rename resize to scale

This commit is contained in:
Anastasis Andronidis 2015-05-21 23:10:25 +02:00
parent d4a47bdb9e
commit 9e3a540940
39 changed files with 391 additions and 382 deletions

View File

@ -442,9 +442,9 @@ _kubectl_rolling-update()
must_have_one_noun=()
}
_kubectl_resize()
_kubectl_scale()
{
last_command="kubectl_resize"
last_command="kubectl_scale"
commands=()
flags=()
@ -897,7 +897,7 @@ _kubectl()
commands+=("namespace")
commands+=("logs")
commands+=("rolling-update")
commands+=("resize")
commands+=("scale")
commands+=("exec")
commands+=("port-forward")
commands+=("proxy")

View File

@ -20,9 +20,9 @@ kubectl_logs.md
kubectl_namespace.md
kubectl_port-forward.md
kubectl_proxy.md
kubectl_resize.md
kubectl_rolling-update.md
kubectl_run.md
kubectl_scale.md
kubectl_stop.md
kubectl_update.md
kubectl_version.md

View File

@ -189,7 +189,7 @@ These are verbs which change the fundamental type of data returned (watch return
Two additional verbs `redirect` and `proxy` provide access to cluster resources as described in [accessing-the-cluster.md](accessing-the-cluster.md).
When resources wish to expose alternative actions that are closely coupled to a single resource, they should do so using new sub-resources. An example is allowing automated processes to update the "status" field of a Pod. The `/pods` endpoint only allows updates to "metadata" and "spec", since those reflect end-user intent. An automated process should be able to modify status for users to see by sending an updated Pod kind to the server to the "/pods/<name>/status" endpoint - the alternate endpoint allows different rules to be applied to the update, and access to be appropriately restricted. Likewise, some actions like "stop" or "resize" are best represented as REST sub-resources that are POSTed to. The POST action may require a simple kind to be provided if the action requires parameters, or function without a request body.
When resources wish to expose alternative actions that are closely coupled to a single resource, they should do so using new sub-resources. An example is allowing automated processes to update the "status" field of a Pod. The `/pods` endpoint only allows updates to "metadata" and "spec", since those reflect end-user intent. An automated process should be able to modify status for users to see by sending an updated Pod kind to the server to the "/pods/<name>/status" endpoint - the alternate endpoint allows different rules to be applied to the update, and access to be appropriately restricted. Likewise, some actions like "stop" or "scale" are best represented as REST sub-resources that are POSTed to. The POST action may require a simple kind to be provided if the action requires parameters, or function without a request body.
TODO: more documentation of Watch

View File

@ -243,10 +243,10 @@ myNginx nginx name=my-nginx 3
We did not start any services, hence there are none listed. But we see three replicas displayed properly.
Check the [guestbook](../../examples/guestbook/README.md) application to learn how to create a service.
You can already play with resizing the replicas with:
You can already play with scaling the replicas with:
```sh
$ ./cluster/kubectl.sh resize rc my-nginx --replicas=2
$ ./cluster/kubectl.sh scale rc my-nginx --replicas=2
$ ./cluster/kubectl.sh get pods
NAME IMAGE(S) HOST LABELS STATUS
7813c8bd-3ffe-11e4-9036-0800279696e1 nginx 10.245.2.2/10.245.2.2 name=myNginx Running

View File

@ -88,7 +88,7 @@ redis-slave-controller-gziey 10.2.1.4 slave brendanburns/redis
## Scaling
Two single-core minions are certainly not enough for a production system of today, and, as you can see, there is one _unassigned_ pod. Let's resize the cluster by adding a couple of bigger nodes.
Two single-core minions are certainly not enough for a production system of today, and, as you can see, there is one _unassigned_ pod. Let's scale the cluster by adding a couple of bigger nodes.
You will need to open another terminal window on your machine and go to the same working directory (e.g. `~/Workspace/weave-demos/coreos-azure`).
@ -96,9 +96,9 @@ First, lets set the size of new VMs:
```
export AZ_VM_SIZE=Large
```
Now, run resize script with state file of the previous deployment and number of minions to add:
Now, run scale script with state file of the previous deployment and number of minions to add:
```
./resize-kubernetes-cluster.js ./output/kubernetes_1c1496016083b4_deployment.yml 2
./scale-kubernetes-cluster.js ./output/kubernetes_1c1496016083b4_deployment.yml 2
...
azure_wrapper/info: Saved SSH config, you can use it like so: `ssh -F ./output/kubernetes_8f984af944f572_ssh_conf <hostname>`
azure_wrapper/info: The hosts in this deployment are:
@ -124,7 +124,7 @@ kube-03 environment=production Ready
kube-04 environment=production Ready
```
You can see that two more minions joined happily. Let's resize the number of Guestbook instances now.
You can see that two more minions joined happily. Let's scale the number of Guestbook instances now.
First, double-check how many replication controllers there are:
@ -134,12 +134,12 @@ CONTROLLER CONTAINER(S) IMAGE(S)
frontend-controller php-redis kubernetes/example-guestbook-php-redis name=frontend 3
redis-slave-controller slave brendanburns/redis-slave name=redisslave 2
```
As there are 4 minions, let's resize proportionally:
As there are 4 minions, let's scale proportionally:
```
core@kube-00 ~ $ kubectl resize --replicas=4 rc redis-slave-controller
resized
core@kube-00 ~ $ kubectl resize --replicas=4 rc frontend-controller
resized
core@kube-00 ~ $ kubectl scale --replicas=4 rc redis-slave-controller
scaled
core@kube-00 ~ $ kubectl scale --replicas=4 rc frontend-controller
scaled
```
Check what you have now:
```
@ -182,7 +182,7 @@ If you don't wish care about the Azure bill, you can tear down the cluster. It's
./destroy-cluster.js ./output/kubernetes_8f984af944f572_deployment.yml
```
> Note: make sure to use the _latest state file_, as after resizing there is a new one.
> Note: make sure to use the _latest state file_, as after scaling there is a new one.
By the way, with the scripts shown, you can deploy multiple clusters, if you like :)

View File

@ -46,7 +46,7 @@ Note that you will need run this curl command on your boot2docker VM if you are
Now try to scale up the nginx you created before:
```sh
kubectl resize rc nginx --replicas=3
kubectl scale rc nginx --replicas=3
```
And list the pods

