOverload(overload *overloadDecl) error {
// Allow redefinition of an overload implementation so long as the signatures match.
f.overloads[index] = overload
return nil
} else {
return fmt.Errorf("overload redefinition in function. %s: %s has multiple definitions", f.name, o.id)
}
return fmt.Errorf("overload redefinition in function. %s: %s has multiple definitions", f.name, o.id)
}
}
f.overloads = append(f.overloads, overload)
@@ -1177,3 +1204,43 @@ func collectParamNames(paramNames map[string]struct{}, arg *Type) {
collectParamNames(paramNames, param)
}
}
func typeValueToKind(tv *types.TypeValue) (Kind, error) {
switch tv {
case types.BoolType:
return BoolKind, nil
case types.DoubleType:
return DoubleKind, nil
case types.IntType:
return IntKind, nil
case types.UintType:
return UintKind, nil
case types.ListType:
return ListKind, nil
case types.MapType:
return MapKind, nil
case types.StringType:
return StringKind, nil
case types.BytesType:
return BytesKind, nil
case types.DurationType:
return DurationKind, nil
case types.TimestampType:
return TimestampKind, nil
case types.NullType:
return NullTypeKind, nil
case types.TypeType:
return TypeKind, nil
default:
switch tv.TypeName() {
case "dyn":
return DynKind, nil
case "google.protobuf.Any":
return AnyKind, nil
case "optional":
return OpaqueKind, nil
default:
return 0, fmt.Errorf("no known conversion for type of %s", tv.TypeName())
}
}
}

View File

@@ -102,15 +102,18 @@ type Env struct {
provider ref.TypeProvider
features map[int]bool
appliedFeatures map[int]bool
libraries map[string]bool
// Internal parser representation
prsr *parser.Parser
prsr *parser.Parser
prsrOpts []parser.Option
// Internal checker representation
chk *checker.Env
chkErr error
chkOnce sync.Once
chkOpts []checker.Option
chkMutex sync.Mutex
chk *checker.Env
chkErr error
chkOnce sync.Once
chkOpts []checker.Option
// Program options tied to the environment
progOpts []ProgramOption
@@ -159,6 +162,7 @@ func NewCustomEnv(opts ...EnvOption) (*Env, error) {
provider: registry,
features: map[int]bool{},
appliedFeatures: map[int]bool{},
libraries: map[string]bool{},
progOpts: []ProgramOption{},
}).configure(opts)
}
@@ -175,14 +179,14 @@ func (e *Env) Check(ast *Ast) (*Ast, *Issues) {
pe, _ := AstToParsedExpr(ast)
// Construct the internal checker env, erroring if there is an issue adding the declarations.
err := e.initChecker()
chk, err := e.initChecker()
if err != nil {
errs := common.NewErrors(ast.Source())
errs.ReportError(common.NoLocation, e.chkErr.Error())
errs.ReportError(common.NoLocation, err.Error())
return nil, NewIssues(errs)
}
res, errs := checker.Check(pe, ast.Source(), e.chk)
res, errs := checker.Check(pe, ast.Source(), chk)
if len(errs.GetErrors()) > 0 {
return nil, NewIssues(errs)
}
@@ -236,10 +240,14 @@ func (e *Env) CompileSource(src Source) (*Ast, *Issues) {
// TypeProvider are immutable, or that their underlying implementations are based on the
// ref.TypeRegistry which provides a Copy method which will be invoked by this method.
func (e *Env) Extend(opts ...EnvOption) (*Env, error) {
if e.chkErr != nil {
return nil, e.chkErr
chk, chkErr := e.getCheckerOrError()
if chkErr != nil {
return nil, chkErr
}
prsrOptsCopy := make([]parser.Option, len(e.prsrOpts))
copy(prsrOptsCopy, e.prsrOpts)
// The type-checker is configured with Declarations. The declarations may either be provided
// as options which have not yet been validated, or may come from a previous checker instance
// whose types have already been validated.
@@ -248,10 +256,10 @@ func (e *Env) Extend(opts ...EnvOption) (*Env, error) {
// Copy the declarations if needed.
decsCopy := []*exprpb.Decl{}
if e.chk != nil {
if chk != nil {
// If the type-checker has already been instantiated, then the e.declarations have been
// valdiated within the chk instance.
chkOptsCopy = append(chkOptsCopy, checker.ValidatedDeclarations(e.chk))
// validated within the chk instance.
chkOptsCopy = append(chkOptsCopy, checker.ValidatedDeclarations(chk))
} else {
// If the type-checker has not been instantiated, ensure the unvalidated declarations are
// provided to the extended Env instance.
