Move pkg/scheduler to plugin/pkg/scheduler
As the TODO in plugin/pkg/scheduler/scheduler.go described: move everything from pkg/scheduler into this package. Remove references from registry.
This commit is contained in:
212
plugin/pkg/scheduler/algorithm/priorities/priorities.go
Normal file
212
plugin/pkg/scheduler/algorithm/priorities/priorities.go
Normal file
@@ -0,0 +1,212 @@
|
||||
/*
|
||||
Copyright 2014 The Kubernetes Authors All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package priorities
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"github.com/GoogleCloudPlatform/kubernetes/pkg/api"
|
||||
"github.com/GoogleCloudPlatform/kubernetes/pkg/labels"
|
||||
"github.com/GoogleCloudPlatform/kubernetes/plugin/pkg/scheduler/algorithm"
|
||||
"github.com/GoogleCloudPlatform/kubernetes/plugin/pkg/scheduler/algorithm/predicates"
|
||||
"github.com/golang/glog"
|
||||
)
|
||||
|
||||
// the unused capacity is calculated on a scale of 0-10
|
||||
// 0 being the lowest priority and 10 being the highest
|
||||
func calculateScore(requested, capacity int64, node string) int {
|
||||
if capacity == 0 {
|
||||
return 0
|
||||
}
|
||||
if requested > capacity {
|
||||
glog.Infof("Combined requested resources from existing pods exceeds capacity on minion: %s", node)
|
||||
return 0
|
||||
}
|
||||
return int(((capacity - requested) * 10) / capacity)
|
||||
}
|
||||
|
||||
// Calculate the occupancy on a node. 'node' has information about the resources on the node.
|
||||
// 'pods' is a list of pods currently scheduled on the node.
|
||||
func calculateOccupancy(pod *api.Pod, node api.Node, pods []*api.Pod) algorithm.HostPriority {
|
||||
totalMilliCPU := int64(0)
|
||||
totalMemory := int64(0)
|
||||
for _, existingPod := range pods {
|
||||
for _, container := range existingPod.Spec.Containers {
|
||||
totalMilliCPU += container.Resources.Limits.Cpu().MilliValue()
|
||||
totalMemory += container.Resources.Limits.Memory().Value()
|
||||
}
|
||||
}
|
||||
// Add the resources requested by the current pod being scheduled.
|
||||
// This also helps differentiate between differently sized, but empty, minions.
|
||||
for _, container := range pod.Spec.Containers {
|
||||
totalMilliCPU += container.Resources.Limits.Cpu().MilliValue()
|
||||
totalMemory += container.Resources.Limits.Memory().Value()
|
||||
}
|
||||
|
||||
capacityMilliCPU := node.Status.Capacity.Cpu().MilliValue()
|
||||
capacityMemory := node.Status.Capacity.Memory().Value()
|
||||
|
||||
cpuScore := calculateScore(totalMilliCPU, capacityMilliCPU, node.Name)
|
||||
memoryScore := calculateScore(totalMemory, capacityMemory, node.Name)
|
||||
glog.V(4).Infof(
|
||||
"%v -> %v: Least Requested Priority, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d, %d)",
|
||||
pod.Name, node.Name,
|
||||
totalMilliCPU, totalMemory,
|
||||
capacityMilliCPU, capacityMemory,
|
||||
cpuScore, memoryScore,
|
||||
)
|
||||
|
||||
return algorithm.HostPriority{
|
||||
Host: node.Name,
|
||||
Score: int((cpuScore + memoryScore) / 2),
|
||||
}
|
||||
}
|
||||
|
||||
// LeastRequestedPriority is a priority function that favors nodes with fewer requested resources.
|
||||
// It calculates the percentage of memory and CPU requested by pods scheduled on the node, and prioritizes
|
||||
// based on the minimum of the average of the fraction of requested to capacity.
|
||||
// Details: (Sum(requested cpu) / Capacity + Sum(requested memory) / Capacity) * 50
|
||||
func LeastRequestedPriority(pod *api.Pod, podLister algorithm.PodLister, minionLister algorithm.MinionLister) (algorithm.HostPriorityList, error) {
|
||||
nodes, err := minionLister.List()
|
||||
if err != nil {
|
||||
return algorithm.HostPriorityList{}, err
|
||||
}
|
||||
podsToMachines, err := predicates.MapPodsToMachines(podLister)
|
||||
|
||||
list := algorithm.HostPriorityList{}
|
||||
for _, node := range nodes.Items {
|
||||
list = append(list, calculateOccupancy(pod, node, podsToMachines[node.Name]))
|
||||
}
|
||||
return list, nil
|
||||
}
|
||||
|
||||
type NodeLabelPrioritizer struct {
|
||||
label string
|
||||
presence bool
|
||||
}
|
||||
|
||||
func NewNodeLabelPriority(label string, presence bool) algorithm.PriorityFunction {
|
||||
labelPrioritizer := &NodeLabelPrioritizer{
|
||||
label: label,
|
||||
presence: presence,
|
||||
}
|
||||
return labelPrioritizer.CalculateNodeLabelPriority
|
||||
}
|
||||
|
||||
// CalculateNodeLabelPriority checks whether a particular label exists on a minion or not, regardless of its value.