View File

@ -219,10 +219,10 @@ myNginx nginx name=my-nginx 3
We did not start any services, hence there are none listed. But we see three replicas displayed properly.
Check the [guestbook](../../examples/guestbook/README.md) application to learn how to create a service.
You can already play with resizing the replicas with:
You can already play with scaling the replicas with:
```sh
$ ./cluster/kubectl.sh resize rc my-nginx --replicas=2
$ ./cluster/kubectl.sh scale rc my-nginx --replicas=2
$ ./cluster/kubectl.sh get pods
NAME IMAGE(S) HOST LABELS STATUS
7813c8bd-3ffe-11e4-9036-0800279696e1 nginx 10.245.2.2/10.245.2.2 name=myNginx Running

View File

@ -58,9 +58,9 @@ kubectl
* [kubectl namespace](kubectl_namespace.md) - SUPERCEDED: Set and view the current Kubernetes namespace
* [kubectl port-forward](kubectl_port-forward.md) - Forward one or more local ports to a pod.
* [kubectl proxy](kubectl_proxy.md) - Run a proxy to the Kubernetes API server
* [kubectl resize](kubectl_resize.md) - Set a new size for a Replication Controller.
* [kubectl rolling-update](kubectl_rolling-update.md) - Perform a rolling update of the given ReplicationController.
* [kubectl run](kubectl_run.md) - Run a particular image on the cluster.
* [kubectl scale](kubectl_scale.md) - Set a new size for a Replication Controller.
* [kubectl stop](kubectl_stop.md) - Gracefully shut down a resource by id or filename.
* [kubectl update](kubectl_update.md) - Update a resource by filename or stdin.
* [kubectl version](kubectl_version.md) - Print the client and server version information.

View File

@ -1,4 +1,4 @@
## kubectl resize
## kubectl scale
Set a new size for a Replication Controller.
@ -7,32 +7,32 @@ Set a new size for a Replication Controller.
Set a new size for a Replication Controller.
Resize also allows users to specify one or more preconditions for the resize action.
Scale also allows users to specify one or more preconditions for the scale action.
If --current-replicas or --resource-version is specified, it is validated before the
resize is attempted, and it is guaranteed that the precondition holds true when the
resize is sent to the server.
scale is attempted, and it is guaranteed that the precondition holds true when the
scale is sent to the server.
```
kubectl resize [--resource-version=version] [--current-replicas=count] --replicas=COUNT RESOURCE ID
kubectl scale [--resource-version=version] [--current-replicas=count] --replicas=COUNT RESOURCE ID
```
### Examples
```
// Resize replication controller named 'foo' to 3.
$ kubectl resize --replicas=3 replicationcontrollers foo
// Scale replication controller named 'foo' to 3.
$ kubectl scale --replicas=3 replicationcontrollers foo
// If the replication controller named foo's current size is 2, resize foo to 3.
$ kubectl resize --current-replicas=2 --replicas=3 replicationcontrollers foo
// If the replication controller named foo's current size is 2, scale foo to 3.
$ kubectl scale --current-replicas=2 --replicas=3 replicationcontrollers foo
```
### Options
```
--current-replicas=-1: Precondition for current size. Requires that the current size of the replication controller match this value in order to resize.
-h, --help=false: help for resize
--current-replicas=-1: Precondition for current size. Requires that the current size of the replication controller match this value in order to scale.
-h, --help=false: help for scale
--replicas=-1: The new desired number of replicas. Required.
--resource-version="": Precondition for resource version. Requires that the current resource version match this value in order to resize.
--resource-version="": Precondition for resource version. Requires that the current resource version match this value in order to scale.
```
### Options inherited from parent commands
@ -69,4 +69,4 @@ $ kubectl resize --current-replicas=2 --replicas=3 replicationcontrollers foo
###### Auto generated by spf13/cobra at 2015-05-21 10:33:11.185268791 +0000 UTC
[![Analytics](https://kubernetes-site.appspot.com/UA-36037335-10/GitHub/docs/kubectl_resize.md?pixel)]()
[![Analytics](https://kubernetes-site.appspot.com/UA-36037335-10/GitHub/docs/kubectl_scale.md?pixel)]()

View File

@ -8,7 +8,7 @@ Gracefully shut down a resource by id or filename.
Gracefully shut down a resource by id or filename.
Attempts to shut down and delete a resource that supports graceful termination.
If the resource is resizable it will be resized to 0 before deletion.
If the resource is scalable it will be scaled to 0 before deletion.
```
kubectl stop (-f FILENAME | RESOURCE (ID | -l label | --all))

View File

@ -19,9 +19,9 @@ kubectl-logs.1
kubectl-namespace.1
kubectl-port-forward.1
kubectl-proxy.1
kubectl-resize.1
kubectl-rolling-update.1
kubectl-run.1
kubectl-scale.1
kubectl-stop.1
kubectl-update.1
kubectl-version.1

View File

@ -3,12 +3,12 @@
.SH NAME
.PP
kubectl resize \- Set a new size for a Replication Controller.
kubectl scale \- Set a new size for a Replication Controller.
.SH SYNOPSIS
.PP
\fBkubectl resize\fP [OPTIONS]
\fBkubectl scale\fP [OPTIONS]
.SH DESCRIPTION
@ -16,20 +16,20 @@ kubectl resize \- Set a new size for a Replication Controller.
Set a new size for a Replication Controller.
.PP
Resize also allows users to specify one or more preconditions for the resize action.
Scale also allows users to specify one or more preconditions for the scale action.
If \-\-current\-replicas or \-\-resource\-version is specified, it is validated before the
resize is attempted, and it is guaranteed that the precondition holds true when the
resize is sent to the server.
scale is attempted, and it is guaranteed that the precondition holds true when the
scale is sent to the server.
.SH OPTIONS
.PP
\fB\-\-current\-replicas\fP=\-1
Precondition for current size. Requires that the current size of the replication controller match this value in order to resize.
Precondition for current size. Requires that the current size of the replication controller match this value in order to scale.
.PP
\fB\-h\fP, \fB\-\-help\fP=false
help for resize
help for scale
.PP
\fB\-\-replicas\fP=\-1
@ -37,7 +37,7 @@ resize is sent to the server.
.PP
\fB\-\-resource\-version\fP=""
Precondition for resource version. Requires that the current resource version match this value in order to resize.
Precondition for resource version. Requires that the current resource version match this value in order to scale.
.SH OPTIONS INHERITED FROM PARENT COMMANDS
@ -143,11 +143,11 @@ resize is sent to the server.
.RS
.nf
// Resize replication controller named 'foo' to 3.
$ kubectl resize \-\-replicas=3 replicationcontrollers foo
// Scale replication controller named 'foo' to 3.
$ kubectl scale \-\-replicas=3 replicationcontrollers foo
// If the replication controller named foo's current size is 2, resize foo to 3.
$ kubectl resize \-\-current\-replicas=2 \-\-replicas=3 replicationcontrollers foo
// If the replication controller named foo's current size is 2, scale foo to 3.
$ kubectl scale \-\-current\-replicas=2 \-\-replicas=3 replicationcontrollers foo
.fi
.RE

