Prefer to delete doubled-up pods of a ReplicaSet

When scaling down a ReplicaSet, delete doubled up replicas first, where a
"doubled up replica" is defined as one that is on the same node as an
active replica belonging to a related ReplicaSet.  ReplicaSets are
considered "related" if they have a common controller (typically a
Deployment).

The intention of this change is to make a rolling update of a Deployment
scale down the old ReplicaSet as it scales up the new ReplicaSet by
deleting pods from the old ReplicaSet that are colocated with ready pods of
the new ReplicaSet.  This change in the behavior of rolling updates can be
combined with pod affinity rules to preserve the locality of a Deployment's
pods over rollout.

A specific scenario that benefits from this change is when a Deployment's
pods are exposed by a Service that has type "LoadBalancer" and external
traffic policy "Local".  In this scenario, the load balancer uses health
checks to determine whether it should forward traffic for the Service to a
particular node.  If the node has no local endpoints for the Service, the
health check will fail for that node.  Eventually, the load balancer will
stop forwarding traffic to that node.  In the meantime, the service proxy
drops traffic for that Service.  Thus, in order to reduce risk of dropping
traffic during a rolling update, it is desirable preserve node locality of
endpoints.

* pkg/controller/controller_utils.go (ActivePodsWithRanks): New type to
sort pods using a given ranking.
* pkg/controller/controller_utils_test.go (TestSortingActivePodsWithRanks):
New test for ActivePodsWithRanks.
* pkg/controller/replicaset/replica_set.go
(getReplicaSetsWithSameController): New method.  Given a ReplicaSet, return
all ReplicaSets that have the same owner.
(manageReplicas): Call getIndirectlyRelatedPods, and pass its result to
getPodsToDelete.
(getIndirectlyRelatedPods): New method.  Given a ReplicaSet, return all
pods that are owned by any ReplicaSet with the same owner.
(getPodsToDelete): Add an argument for related pods.  Use related pods and
the new getPodsRankedByRelatedPodsOnSameNode function to take into account
whether a pod is doubled up when sorting pods for deletion.
(getPodsRankedByRelatedPodsOnSameNode): New function.  Return an
ActivePodsWithRanks value that wraps the given slice of pods and computes
ranks where each pod's rank is equal to the number of active related pods
that are colocated on the same node.
* pkg/controller/replicaset/replica_set_test.go (newReplicaSet): Set
OwnerReferences on the ReplicaSet.
(newPod): Set a unique UID on the pod.
(byName): New type to sort pods by name.
(TestGetReplicaSetsWithSameController): New test for
getReplicaSetsWithSameController.
(TestRelatedPodsLookup): New test for getIndirectlyRelatedPods.
(TestGetPodsToDelete): Augment the "various pod phases and conditions, diff
= len(pods)" test case to ensure that scale-down still selects doubled-up
pods if there are not enough other pods to scale down.  Add a "various pod
phases and conditions, diff = len(pods), relatedPods empty" test case to
verify that getPodsToDelete works even if related pods could not be
determined.  Add a "ready and colocated with another ready pod vs not
colocated, diff < len(pods)" test case to verify that a doubled-up pod gets
preferred for deletion.  Augment the "various pod phases and conditions,
diff < len(pods)" test case to ensure that not-ready pods are preferred
over ready but doubled-up pods.
* pkg/controller/replicaset/BUILD: Regenerate.
* test/e2e/apps/deployment.go
(testRollingUpdateDeploymentWithLocalTrafficLoadBalancer): New end-to-end
test.  Create a deployment with a rolling update strategy and affinity
rules and a load balancer with "Local" external traffic policy, and verify
that set of nodes with local endponts for the service remains unchanged
during rollouts.
(setAffinity): New helper, used by
testRollingUpdateDeploymentWithLocalTrafficLoadBalancer.
* test/e2e/framework/service/jig.go (GetEndpointNodes): Factor building the
set of node names out...
(GetEndpointNodeNames): ...into this new method.
This commit is contained in:
Miciah Masters
2019-07-10 18:56:19 -04:00
committed by Miciah Dashiel Butler Masters
parent 865c3c5670
commit 980b6406b2
7 changed files with 668 additions and 32 deletions