@@ -304,8 +312,11 @@ func (e *Env) Extend(opts ...EnvOption) (*Env, error) {
for k, v := range e.functions {
funcsCopy[k] = v
}
libsCopy := make(map[string]bool, len(e.libraries))
for k, v := range e.libraries {
libsCopy[k] = v
}
// TODO: functions copy needs to happen here.
ext := &Env{
Container: e.Container,
declarations: decsCopy,
@@ -315,8 +326,10 @@ func (e *Env) Extend(opts ...EnvOption) (*Env, error) {
adapter: adapter,
features: featuresCopy,
appliedFeatures: appliedFeaturesCopy,
libraries: libsCopy,
provider: provider,
chkOpts: chkOptsCopy,
prsrOpts: prsrOptsCopy,
}
return ext.configure(opts)
}
@@ -328,6 +341,12 @@ func (e *Env) HasFeature(flag int) bool {
return has && enabled
}
// HasLibrary returns whether a specific SingletonLibrary has been configured in the environment.
func (e *Env) HasLibrary(libName string) bool {
configured, exists := e.libraries[libName]
return exists && configured
}
// Parse parses the input expression value `txt` to a Ast and/or a set of Issues.
//
// This form of Parse creates a Source value for the input `txt` and forwards to the
@@ -422,8 +441,8 @@ func (e *Env) UnknownVars() interpreter.PartialActivation {
// TODO: Consider adding an option to generate a Program.Residual to avoid round-tripping to an
// Ast format and then Program again.
func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error) {
pruned := interpreter.PruneAst(a.Expr(), details.State())
expr, err := AstToString(ParsedExprToAst(&exprpb.ParsedExpr{Expr: pruned}))
pruned := interpreter.PruneAst(a.Expr(), a.SourceInfo().GetMacroCalls(), details.State())
expr, err := AstToString(ParsedExprToAst(pruned))
if err != nil {
return nil, err
}
@@ -443,12 +462,12 @@ func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error) {
// EstimateCost estimates the cost of a type checked CEL expression using the length estimates of input data and
// extension functions provided by estimator.
func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator) (checker.CostEstimate, error) {
func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator, opts ...checker.CostOption) (checker.CostEstimate, error) {
checked, err := AstToCheckedExpr(ast)
if err != nil {
return checker.CostEstimate{}, fmt.Errorf("EsimateCost could not inspect Ast: %v", err)
}
return checker.Cost(checked, estimator), nil
return checker.Cost(checked, estimator, opts...)
}
// configure applies a series of EnvOptions to the current environment.
@@ -464,17 +483,9 @@ func (e *Env) configure(opts []EnvOption) (*Env, error) {
}
// If the default UTC timezone fix has been enabled, make sure the library is configured
if e.HasFeature(featureDefaultUTCTimeZone) {
if _, found := e.appliedFeatures[featureDefaultUTCTimeZone]; !found {
e, err = Lib(timeUTCLibrary{})(e)
if err != nil {
return nil, err
}
// record that the feature has been applied since it will generate declarations
// and functions which will be propagated on Extend() calls and which should only
// be registered once.
e.appliedFeatures[featureDefaultUTCTimeZone] = true
}
e, err = e.maybeApplyFeature(featureDefaultUTCTimeZone, Lib(timeUTCLibrary{}))
if err != nil {
return nil, err
}
// Initialize all of the functions configured within the environment.
@@ -486,7 +497,10 @@ func (e *Env) configure(opts []EnvOption) (*Env, error) {
}
// Configure the parser.
prsrOpts := []parser.Option{parser.Macros(e.macros...)}
prsrOpts := []parser.Option{}
prsrOpts = append(prsrOpts, e.prsrOpts...)
prsrOpts = append(prsrOpts, parser.Macros(e.macros...))
if e.HasFeature(featureEnableMacroCallTracking) {
prsrOpts = append(prsrOpts, parser.PopulateMacroCalls(true))
}
@@ -497,7 +511,7 @@ func (e *Env) configure(opts []EnvOption) (*Env, error) {
// Ensure that the checker init happens eagerly rather than lazily.
if e.HasFeature(featureEagerlyValidateDeclarations) {
err := e.initChecker()
_, err := e.initChecker()
if err != nil {
return nil, err
}
@@ -506,7 +520,7 @@ func (e *Env) configure(opts []EnvOption) (*Env, error) {
return e, nil
}
func (e *Env) initChecker() error {
func (e *Env) initChecker() (*checker.Env, error) {
e.chkOnce.Do(func() {
chkOpts := []checker.Option{}
chkOpts = append(chkOpts, e.chkOpts...)