View File

@ -17,7 +17,7 @@ Gracefully shut down a resource by id or filename.
.PP
Attempts to shut down and delete a resource that supports graceful termination.
If the resource is resizable it will be resized to 0 before deletion.
If the resource is scalable it will be scaled to 0 before deletion.
.SH OPTIONS

View File

@ -124,7 +124,7 @@ Find more information at
.SH SEE ALSO
.PP
\fBkubectl\-get(1)\fP, \fBkubectl\-describe(1)\fP, \fBkubectl\-create(1)\fP, \fBkubectl\-update(1)\fP, \fBkubectl\-delete(1)\fP, \fBkubectl\-namespace(1)\fP, \fBkubectl\-logs(1)\fP, \fBkubectl\-rolling\-update(1)\fP, \fBkubectl\-resize(1)\fP, \fBkubectl\-exec(1)\fP, \fBkubectl\-port\-forward(1)\fP, \fBkubectl\-proxy(1)\fP, \fBkubectl\-run(1)\fP, \fBkubectl\-stop(1)\fP, \fBkubectl\-expose(1)\fP, \fBkubectl\-label(1)\fP, \fBkubectl\-config(1)\fP, \fBkubectl\-cluster\-info(1)\fP, \fBkubectl\-api\-versions(1)\fP, \fBkubectl\-version(1)\fP,
\fBkubectl\-get(1)\fP, \fBkubectl\-describe(1)\fP, \fBkubectl\-create(1)\fP, \fBkubectl\-update(1)\fP, \fBkubectl\-delete(1)\fP, \fBkubectl\-namespace(1)\fP, \fBkubectl\-logs(1)\fP, \fBkubectl\-rolling\-update(1)\fP, \fBkubectl\-scale(1)\fP, \fBkubectl\-exec(1)\fP, \fBkubectl\-port\-forward(1)\fP, \fBkubectl\-proxy(1)\fP, \fBkubectl\-run(1)\fP, \fBkubectl\-stop(1)\fP, \fBkubectl\-expose(1)\fP, \fBkubectl\-label(1)\fP, \fBkubectl\-config(1)\fP, \fBkubectl\-cluster\-info(1)\fP, \fBkubectl\-api\-versions(1)\fP, \fBkubectl\-version(1)\fP,
.SH HISTORY

