Run update-vendor.sh

This commit is contained in:
Dr. Stefan Schimanski
2019-07-13 10:07:03 +02:00
parent 7408ebfdca
commit 91a3704938
63 changed files with 1907 additions and 793 deletions

View File

@@ -43,13 +43,12 @@ type TypeRef struct {
}
// Atom represents the smallest possible pieces of the type system.
// Each set field in the Atom represents a possible type for the object.
// If none of the fields are set, any object will fail validation against the atom.
type Atom struct {
// Exactly one of the below must be set.
*Scalar `yaml:"scalar,omitempty"`
*Struct `yaml:"struct,omitempty"`
*List `yaml:"list,omitempty"`
*Map `yaml:"map,omitempty"`
*Untyped `yaml:"untyped,omitempty"`
*Scalar `yaml:"scalar,omitempty"`
*List `yaml:"list,omitempty"`
*Map `yaml:"map,omitempty"`
}
// Scalar (AKA "primitive") represents a type which has a single value which is
@@ -65,47 +64,105 @@ const (
)
// ElementRelationship is an enum of the different possible relationships
// between the elements of container types (maps, lists, structs, untyped).
// between the elements of container types (maps, lists).
type ElementRelationship string
const (
// Associative only applies to lists (see the documentation there).
Associative = ElementRelationship("associative")
// Atomic makes container types (lists, maps, structs, untyped) behave
// as scalars / leaf fields (which is the default for untyped data).
// Atomic makes container types (lists, maps) behave
// as scalars / leaf fields
Atomic = ElementRelationship("atomic")
// Separable means the items of the container type have no particular
// relationship (default behavior for maps and structs).
// relationship (default behavior for maps).
Separable = ElementRelationship("separable")
)
// Struct represents a type which is composed of a number of different fields.
// Each field has a name and a type.
// Map is a key-value pair. Its default semantics are the same as an
// associative list, but:
// * It is serialized differently:
// map: {"k": {"value": "v"}}
// list: [{"key": "k", "value": "v"}]
// * Keys must be string typed.
// * Keys can't have multiple components.
//
// TODO: in the future, we will add one-of groups (sometimes called unions).
type Struct struct {
// Optionally, maps may be atomic (for example, imagine representing an RGB
// color value--it doesn't make sense to have different actors own the R and G
// values).
//
// Maps may also represent a type which is composed of a number of different fields.
// Each field has a name and a type.
type Map struct {
// Each struct field appears exactly once in this list. The order in
// this list defines the canonical field ordering.
Fields []StructField `yaml:"fields,omitempty"`
// TODO: Implement unions, either this way or by inlining.
// Unions are groupings of fields with special rules. They may refer to
// A Union is a grouping of fields with special rules. It may refer to
// one or more fields in the above list. A given field from the above
// list may be referenced in exactly 0 or 1 places in the below list.
// Unions []Union `yaml:"unions,omitempty"`
// One can have multiple unions in the same struct, but the fields can't
// overlap between unions.
Unions []Union `yaml:"unions,omitempty"`
// ElementRelationship states the relationship between the struct's items.
// ElementType is the type of the structs's unknown fields.
ElementType TypeRef `yaml:"elementType,omitempty"`
// ElementRelationship states the relationship between the map's items.
// * `separable` (or unset) implies that each element is 100% independent.
// * `atomic` implies that all elements depend on each other, and this
// is effectively a scalar / leaf field; it doesn't make sense for
// separate actors to set the elements. Example: an RGB color struct;
// it would never make sense to "own" only one component of the
// color.
// The default behavior for structs is `separable`; it's permitted to
// The default behavior for maps is `separable`; it's permitted to
// leave this unset to get the default behavior.
ElementRelationship ElementRelationship `yaml:"elementRelationship,omitempty"`
}
// UnionFields are mapping between the fields that are part of the union and
// their discriminated value. The discriminated value has to be set, and
// should not conflict with other discriminated value in the list.
type UnionField struct {
// FieldName is the name of the field that is part of the union. This
// is the serialized form of the field.
FieldName string `yaml:"fieldName"`
// Discriminatorvalue is the value of the discriminator to
// select that field. If the union doesn't have a discriminator,
// this field is ignored.
DiscriminatorValue string `yaml:"discriminatorValue"`
}
// Union, or oneof, means that only one of multiple fields of a structure can be
// set at a time. Setting the discriminator helps clearing oher fields:
// - If discriminator changed to non-nil, and a new field has been added
// that doesn't match, an error is returned,
// - If discriminator hasn't changed and two fields or more are set, an
// error is returned,
// - If discriminator changed to non-nil, all other fields but the
// discriminated one will be cleared,
// - Otherwise, If only one field is left, update discriminator to that value.
type Union struct {
// Discriminator, if present, is the name of the field that
// discriminates fields in the union. The mapping between the value of
// the discriminator and the field is done by using the Fields list
// below.
Discriminator *string `yaml:"discriminator,omitempty"`
// DeduceInvalidDiscriminator indicates if the discriminator
// should be updated automatically based on the fields set. This
// typically defaults to false since we don't want to deduce by
// default (the behavior exists to maintain compatibility on
// existing types and shouldn't be used for new types).
DeduceInvalidDiscriminator bool `yaml:"deduceInvalidDiscriminator,omitempty"`
// This is the list of fields that belong to this union. All the
// fields present in here have to be part of the parent
// structure. Discriminator (if oneOf has one), is NOT included in
// this list. The value for field is how we map the name of the field
// to actual value for discriminator.
Fields []UnionField `yaml:"fields,omitempty"`
}
// StructField pairs a field name with a field type.
type StructField struct {
// Name is the field name.
@@ -129,15 +186,14 @@ type List struct {
// * `atomic`: the list is treated as a single entity, like a scalar.
// * `associative`:
// - If the list element is a scalar, the list is treated as a set.
// - If the list element is a struct, the list is treated as a map.
// - The list element must not be a map or a list itself.
// - If the list element is a map, the list is treated as a map.
// There is no default for this value for lists; all schemas must
// explicitly state the element relationship for all lists.
ElementRelationship ElementRelationship `yaml:"elementRelationship,omitempty"`
// Iff ElementRelationship is `associative`, and the element type is
// struct, then Keys must have non-zero length, and it lists the fields
// of the element's struct type which are to be used as the keys of the
// map, then Keys must have non-zero length, and it lists the fields
// of the element's map type which are to be used as the keys of the
// list.
//
// TODO: change this to "non-atomic struct" above and make the code reflect this.
@@ -146,51 +202,6 @@ type List struct {
Keys []string `yaml:"keys,omitempty"`
}
// Map is a key-value pair. Its default semantics are the same as an
// associative list, but:
// * It is serialized differently:
// map: {"k": {"value": "v"}}
// list: [{"key": "k", "value": "v"}]
// * Keys must be string typed.
// * Keys can't have multiple components.
//
// Although serialized the same, maps are different from structs in that each
// map item must have the same type.
//
// Optionally, maps may be atomic (for example, imagine representing an RGB
// color value--it doesn't make sense to have different actors own the R and G
// values).
type Map struct {
// ElementType is the type of the list's elements.
ElementType TypeRef `yaml:"elementType,omitempty"`
// ElementRelationship states the relationship between the map's items.
// * `separable` implies that each element is 100% independent.
// * `atomic` implies that all elements depend on each other, and this
// is effectively a scalar / leaf field; it doesn't make sense for
// separate actors to set the elements.
// TODO: find a simple example.
// The default behavior for maps is `separable`; it's permitted to
// leave this unset to get the default behavior.
ElementRelationship ElementRelationship `yaml:"elementRelationship,omitempty"`
}
// Untyped represents types that allow arbitrary content. (Think: plugin
// objects.)
type Untyped struct {
// ElementRelationship states the relationship between the items, if
// container-typed data happens to be present here.
// * `atomic` implies that all elements depend on each other, and this
// is effectively a scalar / leaf field; it doesn't make sense for
// separate actors to set the elements.
// TODO: support "guess" (guesses at associative list keys)
// TODO: support "lookup" (calls a lookup function to figure out the
// schema based on the data)
// The default behavior for untyped data is `atomic`; it's permitted to
// leave this unset to get the default behavior.
ElementRelationship ElementRelationship `yaml:"elementRelationship,omitempty"`
}
// FindNamedType is a convenience function that returns the referenced TypeDef,
// if it exists, or (nil, false) if it doesn't.
func (s Schema) FindNamedType(name string) (TypeDef, bool) {