@@ -518,32 +532,68 @@ func (e *Env) initChecker() error {
ce, err := checker.NewEnv(e.Container, e.provider, chkOpts...)
if err != nil {
e.chkErr = err
e.setCheckerOrError(nil, err)
return
}
// Add the statically configured declarations.
err = ce.Add(e.declarations...)
if err != nil {
e.chkErr = err
e.setCheckerOrError(nil, err)
return
}
// Add the function declarations which are derived from the FunctionDecl instances.
for _, fn := range e.functions {
fnDecl, err := functionDeclToExprDecl(fn)
if err != nil {
e.chkErr = err
e.setCheckerOrError(nil, err)
return
}
err = ce.Add(fnDecl)
if err != nil {
e.chkErr = err
e.setCheckerOrError(nil, err)
return
}
}
// Add function declarations here separately.
e.chk = ce
e.setCheckerOrError(ce, nil)
})
return e.chkErr
return e.getCheckerOrError()
}
// setCheckerOrError sets the checker.Env or error state in a concurrency-safe manner
func (e *Env) setCheckerOrError(chk *checker.Env, chkErr error) {
e.chkMutex.Lock()
e.chk = chk
e.chkErr = chkErr
e.chkMutex.Unlock()
}
// getCheckerOrError gets the checker.Env or error state in a concurrency-safe manner
func (e *Env) getCheckerOrError() (*checker.Env, error) {
e.chkMutex.Lock()
defer e.chkMutex.Unlock()
return e.chk, e.chkErr
}
// maybeApplyFeature determines whether the feature-guarded option is enabled, and if so applies
// the feature if it has not already been enabled.
func (e *Env) maybeApplyFeature(feature int, option EnvOption) (*Env, error) {
if !e.HasFeature(feature) {
return e, nil
}
_, applied := e.appliedFeatures[feature]
if applied {
return e, nil
}
e, err := option(e)
if err != nil {
return nil, err
}
// record that the feature has been applied since it will generate declarations
// and functions which will be propagated on Extend() calls and which should only
// be registered once.
e.appliedFeatures[feature] = true
return e, nil
}
// Issues defines methods for inspecting the error details of parse and check calls.

View File

@@ -19,14 +19,14 @@ import (
"fmt"
"reflect"
"google.golang.org/protobuf/proto"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/parser"
"google.golang.org/protobuf/proto"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
anypb "google.golang.org/protobuf/types/known/anypb"
)

View File

@@ -20,10 +20,27 @@ import (
"time"
"github.com/google/cel-go/checker"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/interpreter"
"github.com/google/cel-go/interpreter/functions"
"github.com/google/cel-go/parser"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
const (
optMapMacro = "optMap"
hasValueFunc = "hasValue"
optionalNoneFunc = "optional.none"
optionalOfFunc = "optional.of"
optionalOfNonZeroValueFunc = "optional.ofNonZeroValue"
valueFunc = "value"
unusedIterVar = "#unused"
)
// Library provides a collection of EnvOption and ProgramOption values used to configure a CEL
@@ -42,10 +59,27 @@ type Library interface {
ProgramOptions() []ProgramOption
}
// SingletonLibrary refines the Library interface to ensure that libraries in this format are only
// configured once within the environment.
type SingletonLibrary interface {
Library
// LibraryName provides a namespaced name which is used to check whether the library has already
// been configured in the environment.
LibraryName() string
}
// Lib creates an EnvOption out of a Library, allowing libraries to be provided as functional args,
// and to be linked to each other.
func Lib(l Library) EnvOption {
singleton, isSingleton := l.(SingletonLibrary)
return func(e *Env) (*Env, error) {
if isSingleton {
if e.HasLibrary(singleton.LibraryName()) {
return e, nil
}
e.libraries[singleton.LibraryName()] = true
}
var err error
for _, opt := range l.CompileOptions() {
e, err = opt(e)
@@ -67,6 +101,11 @@ func StdLib() EnvOption {
// features documented in the specification.
type stdLibrary struct{}
// LibraryName implements the SingletonLibrary interface method.
func (stdLibrary) LibraryName() string {
return "cel.lib.std"
}
// EnvOptions returns options for the standard CEL function declarations and macros.
func (stdLibrary) CompileOptions() []EnvOption {
return []EnvOption{
@@ -82,6 +121,225 @@ func (stdLibrary) ProgramOptions() []ProgramOption {
}
}
type optionalLibrary struct{}
// LibraryName implements the SingletonLibrary interface method.
func (optionalLibrary) LibraryName() string {
return "cel.lib.optional"
}
// CompileOptions implements the Library interface method.
func (optionalLibrary) CompileOptions() []EnvOption {
paramTypeK := TypeParamType("K")
paramTypeV := TypeParamType("V")
optionalTypeV := OptionalType(paramTypeV)
listTypeV := ListType(paramTypeV)
mapTypeKV := MapType(paramTypeK, paramTypeV)
return []EnvOption{
// Enable the optional syntax in the parser.
enableOptionalSyntax(),
// Introduce the optional type.
Types(types.OptionalType),
// Configure the optMap macro.
Macros(NewReceiverMacro(optMapMacro, 2, optMap)),
// Global and member functions for working with optional values.