View File

@ -1,18 +1,18 @@
## Abstract
Auto-scaling is a data-driven feature that allows users to increase or decrease capacity as needed by controlling the
Auto-scaling is a data-driven feature that allows users to increase or decrease capacity as needed by controlling the
number of pods deployed within the system automatically.
## Motivation
Applications experience peaks and valleys in usage. In order to respond to increases and decreases in load, administrators
scale their applications by adding computing resources. In the cloud computing environment this can be
Applications experience peaks and valleys in usage. In order to respond to increases and decreases in load, administrators
scale their applications by adding computing resources. In the cloud computing environment this can be
done automatically based on statistical analysis and thresholds.
### Goals
* Provide a concrete proposal for implementing auto-scaling pods within Kubernetes
* Implementation proposal should be in line with current discussions in existing issues:
* Resize verb - [1629](https://github.com/GoogleCloudPlatform/kubernetes/issues/1629)
* Implementation proposal should be in line with current discussions in existing issues:
* Scale verb - [1629](https://github.com/GoogleCloudPlatform/kubernetes/issues/1629)
* Config conflicts - [Config](https://github.com/GoogleCloudPlatform/kubernetes/blob/c7cb991987193d4ca33544137a5cb7d0292cf7df/docs/config.md#automated-re-configuration-processes)
* Rolling updates - [1353](https://github.com/GoogleCloudPlatform/kubernetes/issues/1353)
* Multiple scalable types - [1624](https://github.com/GoogleCloudPlatform/kubernetes/issues/1624)
@ -20,45 +20,45 @@ done automatically based on statistical analysis and thresholds.
## Constraints and Assumptions
* This proposal is for horizontal scaling only. Vertical scaling will be handled in [issue 2072](https://github.com/GoogleCloudPlatform/kubernetes/issues/2072)
* `ReplicationControllers` will not know about the auto-scaler, they are the target of the auto-scaler. The `ReplicationController` responsibilities are
* `ReplicationControllers` will not know about the auto-scaler, they are the target of the auto-scaler. The `ReplicationController` responsibilities are
constrained to only ensuring that the desired number of pods are operational per the [Replication Controller Design](http://docs.k8s.io/replication-controller.md#responsibilities-of-the-replication-controller)
* Auto-scalers will be loosely coupled with data gathering components in order to allow a wide variety of input sources
* Auto-scalable resources will support a resize verb ([1629](https://github.com/GoogleCloudPlatform/kubernetes/issues/1629))
* Auto-scalable resources will support a scale verb ([1629](https://github.com/GoogleCloudPlatform/kubernetes/issues/1629))
such that the auto-scaler does not directly manipulate the underlying resource.
* Initially, most thresholds will be set by application administrators. It should be possible for an autoscaler to be
* Initially, most thresholds will be set by application administrators. It should be possible for an autoscaler to be
written later that sets thresholds automatically based on past behavior (CPU used vs incoming requests).
* The auto-scaler must be aware of user defined actions so it does not override them unintentionally (for instance someone
* The auto-scaler must be aware of user defined actions so it does not override them unintentionally (for instance someone
explicitly setting the replica count to 0 should mean that the auto-scaler does not try to scale the application up)
* It should be possible to write and deploy a custom auto-scaler without modifying existing auto-scalers
* Auto-scalers must be able to monitor multiple replication controllers while only targeting a single scalable
object (for now a ReplicationController, but in the future it could be a job or any resource that implements resize)
* Auto-scalers must be able to monitor multiple replication controllers while only targeting a single scalable
object (for now a ReplicationController, but in the future it could be a job or any resource that implements scale)
## Use Cases
### Scaling based on traffic
The current, most obvious, use case is scaling an application based on network traffic like requests per second. Most
applications will expose one or more network endpoints for clients to connect to. Many of those endpoints will be load
balanced or situated behind a proxy - the data from those proxies and load balancers can be used to estimate client to
The current, most obvious, use case is scaling an application based on network traffic like requests per second. Most
applications will expose one or more network endpoints for clients to connect to. Many of those endpoints will be load
balanced or situated behind a proxy - the data from those proxies and load balancers can be used to estimate client to
server traffic for applications. This is the primary, but not sole, source of data for making decisions.
Within Kubernetes a [kube proxy](http://docs.k8s.io/services.md#ips-and-portals)
Within Kubernetes a [kube proxy](http://docs.k8s.io/services.md#ips-and-portals)
running on each node directs service requests to the underlying implementation.
While the proxy provides internal inter-pod connections, there will be L3 and L7 proxies and load balancers that manage
traffic to backends. OpenShift, for instance, adds a "route" resource for defining external to internal traffic flow.
The "routers" are HAProxy or Apache load balancers that aggregate many different services and pods and can serve as a
While the proxy provides internal inter-pod connections, there will be L3 and L7 proxies and load balancers that manage
traffic to backends. OpenShift, for instance, adds a "route" resource for defining external to internal traffic flow.
The "routers" are HAProxy or Apache load balancers that aggregate many different services and pods and can serve as a
data source for the number of backends.
### Scaling based on predictive analysis
Scaling may also occur based on predictions of system state like anticipated load, historical data, etc. Hand in hand
Scaling may also occur based on predictions of system state like anticipated load, historical data, etc. Hand in hand
with scaling based on traffic, predictive analysis may be used to determine anticipated system load and scale the application automatically.
### Scaling based on arbitrary data
Administrators may wish to scale the application based on any number of arbitrary data points such as job execution time or
duration of active sessions. There are any number of reasons an administrator may wish to increase or decrease capacity which
duration of active sessions. There are any number of reasons an administrator may wish to increase or decrease capacity which
means the auto-scaler must be a configurable, extensible component.
## Specification
@ -68,23 +68,23 @@ In order to facilitate talking about auto-scaling the following definitions are
* `ReplicationController` - the first building block of auto scaling. Pods are deployed and scaled by a `ReplicationController`.
* kube proxy - The proxy handles internal inter-pod traffic, an example of a data source to drive an auto-scaler
* L3/L7 proxies - A routing layer handling outside to inside traffic requests, an example of a data source to drive an auto-scaler
* auto-scaler - scales replicas up and down by using the `resize` endpoint provided by scalable resources (`ReplicationController`)
* auto-scaler - scales replicas up and down by using the `scale` endpoint provided by scalable resources (`ReplicationController`)
### Auto-Scaler
The Auto-Scaler is a state reconciler responsible for checking data against configured scaling thresholds
and calling the `resize` endpoint to change the number of replicas. The scaler will
use a client/cache implementation to receive watch data from the data aggregators and respond to them by
scaling the application. Auto-scalers are created and defined like other resources via REST endpoints and belong to the
The Auto-Scaler is a state reconciler responsible for checking data against configured scaling thresholds
and calling the `scale` endpoint to change the number of replicas. The scaler will
use a client/cache implementation to receive watch data from the data aggregators and respond to them by
scaling the application. Auto-scalers are created and defined like other resources via REST endpoints and belong to the
namespace just as a `ReplicationController` or `Service`.
Since an auto-scaler is a durable object it is best represented as a resource.
```go
//The auto scaler interface
type AutoScalerInterface interface {
//ScaleApplication adjusts a resource's replica count. Calls resize endpoint.
type AutoScalerInterface interface {
//ScaleApplication adjusts a resource's replica count. Calls scale endpoint.
//Args to this are based on what the endpoint
//can support. See https://github.com/GoogleCloudPlatform/kubernetes/issues/1629
ScaleApplication(num int) error
@ -95,162 +95,162 @@ Since an auto-scaler is a durable object it is best represented as a resource.
TypeMeta
//common construct
ObjectMeta
//Spec defines the configuration options that drive the behavior for this auto-scaler
//Spec defines the configuration options that drive the behavior for this auto-scaler
Spec AutoScalerSpec
//Status defines the current status of this auto-scaler.
Status AutoScalerStatus
Status AutoScalerStatus
}
type AutoScalerSpec struct {
//AutoScaleThresholds holds a collection of AutoScaleThresholds that drive the auto scaler
AutoScaleThresholds []AutoScaleThreshold
//Enabled turns auto scaling on or off
Enabled boolean
Enabled boolean
//MaxAutoScaleCount defines the max replicas that the auto scaler can use.
//This value must be greater than 0 and >= MinAutoScaleCount
MaxAutoScaleCount int
//MinAutoScaleCount defines the minimum number replicas that the auto scaler can reduce to,
//0 means that the application is allowed to idle
MinAutoScaleCount int
//TargetSelector provides the resizeable target(s). Right now this is a ReplicationController
//in the future it could be a job or any resource that implements resize.
//MinAutoScaleCount defines the minimum number replicas that the auto scaler can reduce to,
//0 means that the application is allowed to idle
MinAutoScaleCount int
//TargetSelector provides the scalable target(s). Right now this is a ReplicationController
//in the future it could be a job or any resource that implements scale.
TargetSelector map[string]string
//MonitorSelector defines a set of capacity that the auto-scaler is monitoring
//MonitorSelector defines a set of capacity that the auto-scaler is monitoring
