e2e_node: clean up non-recommended import

This commit is contained in:
SataQiu
2019-07-28 12:49:36 +08:00
parent 23649560c0
commit 641d330f89
35 changed files with 763 additions and 763 deletions

View File

@@ -31,7 +31,7 @@ import (
e2eperf "k8s.io/kubernetes/test/e2e/framework/perf"
imageutils "k8s.io/kubernetes/test/utils/image"
. "github.com/onsi/ginkgo"
"github.com/onsi/ginkgo"
)
var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
@@ -47,7 +47,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
f := framework.NewDefaultFramework("resource-usage")
BeforeEach(func() {
ginkgo.BeforeEach(func() {
om = framework.NewRuntimeOperationMonitor(f.ClientSet)
// The test collects resource usage from a standalone Cadvisor pod.
// The Cadvsior of Kubelet has a housekeeping interval of 10s, which is too long to
@@ -57,7 +57,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
rc = NewResourceCollector(containerStatsPollingPeriod)
})
AfterEach(func() {
ginkgo.AfterEach(func() {
result := om.GetLatestRuntimeOperationErrorRate()
e2elog.Logf("runtime operation error metrics:\n%s", framework.FormatRuntimeOperationErrorRate(result))
})
@@ -65,7 +65,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
// This test measures and verifies the steady resource usage of node is within limit
// It collects data from a standalone Cadvisor with housekeeping interval 1s.
// It verifies CPU percentiles and the lastest memory usage.
Context("regular resource usage tracking", func() {
ginkgo.Context("regular resource usage tracking", func() {
rTests := []resourceTest{
{
podsNr: 10,
@@ -83,7 +83,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
for _, testArg := range rTests {
itArg := testArg
desc := fmt.Sprintf("resource tracking for %d pods per node", itArg.podsNr)
It(desc, func() {
ginkgo.It(desc, func() {
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
runResourceUsageTest(f, rc, itArg)
@@ -94,7 +94,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
}
})
Context("regular resource usage tracking", func() {
ginkgo.Context("regular resource usage tracking", func() {
rTests := []resourceTest{
{
podsNr: 0,
@@ -113,7 +113,7 @@ var _ = SIGDescribe("Resource-usage [Serial] [Slow]", func() {
for _, testArg := range rTests {
itArg := testArg
desc := fmt.Sprintf("resource tracking for %d pods per node [Benchmark]", itArg.podsNr)
It(desc, func() {
ginkgo.It(desc, func() {
testInfo := getTestNodeInfo(f, itArg.getTestName(), desc)
runResourceUsageTest(f, rc, itArg)
@@ -152,7 +152,7 @@ func runResourceUsageTest(f *framework.Framework, rc *ResourceCollector, testArg
defer deletePodsSync(f, append(pods, getCadvisorPod()))
defer rc.Stop()
By("Creating a batch of Pods")
ginkgo.By("Creating a batch of Pods")
f.PodClient().CreateBatch(pods)
// wait for a while to let the node be steady
@@ -162,7 +162,7 @@ func runResourceUsageTest(f *framework.Framework, rc *ResourceCollector, testArg
rc.LogLatest()
rc.Reset()
By("Start monitoring resource usage")
ginkgo.By("Start monitoring resource usage")
// Periodically dump the cpu summary until the deadline is met.
// Note that without calling framework.ResourceMonitor.Reset(), the stats
// would occupy increasingly more memory. This should be fine
@@ -180,7 +180,7 @@ func runResourceUsageTest(f *framework.Framework, rc *ResourceCollector, testArg
logPods(f.ClientSet)
}
By("Reporting overall resource usage")
ginkgo.By("Reporting overall resource usage")
logPods(f.ClientSet)
}