Function(optionalOfFunc,
Overload("optional_of", []*Type{paramTypeV}, optionalTypeV,
UnaryBinding(func(value ref.Val) ref.Val {
return types.OptionalOf(value)
}))),
Function(optionalOfNonZeroValueFunc,
Overload("optional_ofNonZeroValue", []*Type{paramTypeV}, optionalTypeV,
UnaryBinding(func(value ref.Val) ref.Val {
v, isZeroer := value.(traits.Zeroer)
if !isZeroer || !v.IsZeroValue() {
return types.OptionalOf(value)
}
return types.OptionalNone
}))),
Function(optionalNoneFunc,
Overload("optional_none", []*Type{}, optionalTypeV,
FunctionBinding(func(values ...ref.Val) ref.Val {
return types.OptionalNone
}))),
Function(valueFunc,
MemberOverload("optional_value", []*Type{optionalTypeV}, paramTypeV,
UnaryBinding(func(value ref.Val) ref.Val {
opt := value.(*types.Optional)
return opt.GetValue()
}))),
Function(hasValueFunc,
MemberOverload("optional_hasValue", []*Type{optionalTypeV}, BoolType,
UnaryBinding(func(value ref.Val) ref.Val {
opt := value.(*types.Optional)
return types.Bool(opt.HasValue())
}))),
// Implementation of 'or' and 'orValue' are special-cased to support short-circuiting in the
// evaluation chain.
Function("or",
MemberOverload("optional_or_optional", []*Type{optionalTypeV, optionalTypeV}, optionalTypeV)),
Function("orValue",
MemberOverload("optional_orValue_value", []*Type{optionalTypeV, paramTypeV}, paramTypeV)),
// OptSelect is handled specially by the type-checker, so the receiver's field type is used to determine the
// optput type.
Function(operators.OptSelect,
Overload("select_optional_field", []*Type{DynType, StringType}, optionalTypeV)),
// OptIndex is handled mostly like any other indexing operation on a list or map, so the type-checker can use
// these signatures to determine type-agreement without any special handling.
Function(operators.OptIndex,
Overload("list_optindex_optional_int", []*Type{listTypeV, IntType}, optionalTypeV),
Overload("optional_list_optindex_optional_int", []*Type{OptionalType(listTypeV), IntType}, optionalTypeV),
Overload("map_optindex_optional_value", []*Type{mapTypeKV, paramTypeK}, optionalTypeV),
Overload("optional_map_optindex_optional_value", []*Type{OptionalType(mapTypeKV), paramTypeK}, optionalTypeV)),
// Index overloads to accommodate using an optional value as the operand.
Function(operators.Index,
Overload("optional_list_index_int", []*Type{OptionalType(listTypeV), IntType}, optionalTypeV),
Overload("optional_map_index_optional_value", []*Type{OptionalType(mapTypeKV), paramTypeK}, optionalTypeV)),
}
}
func optMap(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {
varIdent := args[0]
varName := ""
switch varIdent.GetExprKind().(type) {
case *exprpb.Expr_IdentExpr:
varName = varIdent.GetIdentExpr().GetName()
default:
return nil, &common.Error{
Message: "optMap() variable name must be a simple identifier",
Location: meh.OffsetLocation(varIdent.GetId()),
}
}
mapExpr := args[1]
return meh.GlobalCall(
operators.Conditional,
meh.ReceiverCall(hasValueFunc, target),
meh.GlobalCall(optionalOfFunc,
meh.Fold(
unusedIterVar,
meh.NewList(),
varName,
meh.ReceiverCall(valueFunc, target),
meh.LiteralBool(false),
meh.Ident(varName),
mapExpr,
),
),
meh.GlobalCall(optionalNoneFunc),
), nil
}
// ProgramOptions implements the Library interface method.
func (optionalLibrary) ProgramOptions() []ProgramOption {
return []ProgramOption{
CustomDecorator(decorateOptionalOr),
}
}
func enableOptionalSyntax() EnvOption {
return func(e *Env) (*Env, error) {
e.prsrOpts = append(e.prsrOpts, parser.EnableOptionalSyntax(true))
return e, nil
}
}
func decorateOptionalOr(i interpreter.Interpretable) (interpreter.Interpretable, error) {
call, ok := i.(interpreter.InterpretableCall)
if !ok {
return i, nil
}
args := call.Args()
if len(args) != 2 {
return i, nil
}
switch call.Function() {
case "or":
if call.OverloadID() != "" && call.OverloadID() != "optional_or_optional" {
return i, nil
}
return &evalOptionalOr{
id: call.ID(),
lhs: args[0],
rhs: args[1],
}, nil
case "orValue":
if call.OverloadID() != "" && call.OverloadID() != "optional_orValue_value" {
return i, nil
}
return &evalOptionalOrValue{
id: call.ID(),
lhs: args[0],
rhs: args[1],
}, nil
default:
return i, nil
}
}
// evalOptionalOr selects between two optional values, either the first if it has a value, or
// the second optional expression is evaluated and returned.
type evalOptionalOr struct {
id int64
lhs interpreter.Interpretable
rhs interpreter.Interpretable
}
// ID implements the Interpretable interface method.
func (opt *evalOptionalOr) ID() int64 {
return opt.id
}
// Eval evaluates the left-hand side optional to determine whether it contains a value, else
// proceeds with the right-hand side evaluation.