//(replication controllers). Monitored objects are used by thresholds to examine
//statistics. Example: get statistic X for object Y to see if threshold is passed
MonitorSelector map[string]string
}
type AutoScalerStatus struct {
// TODO: open for discussion on what meaningful information can be reported in the status
// The status may return the replica count here but we may want more information
// such as if the count reflects a threshold being passed
}
}
//AutoScaleThresholdInterface abstracts the data analysis from the auto-scaler
//example: scale by 1 (Increment) when RequestsPerSecond (Type) pass
//example: scale by 1 (Increment) when RequestsPerSecond (Type) pass
//comparison (Comparison) of 50 (Value) for 30 seconds (Duration)
type AutoScaleThresholdInterface interface {
//called by the auto-scaler to determine if this threshold is met or not
ShouldScale() boolean
}
//AutoScaleThreshold is a single statistic used to drive the auto-scaler in scaling decisions
type AutoScaleThreshold struct {
// Type is the type of threshold being used, intention or value
Type AutoScaleThresholdType
// ValueConfig holds the config for value based thresholds
ValueConfig AutoScaleValueThresholdConfig
// IntentionConfig holds the config for intention based thresholds
IntentionConfig AutoScaleIntentionThresholdConfig
}
IntentionConfig AutoScaleIntentionThresholdConfig
}
// AutoScaleIntentionThresholdConfig holds configuration for intention based thresholds
// a intention based threshold defines no increment, the scaler will adjust by 1 accordingly
// and maintain once the intention is reached. Also, no selector is defined, the intention
// should dictate the selector used for statistics. Same for duration although we
// a intention based threshold defines no increment, the scaler will adjust by 1 accordingly
// and maintain once the intention is reached. Also, no selector is defined, the intention
// should dictate the selector used for statistics. Same for duration although we
// may want a configurable duration later so intentions are more customizable.
type AutoScaleIntentionThresholdConfig struct {
// Intent is the lexicon of what intention is requested
Intent AutoScaleIntentionType
// Value is intention dependent in terms of above, below, equal and represents
// Value is intention dependent in terms of above, below, equal and represents
// the value to check against
Value float
}
// AutoScaleValueThresholdConfig holds configuration for value based thresholds
type AutoScaleValueThresholdConfig struct {
//Increment determines how the auot-scaler should scale up or down (positive number to
//Increment determines how the auot-scaler should scale up or down (positive number to
//scale up based on this threshold negative number to scale down by this threshold)
Increment int
//Selector represents the retrieval mechanism for a statistic value from statistics
//storage. Once statistics are better defined the retrieval mechanism may change.
//Ultimately, the selector returns a representation of a statistic that can be
//Ultimately, the selector returns a representation of a statistic that can be
//compared against the threshold value.
Selector map[string]string
Selector map[string]string
//Duration is the time lapse after which this threshold is considered passed
Duration time.Duration
//Value is the number at which, after the duration is passed, this threshold is considered
//Value is the number at which, after the duration is passed, this threshold is considered
//to be triggered
Value float
//Comparison component to be applied to the value.
Comparison string
}
// AutoScaleThresholdType is either intention based or value based
type AutoScaleThresholdType string
// AutoScaleIntentionType is a lexicon for intentions such as "cpu-utilization",
type AutoScaleThresholdType string
// AutoScaleIntentionType is a lexicon for intentions such as "cpu-utilization",
// "max-rps-per-endpoint"
type AutoScaleIntentionType string
```
#### Boundary Definitions
#### Boundary Definitions
The `AutoScaleThreshold` definitions provide the boundaries for the auto-scaler. By defining comparisons that form a range
along with positive and negative increments you may define bi-directional scaling. For example the upper bound may be
specified as "when requests per second rise above 50 for 30 seconds scale the application up by 1" and a lower bound may
along with positive and negative increments you may define bi-directional scaling. For example the upper bound may be
specified as "when requests per second rise above 50 for 30 seconds scale the application up by 1" and a lower bound may
be specified as "when requests per second fall below 25 for 30 seconds scale the application down by 1 (implemented by using -1)".
### Data Aggregator
This section has intentionally been left empty. I will defer to folks who have more experience gathering and analyzing
This section has intentionally been left empty. I will defer to folks who have more experience gathering and analyzing
time series statistics.
Data aggregation is opaque to the the auto-scaler resource. The auto-scaler is configured to use `AutoScaleThresholds`
that know how to work with the underlying data in order to know if an application must be scaled up or down. Data aggregation
must feed a common data structure to ease the development of `AutoScaleThreshold`s but it does not matter to the
Data aggregation is opaque to the the auto-scaler resource. The auto-scaler is configured to use `AutoScaleThresholds`
that know how to work with the underlying data in order to know if an application must be scaled up or down. Data aggregation
must feed a common data structure to ease the development of `AutoScaleThreshold`s but it does not matter to the
auto-scaler whether this occurs in a push or pull implementation, whether or not the data is stored at a granular level,
or what algorithm is used to determine the final statistics value. Ultimately, the auto-scaler only requires that a statistic
or what algorithm is used to determine the final statistics value. Ultimately, the auto-scaler only requires that a statistic
resolves to a value that can be checked against a configured threshold.
Of note: If the statistics gathering mechanisms can be initialized with a registry other components storing statistics can
potentially piggyback on this registry.
### Multi-target Scaling Policy
If multiple resizable targets satisfy the `TargetSelector` criteria the auto-scaler should be configurable as to which
target(s) are resized. To begin with, if multiple targets are found the auto-scaler will scale the largest target up
If multiple scalable targets satisfy the `TargetSelector` criteria the auto-scaler should be configurable as to which
target(s) are scaled. To begin with, if multiple targets are found the auto-scaler will scale the largest target up
or down as appropriate. In the future this may be more configurable.
### Interactions with a deployment
In a deployment it is likely that multiple replication controllers must be monitored. For instance, in a [rolling deployment](http://docs.k8s.io/replication-controller.md#rolling-updates)
there will be multiple replication controllers, with one scaling up and another scaling down. This means that an
auto-scaler must be aware of the entire set of capacity that backs a service so it does not fight with the deployer. `AutoScalerSpec.MonitorSelector`
is what provides this ability. By using a selector that spans the entire service the auto-scaler can monitor capacity
of multiple replication controllers and check that capacity against the `AutoScalerSpec.MaxAutoScaleCount` and
there will be multiple replication controllers, with one scaling up and another scaling down. This means that an
auto-scaler must be aware of the entire set of capacity that backs a service so it does not fight with the deployer. `AutoScalerSpec.MonitorSelector`
is what provides this ability. By using a selector that spans the entire service the auto-scaler can monitor capacity
of multiple replication controllers and check that capacity against the `AutoScalerSpec.MaxAutoScaleCount` and
`AutoScalerSpec.MinAutoScaleCount` while still only targeting a specific set of `ReplicationController`s with `TargetSelector`.
In the course of a deployment it is up to the deployment orchestration to decide how to manage the labels
on the replication controllers if it needs to ensure that only specific replication controllers are targeted by
on the replication controllers if it needs to ensure that only specific replication controllers are targeted by
the auto-scaler. By default, the auto-scaler will scale the largest replication controller that meets the target label
selector criteria.
During deployment orchestration the auto-scaler may be making decisions to scale its target up or down. In order to prevent
the scaler from fighting with a deployment process that is scaling one replication controller up and scaling another one
down the deployment process must assume that the current replica count may be changed by objects other than itself and
down the deployment process must assume that the current replica count may be changed by objects other than itself and
account for this in the scale up or down process. Therefore, the deployment process may no longer target an exact number
of instances to be deployed. It must be satisfied that the replica count for the deployment meets or exceeds the number
of requested instances.
Auto-scaling down in a deployment scenario is a special case. In order for the deployment to complete successfully the
Auto-scaling down in a deployment scenario is a special case. In order for the deployment to complete successfully the
deployment orchestration must ensure that the desired number of instances that are supposed to be deployed has been met.
If the auto-scaler is trying to scale the application down (due to no traffic, or other statistics) then the deployment
process and auto-scaler are fighting to increase and decrease the count of the targeted replication controller. In order
to prevent this, deployment orchestration should notify the auto-scaler that a deployment is occurring. This will
temporarily disable negative decrement thresholds until the deployment process is completed. It is more important for
an auto-scaler to be able to grow capacity during a deployment than to shrink the number of instances precisely.
to prevent this, deployment orchestration should notify the auto-scaler that a deployment is occurring. This will
temporarily disable negative decrement thresholds until the deployment process is completed. It is more important for
an auto-scaler to be able to grow capacity during a deployment than to shrink the number of instances precisely.