|
||||
// If presence is true, prioritizes minions that have the specified label, regardless of value.
|
||||
// If presence is false, prioritizes minions that do not have the specified label.
|
||||
func (n *NodeLabelPrioritizer) CalculateNodeLabelPriority(pod *api.Pod, podLister algorithm.PodLister, minionLister algorithm.MinionLister) (algorithm.HostPriorityList, error) {
|
||||
var score int
|
||||
minions, err := minionLister.List()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
labeledMinions := map[string]bool{}
|
||||
for _, minion := range minions.Items {
|
||||
exists := labels.Set(minion.Labels).Has(n.label)
|
||||
labeledMinions[minion.Name] = (exists && n.presence) || (!exists && !n.presence)
|
||||
}
|
||||
|
||||
result := []algorithm.HostPriority{}
|
||||
//score int - scale of 0-10
|
||||
// 0 being the lowest priority and 10 being the highest
|
||||
for minionName, success := range labeledMinions {
|
||||
if success {
|
||||
score = 10
|
||||
} else {
|
||||
score = 0
|
||||
}
|
||||
result = append(result, algorithm.HostPriority{Host: minionName, Score: score})
|
||||
}
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// BalancedResourceAllocation favors nodes with balanced resource usage rate.
|
||||
// BalancedResourceAllocation should **NOT** be used alone, and **MUST** be used together with LeastRequestedPriority.
|
||||
// It calculates the difference between the cpu and memory fracion of capacity, and prioritizes the host based on how
|
||||
// close the two metrics are to each other.
|
||||
// Detail: score = 10 - abs(cpuFraction-memoryFraction)*10. The algorithm is partly inspired by:
|
||||
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced Resource Utilization"
|
||||
func BalancedResourceAllocation(pod *api.Pod, podLister algorithm.PodLister, minionLister algorithm.MinionLister) (algorithm.HostPriorityList, error) {
|
||||
nodes, err := minionLister.List()
|
||||
if err != nil {
|
||||
return algorithm.HostPriorityList{}, err
|
||||
}
|
||||
podsToMachines, err := predicates.MapPodsToMachines(podLister)
|
||||
|
||||
list := algorithm.HostPriorityList{}
|
||||
for _, node := range nodes.Items {
|
||||
list = append(list, calculateBalancedResourceAllocation(pod, node, podsToMachines[node.Name]))
|
||||
}
|
||||
return list, nil
|
||||
}
|
||||
|
||||
func calculateBalancedResourceAllocation(pod *api.Pod, node api.Node, pods []*api.Pod) algorithm.HostPriority {
|
||||
totalMilliCPU := int64(0)
|
||||
totalMemory := int64(0)
|
||||
score := int(0)
|
||||
for _, existingPod := range pods {
|
||||
for _, container := range existingPod.Spec.Containers {
|
||||
totalMilliCPU += container.Resources.Limits.Cpu().MilliValue()
|
||||
totalMemory += container.Resources.Limits.Memory().Value()
|
||||
}
|
||||
}
|
||||
// Add the resources requested by the current pod being scheduled.
|
||||
// This also helps differentiate between differently sized, but empty, minions.
|
||||
for _, container := range pod.Spec.Containers {
|
||||
totalMilliCPU += container.Resources.Limits.Cpu().MilliValue()
|
||||
totalMemory += container.Resources.Limits.Memory().Value()
|
||||
}
|
||||
|
||||
capacityMilliCPU := node.Status.Capacity.Cpu().MilliValue()
|
||||
capacityMemory := node.Status.Capacity.Memory().Value()
|
||||
|
||||
cpuFraction := fractionOfCapacity(totalMilliCPU, capacityMilliCPU, node.Name)
|
||||
memoryFraction := fractionOfCapacity(totalMemory, capacityMemory, node.Name)
|
||||
if cpuFraction >= 1 || memoryFraction >= 1 {
|
||||
// if requested >= capacity, the corresponding host should never be preferrred.
|
||||
score = 0
|
||||
} else {
|
||||
// Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
|
||||
// respectively. Multilying the absolute value of the difference by 10 scales the value to
|
||||
// 0-10 with 0 representing well balanced allocation and 10 poorly balanced. Subtracting it from
|
||||
// 10 leads to the score which also scales from 0 to 10 while 10 representing well balanced.
|
||||
diff := math.Abs(cpuFraction - memoryFraction)
|
||||
score = int(10 - diff*10)
|
||||
}
|
||||
glog.V(4).Infof(
|
||||
"%v -> %v: Balanced Resource Allocation, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d)",
|
||||
pod.Name, node.Name,
|
||||
totalMilliCPU, totalMemory,
|
||||
capacityMilliCPU, capacityMemory,
|
||||
score,
|
||||
)
|
||||
|
||||
return algorithm.HostPriority{
|
||||
Host: node.Name,
|
||||
Score: score,
|
||||
}
|
||||
}
|
||||
|
||||
func fractionOfCapacity(requested, capacity int64, node string) float64 {
|
||||
if capacity == 0 {
|
||||
return 1
|
||||
}
|
||||
return float64(requested) / float64(capacity)
|
||||
}
|
Reference in New Issue
Block a user