func (opt *evalOptionalOr) Eval(ctx interpreter.Activation) ref.Val {
// short-circuit lhs.
optLHS := opt.lhs.Eval(ctx)
optVal, ok := optLHS.(*types.Optional)
if !ok {
return optLHS
}
if optVal.HasValue() {
return optVal
}
return opt.rhs.Eval(ctx)
}
// evalOptionalOrValue selects between an optional or a concrete value. If the optional has a value,
// its value is returned, otherwise the alternative value expression is evaluated and returned.
type evalOptionalOrValue struct {
id int64
lhs interpreter.Interpretable
rhs interpreter.Interpretable
}
// ID implements the Interpretable interface method.
func (opt *evalOptionalOrValue) ID() int64 {
return opt.id
}
// Eval evaluates the left-hand side optional to determine whether it contains a value, else
// proceeds with the right-hand side evaluation.
func (opt *evalOptionalOrValue) Eval(ctx interpreter.Activation) ref.Val {
// short-circuit lhs.
optLHS := opt.lhs.Eval(ctx)
optVal, ok := optLHS.(*types.Optional)
if !ok {
return optLHS
}
if optVal.HasValue() {
return optVal.GetValue()
}
return opt.rhs.Eval(ctx)
}
type timeUTCLibrary struct{}
func (timeUTCLibrary) CompileOptions() []EnvOption {

View File

@@ -17,6 +17,7 @@ package cel
import (
"github.com/google/cel-go/common"
"github.com/google/cel-go/parser"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
@@ -26,8 +27,11 @@ import (
// a Macro should be created per arg-count or as a var arg macro.
type Macro = parser.Macro
// MacroExpander converts a call and its associated arguments into a new CEL abstract syntax tree, or an error
// if the input arguments are not suitable for the expansion requirements for the macro in question.
// MacroExpander converts a call and its associated arguments into a new CEL abstract syntax tree.
//
// If the MacroExpander determines within the implementation that an expansion is not needed it may return
// a nil Expr value to indicate a non-match. However, if an expansion is to be performed, but the arguments
// are not well-formed, the result of the expansion will be an error.
//
// The MacroExpander accepts as arguments a MacroExprHelper as well as the arguments used in the function call
// and produces as output an Expr ast node.
@@ -81,8 +85,10 @@ func ExistsOneMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*ex
// input to produce an output list.
//
// There are two call patterns supported by map:
// <iterRange>.map(<iterVar>, <transform>)
// <iterRange>.map(<iterVar>, <predicate>, <transform>)
//
// <iterRange>.map(<iterVar>, <transform>)
// <iterRange>.map(<iterVar>, <predicate>, <transform>)
//
// In the second form only iterVar values which return true when provided to the predicate expression
// are transformed.
func MapMacroExpander(meh MacroExprHelper, target *exprpb.Expr, args []*exprpb.Expr) (*exprpb.Expr, *common.Error) {

View File

@@ -29,6 +29,7 @@ import (
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/interpreter"
"github.com/google/cel-go/interpreter/functions"
"github.com/google/cel-go/parser"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
descpb "google.golang.org/protobuf/types/descriptorpb"
@@ -61,6 +62,10 @@ const (
// on a CEL timestamp operation. This fixes the scenario where the input time
// is not already in UTC.
featureDefaultUTCTimeZone
// Enable the use of optional types in the syntax, type-system, type-checking,
// and runtime.
featureOptionalTypes
)
// EnvOption is a functional interface for configuring the environment.
@@ -163,19 +168,19 @@ func Container(name string) EnvOption {
// Abbreviations can be useful when working with variables, functions, and especially types from
// multiple namespaces:
//
// // CEL object construction
// qual.pkg.version.ObjTypeName{
// field: alt.container.ver.FieldTypeName{value: ...}
// }
// // CEL object construction
// qual.pkg.version.ObjTypeName{
// field: alt.container.ver.FieldTypeName{value: ...}
// }
//
// Only one the qualified names above may be used as the CEL container, so at least one of these
// references must be a long qualified name within an otherwise short CEL program. Using the
// following abbreviations, the program becomes much simpler:
//
// // CEL Go option
// Abbrevs("qual.pkg.version.ObjTypeName", "alt.container.ver.FieldTypeName")
// // Simplified Object construction
// ObjTypeName{field: FieldTypeName{value: ...}}
// // CEL Go option
// Abbrevs("qual.pkg.version.ObjTypeName", "alt.container.ver.FieldTypeName")
// // Simplified Object construction
// ObjTypeName{field: FieldTypeName{value: ...}}
//
// There are a few rules for the qualified names and the simple abbreviations generated from them:
// - Qualified names must be dot-delimited, e.g. `package.subpkg.name`.
@@ -188,9 +193,12 @@ func Container(name string) EnvOption {
// - Expanded abbreviations do not participate in namespace resolution.