View File

@ -36,7 +36,7 @@ The replication controller simply ensures that the desired number of pods matche
The replication controller is forever constrained to this narrow responsibility. It itself will not perform readiness nor liveness probes. Rather than performing auto-scaling, it is intended to be controlled by an external auto-scaler (as discussed in [#492](https://github.com/GoogleCloudPlatform/kubernetes/issues/492)), which would change its `replicas` field. We will not add scheduling policies (e.g., [spreading](https://github.com/GoogleCloudPlatform/kubernetes/issues/367#issuecomment-48428019)) to replication controller. Nor should it verify that the pods controlled match the currently specified template, as that would obstruct auto-sizing and other automated processes. Similarly, completion deadlines, ordering dependencies, configuration expansion, and other features belong elsewhere. We even plan to factor out the mechanism for bulk pod creation ([#170](https://github.com/GoogleCloudPlatform/kubernetes/issues/170)).
The replication controller is intended to be a composable building-block primitive. We expect higher-level APIs and/or tools to be built on top of it and other complementary primitives for user convenience in the future. The "macro" operations currently supported by kubectl (run, stop, resize, rolling-update) are proof-of-concept examples of this. For instance, we could imagine something like [Asgard](http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html) managing replication controllers, auto-scalers, services, scheduling policies, canaries, etc.
The replication controller is intended to be a composable building-block primitive. We expect higher-level APIs and/or tools to be built on top of it and other complementary primitives for user convenience in the future. The "macro" operations currently supported by kubectl (run, stop, scale, rolling-update) are proof-of-concept examples of this. For instance, we could imagine something like [Asgard](http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html) managing replication controllers, auto-scalers, services, scheduling policies, canaries, etc.
## Common usage patterns
@ -52,7 +52,7 @@ Replication controller makes it easy to scale the number of replicas up or down,
Replication controller is designed to facilitate rolling updates to a service by replacing pods one-by-one.
As explained in [#1353](https://github.com/GoogleCloudPlatform/kubernetes/issues/1353), the recommended approach is to create a new replication controller with 1 replica, resize the new (+1) and old (-1) controllers one by one, and then delete the old controller after it reaches 0 replicas. This predictably updates the set of pods regardless of unexpected failures.
As explained in [#1353](https://github.com/GoogleCloudPlatform/kubernetes/issues/1353), the recommended approach is to create a new replication controller with 1 replica, scale the new (+1) and old (-1) controllers one by one, and then delete the old controller after it reaches 0 replicas. This predictably updates the set of pods regardless of unexpected failures.
Ideally, the rolling update controller would take application readiness into account, and would ensure that a sufficient number of pods were productively serving at any given time.

View File

@ -76,15 +76,15 @@ Here is the service description:
```yaml
apiVersion: v1beta3
kind: Service
metadata:
labels:
metadata:
labels:
name: cassandra
name: cassandra
spec:
spec:
ports:
- port: 9042
targetPort: 9042
selector:
selector:
name: cassandra
```
@ -125,7 +125,7 @@ subsets:
You can see that the _Service_ has found the pod we created in step one.
### Adding replicated nodes
Of course, a single node cluster isn't particularly interesting. The real power of Kubernetes and Cassandra lies in easily building a replicated, resizable Cassandra cluster.
Of course, a single node cluster isn't particularly interesting. The real power of Kubernetes and Cassandra lies in easily building a replicated, scalable Cassandra cluster.
In Kubernetes a _Replication Controller_ is responsible for replicating sets of identical pods. Like a _Service_ it has a selector query which identifies the members of it's set. Unlike a _Service_ it also has a desired number of replicas, and it will create or delete _Pods_ to ensure that the number of _Pods_ matches up with it's desired state.
@ -134,26 +134,26 @@ Replication Controllers will "adopt" existing pods that match their selector que
```yaml
apiVersion: v1beta3
kind: ReplicationController
metadata:
labels:
metadata:
labels:
name: cassandra
name: cassandra
spec:
spec:
replicas: 1
selector:
selector:
name: cassandra
template:
metadata:
labels:
template:
metadata:
labels:
name: cassandra
spec:
containers:
- command:
spec:
containers:
- command:
- /run.sh
resources:
limits:
cpu: 1
env:
env:
- name: MAX_HEAP_SIZE
key: MAX_HEAP_SIZE
value: 512M
@ -162,15 +162,15 @@ spec:
value: 100M
image: "kubernetes/cassandra:v2"
name: cassandra
ports:
ports:
- containerPort: 9042
name: cql
- containerPort: 9160
name: thrift
volumeMounts:
volumeMounts:
- mountPath: /cassandra_data
name: data
volumes:
volumes:
- name: data
emptyDir: {}
```
@ -185,9 +185,9 @@ $ kubectl create -f cassandra-controller.yaml
Now this is actually not that interesting, since we haven't actually done anything new. Now it will get interesting.
Let's resize our cluster to 2:
Let's scale our cluster to 2:
```sh
$ kubectl resize rc cassandra --replicas=2
$ kubectl scale rc cassandra --replicas=2
```
Now if you list the pods in your cluster, you should see two cassandra pods:
@ -195,10 +195,10 @@ Now if you list the pods in your cluster, you should see two cassandra pods:
```sh
$ kubectl get pods
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
cassandra 10.244.3.3 kubernetes-minion-sft2/104.197.42.181 name=cassandra Running 7 minutes
cassandra kubernetes/cassandra:v2 Running 7 minutes
cassandra-gnhk8 10.244.0.5 kubernetes-minion-dqz3/104.197.2.71 name=cassandra Running About a minute
cassandra kubernetes/cassandra:v2 Running 51 seconds
cassandra 10.244.3.3 kubernetes-minion-sft2/104.197.42.181 name=cassandra Running 7 minutes
cassandra kubernetes/cassandra:v2 Running 7 minutes
cassandra-gnhk8 10.244.0.5 kubernetes-minion-dqz3/104.197.2.71 name=cassandra Running About a minute
cassandra kubernetes/cassandra:v2 Running 51 seconds
```
@ -218,9 +218,9 @@ UN 10.244.0.5 74.09 KB 256 100.0% 86feda0f-f070-4a5b-bda1-2ee
UN 10.244.3.3 51.28 KB 256 100.0% dafe3154-1d67-42e1-ac1d-78e7e80dce2b rack1
```
Now let's resize our cluster to 4 nodes:
Now let's scale our cluster to 4 nodes:
```sh
$ kubectl resize rc cassandra --replicas=4
$ kubectl scale rc cassandra --replicas=4
```
Examining the status again:
@ -251,13 +251,13 @@ kubectl create -f cassandra-service.yaml
kubectl create -f cassandra-controller.yaml
# scale up to 2 nodes
kubectl resize rc cassandra --replicas=2
kubectl scale rc cassandra --replicas=2
# validate the cluster
docker exec <container-id> nodetool status
# scale up to 4 nodes
kubectl resize rc cassandra --replicas=4
kubectl scale rc cassandra --replicas=4
```
### Seed Provider Source