View File

@@ -771,6 +771,94 @@ func (s ActivePods) Less(i, j int) bool {
return false
}
// ActivePodsWithRanks is a sortable list of pods and a list of corresponding
// ranks which will be considered during sorting. The two lists must have equal
// length. After sorting, the pods will be ordered as follows, applying each
// rule in turn until one matches:
//
// 1. If only one of the pods is assigned to a node, the pod that is not
// assigned comes before the pod that is.
// 2. If the pods' phases differ, a pending pod comes before a pod whose phase
// is unknown, and a pod whose phase is unknown comes before a running pod.
// 3. If exactly one of the pods is ready, the pod that is not ready comes
// before the ready pod.
// 4. If the pods' ranks differ, the pod with greater rank comes before the pod
// with lower rank.
// 5. If both pods are ready but have not been ready for the same amount of
// time, the pod that has been ready for a shorter amount of time comes
// before the pod that has been ready for longer.
// 6. If one pod has a container that has restarted more than any container in
// the other pod, the pod with the container with more restarts comes
// before the other pod.
// 7. If the pods' creation times differ, the pod that was created more recently
// comes before the older pod.
//
// If none of these rules matches, the second pod comes before the first pod.
//
// The intention of this ordering is to put pods that should be preferred for
// deletion first in the list.
type ActivePodsWithRanks struct {
// Pods is a list of pods.
Pods []*v1.Pod
// Rank is a ranking of pods. This ranking is used during sorting when
// comparing two pods that are both scheduled, in the same phase, and
// having the same ready status.
Rank []int
}
func (s ActivePodsWithRanks) Len() int {
return len(s.Pods)
}
func (s ActivePodsWithRanks) Swap(i, j int) {
s.Pods[i], s.Pods[j] = s.Pods[j], s.Pods[i]
s.Rank[i], s.Rank[j] = s.Rank[j], s.Rank[i]
}
// Less compares two pods with corresponding ranks and returns true if the first
// one should be preferred for deletion.
func (s ActivePodsWithRanks) Less(i, j int) bool {
// 1. Unassigned < assigned
// If only one of the pods is unassigned, the unassigned one is smaller
if s.Pods[i].Spec.NodeName != s.Pods[j].Spec.NodeName && (len(s.Pods[i].Spec.NodeName) == 0 || len(s.Pods[j].Spec.NodeName) == 0) {
return len(s.Pods[i].Spec.NodeName) == 0
}
// 2. PodPending < PodUnknown < PodRunning
m := map[v1.PodPhase]int{v1.PodPending: 0, v1.PodUnknown: 1, v1.PodRunning: 2}
if m[s.Pods[i].Status.Phase] != m[s.Pods[j].Status.Phase] {
return m[s.Pods[i].Status.Phase] < m[s.Pods[j].Status.Phase]
}
// 3. Not ready < ready
// If only one of the pods is not ready, the not ready one is smaller
if podutil.IsPodReady(s.Pods[i]) != podutil.IsPodReady(s.Pods[j]) {
return !podutil.IsPodReady(s.Pods[i])
}
// 4. Doubled up < not doubled up
// If one of the two pods is on the same node as one or more additional
// ready pods that belong to the same replicaset, whichever pod has more
// colocated ready pods is less
if s.Rank[i] != s.Rank[j] {
return s.Rank[i] > s.Rank[j]
}
// TODO: take availability into account when we push minReadySeconds information from deployment into pods,
// see https://github.com/kubernetes/kubernetes/issues/22065
// 5. Been ready for empty time < less time < more time
// If both pods are ready, the latest ready one is smaller
if podutil.IsPodReady(s.Pods[i]) && podutil.IsPodReady(s.Pods[j]) && !podReadyTime(s.Pods[i]).Equal(podReadyTime(s.Pods[j])) {
return afterOrZero(podReadyTime(s.Pods[i]), podReadyTime(s.Pods[j]))
}
// 6. Pods with containers with higher restart counts < lower restart counts
if maxContainerRestarts(s.Pods[i]) != maxContainerRestarts(s.Pods[j]) {
return maxContainerRestarts(s.Pods[i]) > maxContainerRestarts(s.Pods[j])
}
// 7. Empty creation time pods < newer pods < older pods
if !s.Pods[i].CreationTimestamp.Equal(&s.Pods[j].CreationTimestamp) {
return afterOrZero(&s.Pods[i].CreationTimestamp, &s.Pods[j].CreationTimestamp)
}
return false
}
// afterOrZero checks if time t1 is after time t2; if one of them
// is zero, the zero time is seen as after non-zero time.
func afterOrZero(t1, t2 *metav1.Time) bool {