// - Abbreviation expansion is done instead of the container search for a matching identifier.
// - Containers follow C++ namespace resolution rules with searches from the most qualified name
// to the least qualified name.
//
// to the least qualified name.
//
// - Container references within the CEL program may be relative, and are resolved to fully
// qualified names at either type-check time or program plan time, whichever comes first.
//
// qualified names at either type-check time or program plan time, whichever comes first.
//
// If there is ever a case where an identifier could be in both the container and as an
// abbreviation, the abbreviation wins as this will ensure that the meaning of a program is
@@ -216,7 +224,7 @@ func Abbrevs(qualifiedNames ...string) EnvOption {
// environment by default.
//
// Note: This option must be specified after the CustomTypeProvider option when used together.
func Types(addTypes ...interface{}) EnvOption {
func Types(addTypes ...any) EnvOption {
return func(e *Env) (*Env, error) {
reg, isReg := e.provider.(ref.TypeRegistry)
if !isReg {
@@ -253,7 +261,7 @@ func Types(addTypes ...interface{}) EnvOption {
//
// TypeDescs are hermetic to a single Env object, but may be copied to other Env values via
// extension or by re-using the same EnvOption with another NewEnv() call.
func TypeDescs(descs ...interface{}) EnvOption {
func TypeDescs(descs ...any) EnvOption {
return func(e *Env) (*Env, error) {
reg, isReg := e.provider.(ref.TypeRegistry)
if !isReg {
@@ -350,8 +358,8 @@ func Functions(funcs ...*functions.Overload) ProgramOption {
// variables with the same name provided to the Eval() call. If Globals is used in a Library with
// a Lib EnvOption, vars may shadow variables provided by previously added libraries.
//
// The vars value may either be an `interpreter.Activation` instance or a `map[string]interface{}`.
func Globals(vars interface{}) ProgramOption {
// The vars value may either be an `interpreter.Activation` instance or a `map[string]any`.
func Globals(vars any) ProgramOption {
return func(p *prog) (*prog, error) {
defaultVars, err := interpreter.NewActivation(vars)
if err != nil {
@@ -404,6 +412,9 @@ const (
// OptTrackCost enables the runtime cost calculation while validation and return cost within evalDetails
// cost calculation is available via func ActualCost()
OptTrackCost EvalOption = 1 << iota
// OptCheckStringFormat enables compile-time checking of string.format calls for syntax/cardinality.
OptCheckStringFormat EvalOption = 1 << iota
)
// EvalOptions sets one or more evaluation options which may affect the evaluation or Result.
@@ -534,6 +545,13 @@ func DefaultUTCTimeZone(enabled bool) EnvOption {
return features(featureDefaultUTCTimeZone, enabled)
}
// OptionalTypes enable support for optional syntax and types in CEL. The optional value type makes
// it possible to express whether variables have been provided, whether a result has been computed,
// and in the future whether an object field path, map key value, or list index has a value.
func OptionalTypes() EnvOption {
return Lib(optionalLibrary{})
}
// features sets the given feature flags. See list of Feature constants above.
func features(flag int, enabled bool) EnvOption {
return func(e *Env) (*Env, error) {
@@ -541,3 +559,21 @@ func features(flag int, enabled bool) EnvOption {
return e, nil
}
}
// ParserRecursionLimit adjusts the AST depth the parser will tolerate.
// Defaults defined in the parser package.
func ParserRecursionLimit(limit int) EnvOption {
return func(e *Env) (*Env, error) {
e.prsrOpts = append(e.prsrOpts, parser.MaxRecursionDepth(limit))
return e, nil
}
}
// ParserExpressionSizeLimit adjusts the number of code points the expression parser is allowed to parse.
// Defaults defined in the parser package.
func ParserExpressionSizeLimit(limit int) EnvOption {
return func(e *Env) (*Env, error) {
e.prsrOpts = append(e.prsrOpts, parser.ExpressionSizeCodePointLimit(limit))
return e, nil
}
}

View File

@@ -17,21 +17,20 @@ package cel
import (
"context"
"fmt"
"math"
"sync"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/interpreter"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
// Program is an evaluable view of an Ast.
type Program interface {
// Eval returns the result of an evaluation of the Ast and environment against the input vars.
//
// The vars value may either be an `interpreter.Activation` or a `map[string]interface{}`.
// The vars value may either be an `interpreter.Activation` or a `map[string]any`.
//
// If the `OptTrackState`, `OptTrackCost` or `OptExhaustiveEval` flags are used, the `details` response will
// be non-nil. Given this caveat on `details`, the return state from evaluation will be:
@@ -43,16 +42,16 @@ type Program interface {
// An unsuccessful evaluation is typically the result of a series of incompatible `EnvOption`
// or `ProgramOption` values used in the creation of the evaluation environment or executable
// program.
Eval(interface{}) (ref.Val, *EvalDetails, error)
Eval(any) (ref.Val, *EvalDetails, error)
// ContextEval evaluates the program with a set of input variables and a context object in order
// to support cancellation and timeouts. This method must be used in conjunction with the
// InterruptCheckFrequency() option for cancellation interrupts to be impact evaluation.
//
// The vars value may either be an `interpreter.Activation` or `map[string]interface{}`.
// The vars value may either be an `interpreter.Activation` or `map[string]any`.
//
// The output contract for `ContextEval` is otherwise identical to the `Eval` method.
ContextEval(context.Context, interface{}) (ref.Val, *EvalDetails, error)
ContextEval(context.Context, any) (ref.Val, *EvalDetails, error)
}
// NoVars returns an empty Activation.
@@ -65,7 +64,7 @@ func NoVars() interpreter.Activation {
//
// The `vars` value may either be an interpreter.Activation or any valid input to the
// interpreter.NewActivation call.
func PartialVars(vars interface{},
func PartialVars(vars any,
unknowns ...*interpreter.AttributePattern) (interpreter.PartialActivation, error) {
return interpreter.NewPartialActivation(vars, unknowns...)
}
@@ -207,6 +206,37 @@ func newProgram(e *Env, ast *Ast, opts []ProgramOption) (Program, error) {
if len(p.regexOptimizations) > 0 {
decorators = append(decorators, interpreter.CompileRegexConstants(p.regexOptimizations...))
}
// Enable compile-time checking of syntax/cardinality for string.format calls.
if p.evalOpts&OptCheckStringFormat == OptCheckStringFormat {
var isValidType func(id int64, validTypes ...*types.TypeValue) (bool, error)
if ast.IsChecked() {
isValidType = func(id int64, validTypes ...*types.TypeValue) (bool, error) {
t, err := ExprTypeToType(ast.typeMap[id])
if err != nil {
return false, err
}
if t.kind == DynKind {
return true, nil
}
for _, vt := range validTypes {
k, err := typeValueToKind(vt)
if err != nil {
return false, err
}
if k == t.kind {
return true, nil
}
}
return false, nil
}
} else {
// if the AST isn't type-checked, short-circuit validation
isValidType = func(id int64, validTypes ...*types.TypeValue) (bool, error) {
return true, nil
}
}
decorators = append(decorators, interpreter.InterpolateFormattedString(isValidType))
}
// Enable exhaustive eval, state tracking and cost tracking last since they require a factory.
if p.evalOpts&(OptExhaustiveEval|OptTrackState|OptTrackCost) != 0 {
@@ -268,7 +298,7 @@ func (p *prog) initInterpretable(ast *Ast, decs []interpreter.InterpretableDecor
}
// Eval implements the Program interface method.
func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error) {
func (p *prog) Eval(input any) (v ref.Val, det *EvalDetails, err error) {
// Configure error recovery for unexpected panics during evaluation. Note, the use of named
// return values makes it possible to modify the error response during the recovery
// function.
@@ -287,11 +317,11 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
switch v := input.(type) {
case interpreter.Activation:
vars = v
case map[string]interface{}:
case map[string]any:
vars = activationPool.Setup(v)
defer activationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]any, got: (%T)%v", input, input)
}
if p.defaultVars != nil {
vars = interpreter.NewHierarchicalActivation(p.defaultVars, vars)
@@ -307,7 +337,7 @@ func (p *prog) Eval(input interface{}) (v ref.Val, det *EvalDetails, err error)
}
// ContextEval implements the Program interface.
func (p *prog) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
func (p *prog) ContextEval(ctx context.Context, input any) (ref.Val, *EvalDetails, error) {
if ctx == nil {
return nil, nil, fmt.Errorf("context can not be nil")
}
@@ -318,22 +348,17 @@ func (p *prog) ContextEval(ctx context.Context, input interface{}) (ref.Val, *Ev
case interpreter.Activation:
vars = ctxActivationPool.Setup(v, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
case map[string]interface{}:
case map[string]any:
rawVars := activationPool.Setup(v)
defer activationPool.Put(rawVars)
vars = ctxActivationPool.Setup(rawVars, ctx.Done(), p.interruptCheckFrequency)
defer ctxActivationPool.Put(vars)
default:
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]interface{}, got: (%T)%v", input, input)
return nil, nil, fmt.Errorf("invalid input, wanted Activation or map[string]any, got: (%T)%v", input, input)
}
return p.Eval(vars)
}
// Cost implements the Coster interface method.
func (p *prog) Cost() (min, max int64) {
return estimateCost(p.interpretable)
}
// progFactory is a helper alias for marking a program creation factory function.
type progFactory func(interpreter.EvalState, *interpreter.CostTracker) (Program, error)
@@ -354,7 +379,7 @@ func newProgGen(factory progFactory) (Program, error) {
}
// Eval implements the Program interface method.
func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
func (gen *progGen) Eval(input any) (ref.Val, *EvalDetails, error) {
// The factory based Eval() differs from the standard evaluation model in that it generates a
// new EvalState instance for each call to ensure that unique evaluations yield unique stateful
// results.
@@ -379,7 +404,7 @@ func (gen *progGen) Eval(input interface{}) (ref.Val, *EvalDetails, error) {
}
// ContextEval implements the Program interface method.
func (gen *progGen) ContextEval(ctx context.Context, input interface{}) (ref.Val, *EvalDetails, error) {
func (gen *progGen) ContextEval(ctx context.Context, input any) (ref.Val, *EvalDetails, error) {
if ctx == nil {
return nil, nil, fmt.Errorf("context can not be nil")
}
@@ -406,29 +431,6 @@ func (gen *progGen) ContextEval(ctx context.Context, input interface{}) (ref.Val
return v, det, nil
}
// Cost implements the Coster interface method.
func (gen *progGen) Cost() (min, max int64) {
// Use an empty state value since no evaluation is performed.
p, err := gen.factory(emptyEvalState, nil)
if err != nil {
return 0, math.MaxInt64
}
return estimateCost(p)
}
// EstimateCost returns the heuristic cost interval for the program.
func EstimateCost(p Program) (min, max int64) {
return estimateCost(p)
}
func estimateCost(i interface{}) (min, max int64) {
c, ok := i.(interpreter.Coster)
if !ok {
return 0, math.MaxInt64
}
return c.Cost()
}
type ctxEvalActivation struct {
parent interpreter.Activation
interrupt <-chan struct{}
@@ -438,7 +440,7 @@ type ctxEvalActivation struct {
// ResolveName implements the Activation interface method, but adds a special #interrupted variable
// which is capable of testing whether a 'done' signal is provided from a context.Context channel.
func (a *ctxEvalActivation) ResolveName(name string) (interface{}, bool) {
func (a *ctxEvalActivation) ResolveName(name string) (any, bool) {
if name == "#interrupted" {
a.interruptCheckCount++
if a.interruptCheckCount%a.interruptCheckFrequency == 0 {
@@ -461,7 +463,7 @@ func (a *ctxEvalActivation) Parent() interpreter.Activation {
func newCtxEvalActivationPool() *ctxEvalActivationPool {
return &ctxEvalActivationPool{
Pool: sync.Pool{
New: func() interface{} {
New: func() any {
return &ctxEvalActivation{}
},
},
@@ -483,21 +485,21 @@ func (p *ctxEvalActivationPool) Setup(vars interpreter.Activation, done <-chan s
}
type evalActivation struct {
vars map[string]interface{}
lazyVars map[string]interface{}
vars map[string]any
lazyVars map[string]any
}
// ResolveName looks up the value of the input variable name, if found.
//
// Lazy bindings may be supplied within the map-based input in either of the following forms:
// - func() interface{}
// - func() any
// - func() ref.Val
//
// The lazy binding will only be invoked once per evaluation.
//
// Values which are not represented as ref.Val types on input may be adapted to a ref.Val using
// the ref.TypeAdapter configured in the environment.
func (a *evalActivation) ResolveName(name string) (interface{}, bool) {
func (a *evalActivation) ResolveName(name string) (any, bool) {
v, found := a.vars[name]
if !found {
return nil, false
@@ -510,7 +512,7 @@ func (a *evalActivation) ResolveName(name string) (interface{}, bool) {
lazy := obj()
a.lazyVars[name] = lazy
return lazy, true
case func() interface{}:
case func() any:
if resolved, found := a.lazyVars[name]; found {
return resolved, true
}
@@ -530,8 +532,8 @@ func (a *evalActivation) Parent() interpreter.Activation {
func newEvalActivationPool() *evalActivationPool {
return &evalActivationPool{
Pool: sync.Pool{
New: func() interface{} {
return &evalActivation{lazyVars: make(map[string]interface{})}
New: func() any {
return &evalActivation{lazyVars: make(map[string]any)}
},
},
}
@@ -542,13 +544,13 @@ type evalActivationPool struct {
}
// Setup initializes a pooled Activation object with the map input.
func (p *evalActivationPool) Setup(vars map[string]interface{}) *evalActivation {
func (p *evalActivationPool) Setup(vars map[string]any) *evalActivation {
a := p.Pool.Get().(*evalActivation)
a.vars = vars
return a
}
func (p *evalActivationPool) Put(value interface{}) {
func (p *evalActivationPool) Put(value any) {
a := value.(*evalActivation)
for k := range a.lazyVars {
delete(a.lazyVars, k)
@@ -559,7 +561,7 @@ func (p *evalActivationPool) Put(value interface{}) {
var (
emptyEvalState = interpreter.NewEvalState()
// activationPool is an internally managed pool of Activation values that wrap map[string]interface{} inputs
// activationPool is an internally managed pool of Activation values that wrap map[string]any inputs
activationPool = newEvalActivationPool()
// ctxActivationPool is an internally managed pool of Activation values that expose a special #interrupted variable