View File

@ -143,19 +143,19 @@ Let's see what we've got:
$ kubectl get pods,rc,services,secrets --namespace=mytunes
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
music-db-0fwsu 10.244.2.48 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 29 seconds
music-db-5pc2e 10.244.0.24 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 6 minutes
music-db-bjqmv 10.244.3.31 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 19 seconds
music-db-swtrs 10.244.1.37 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 6 minutes
music-db-0fwsu 10.244.2.48 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 29 seconds
music-db-5pc2e 10.244.0.24 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 6 minutes
music-db-bjqmv 10.244.3.31 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 19 seconds
music-db-swtrs 10.244.1.37 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 6 minutes
es kubernetes/elasticsearch:1.0 Running 6 minutes
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
music-db es kubernetes/elasticsearch:1.0 name=music-db 4
NAME LABELS SELECTOR IP(S) PORT(S)
music-server name=music-db name=music-db 10.0.138.61 9200/TCP
104.197.12.157
104.197.12.157
NAME TYPE DATA
apiserver-secret Opaque 2
```
@ -235,30 +235,30 @@ $ curl 104.197.12.157:9200/_nodes?pretty=true
```
Let's ramp up the number of Elasticsearch nodes from 4 to 10:
```
$ kubectl resize --replicas=10 replicationcontrollers music-db --namespace=mytunes
resized
$ kubectl scale --replicas=10 replicationcontrollers music-db --namespace=mytunes
scaled
$ kubectl get pods --namespace=mytunes
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
music-db-0fwsu 10.244.2.48 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 26 minutes
music-db-2erje 10.244.2.50 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-5pc2e 10.244.0.24 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 32 minutes
music-db-8rkvp 10.244.3.33 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-bjqmv 10.244.3.31 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 26 minutes
music-db-efc46 10.244.2.49 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-fhqyg 10.244.0.25 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 47 seconds
music-db-guxe4 10.244.3.32 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-pbiq1 10.244.1.38 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 47 seconds
music-db-swtrs 10.244.1.37 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 32 minutes
music-db-0fwsu 10.244.2.48 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 26 minutes
music-db-2erje 10.244.2.50 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-5pc2e 10.244.0.24 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 32 minutes
music-db-8rkvp 10.244.3.33 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-bjqmv 10.244.3.31 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 26 minutes
music-db-efc46 10.244.2.49 kubernetes-minion-m49b/104.197.35.221 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-fhqyg 10.244.0.25 kubernetes-minion-3c8c/146.148.41.184 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 47 seconds
music-db-guxe4 10.244.3.32 kubernetes-minion-zey5/104.154.59.10 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 46 seconds
music-db-pbiq1 10.244.1.38 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 48 seconds
es kubernetes/elasticsearch:1.0 Running 47 seconds
music-db-swtrs 10.244.1.37 kubernetes-minion-f9dw/130.211.159.230 name=music-db Running 33 minutes
es kubernetes/elasticsearch:1.0 Running 32 minutes
```
Let's check to make sure that these 10 nodes are part of the same Elasticsearch cluster:

View File

@ -52,7 +52,7 @@ $ kubectl create -f hazelcast-service.yaml
```
### Adding replicated nodes
The real power of Kubernetes and Hazelcast lies in easily building a replicated, resizable Hazelcast cluster.
The real power of Kubernetes and Hazelcast lies in easily building a replicated, scalable Hazelcast cluster.
In Kubernetes a _Replication Controller_ is responsible for replicating sets of identical pods. Like a _Service_ it has a selector query which identifies the members of it's set. Unlike a _Service_ it also has a desired number of replicas, and it will create or delete _Pods_ to ensure that the number of _Pods_ matches up with it's desired state.
@ -129,9 +129,9 @@ You can see that the _Service_ has found the pod created by the replication cont
Now it gets even more interesting.
Let's resize our cluster to 2 pods:
Let's scale our cluster to 2 pods:
```sh
$ kubectl resize rc hazelcast --replicas=2
$ kubectl scale rc hazelcast --replicas=2
```
Now if you list the pods in your cluster, you should see two hazelcast pods:
@ -141,7 +141,7 @@ $ kubectl get pods
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
hazelcast-pkyzd 10.244.90.3 e2e-test-minion-vj7k/104.197.8.214 name=hazelcast Running 14 seconds
hazelcast pires/hazelcast-k8s:0.2 Running 2 seconds
hazelcast-ulkws 10.244.66.2 e2e-test-minion-2x1f/146.148.62.37 name=hazelcast Running 7 seconds
hazelcast-ulkws 10.244.66.2 e2e-test-minion-2x1f/146.148.62.37 name=hazelcast Running 7 seconds
hazelcast pires/hazelcast-k8s:0.2 Running 6 seconds
```
@ -175,9 +175,9 @@ Members [2] {
2015-05-09 22:06:31.177 INFO 5 --- [ main] com.hazelcast.core.LifecycleService : [10.244.66.2]:5701 [someGroup] [3.4.2] Address[10.244.66.2]:5701 is STARTED
```
Now let's resize our cluster to 4 nodes:
Now let's scale our cluster to 4 nodes:
```sh
$ kubectl resize rc hazelcast --replicas=4
$ kubectl scale rc hazelcast --replicas=4
```
Examine the status again by checking a nodes log and you should see the 4 members connected.
@ -193,10 +193,10 @@ kubectl create -f hazelcast-service.yaml
kubectl create -f hazelcast-controller.yaml
# scale up to 2 nodes
kubectl resize rc hazelcast --replicas=2
kubectl scale rc hazelcast --replicas=2
# scale up to 4 nodes
kubectl resize rc hazelcast --replicas=4
kubectl scale rc hazelcast --replicas=4
```
### Hazelcast Discovery Source

View File

@ -56,15 +56,15 @@ We create it as follows:
kubectl create -f examples/redis/redis-sentinel-controller.yaml
```
### Resize our replicated pods
### Scale our replicated pods
Initially creating those pods didn't actually do anything, since we only asked for one sentinel and one redis server, and they already existed, nothing changed. Now we will add more replicas:
```sh
kubectl resize rc redis --replicas=3
kubectl scale rc redis --replicas=3
```
```sh
kubectl resize rc redis-sentinel --replicas=3
kubectl scale rc redis-sentinel --replicas=3
```
This will create two additional replicas of the redis server and two additional replicas of the redis sentinel.
@ -86,7 +86,7 @@ Now let's take a close look at what happens after this pod is deleted. There ar
3. The redis sentinels themselves, realize that the master has disappeared from the cluster, and begin the election procedure for selecting a new master. They perform this election and selection, and chose one of the existing redis server replicas to be the new master.
### Conclusion
At this point we now have a reliable, scalable Redis installation. By resizing the replication controller for redis servers, we can increase or decrease the number of read-slaves in our cluster. Likewise, if failures occur, the redis-sentinels will perform master election and select a new master.
At this point we now have a reliable, scalable Redis installation. By scaling the replication controller for redis servers, we can increase or decrease the number of read-slaves in our cluster. Likewise, if failures occur, the redis-sentinels will perform master election and select a new master.
### tl; dr
For those of you who are impatient, here is the summary of commands we ran in this tutorial
@ -104,9 +104,9 @@ kubectl create -f examples/redis/redis-controller.yaml
# Create a replication controller for redis sentinels
kubectl create -f examples/redis/redis-sentinel-controller.yaml
# Resize both replication controllers
kubectl resize rc redis --replicas=3
kubectl resize rc redis-sentinel --replicas=3
# Scale both replication controllers
kubectl scale rc redis --replicas=3
kubectl scale rc redis-sentinel --replicas=3
# Delete the original master pod
kubectl delete pods redis-master

View File

@ -49,8 +49,8 @@ check out again:
```shell
$kubectl get po
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
rethinkdb-rc-1.16.0-6odi0 kubernetes-minion-s59e/ db=rethinkdb,role=replicas Pending 11 seconds
rethinkdb antmanler/rethinkdb:1.16.0
rethinkdb-rc-1.16.0-6odi0 kubernetes-minion-s59e/ db=rethinkdb,role=replicas Pending 11 seconds
rethinkdb antmanler/rethinkdb:1.16.0
```
**Done!**
@ -61,20 +61,20 @@ rethinkdb-rc-1.16.0-6odi0
Scale
-----
You can scale up you cluster using `kubectl resize`, and new pod will join to exsits cluster automatically, for example
You can scale up you cluster using `kubectl scale`, and new pod will join to exsits cluster automatically, for example
```shell
$kubectl resize rc rethinkdb-rc-1.16.0 --replicas=3
resized
$kubectl scale rc rethinkdb-rc-1.16.0 --replicas=3
scaled
$kubectl get po
POD IP CONTAINER(S) IMAGE(S) HOST LABELS STATUS CREATED MESSAGE
rethinkdb-rc-1.16.0-6odi0 10.244.3.3 kubernetes-minion-s59e/104.197.79.42 db=rethinkdb,role=replicas Running About a minute
rethinkdb antmanler/rethinkdb:1.16.0 Running About a minute
rethinkdb-rc-1.16.0-e3mxv kubernetes-minion-d7ub/ db=rethinkdb,role=replicas Pending 6 seconds
rethinkdb antmanler/rethinkdb:1.16.0
rethinkdb-rc-1.16.0-manu6 kubernetes-minion-cybz/ db=rethinkdb,role=replicas Pending 6 seconds
rethinkdb antmanler/rethinkdb:1.16.0
rethinkdb-rc-1.16.0-6odi0 10.244.3.3 kubernetes-minion-s59e/104.197.79.42 db=rethinkdb,role=replicas Running About a minute
rethinkdb antmanler/rethinkdb:1.16.0 Running About a minute
rethinkdb-rc-1.16.0-e3mxv kubernetes-minion-d7ub/ db=rethinkdb,role=replicas Pending 6 seconds
rethinkdb antmanler/rethinkdb:1.16.0
rethinkdb-rc-1.16.0-manu6 kubernetes-minion-cybz/ db=rethinkdb,role=replicas Pending 6 seconds
rethinkdb antmanler/rethinkdb:1.16.0
```
Admin
@ -93,7 +93,7 @@ find the service
$kubectl get se
NAME LABELS SELECTOR IP(S) PORT(S)
rethinkdb-admin db=influxdb db=rethinkdb,role=admin 10.0.131.19 8080/TCP
104.197.19.120
104.197.19.120
rethinkdb-driver db=influxdb db=rethinkdb 10.0.27.114 28015/TCP
```

View File

@ -47,12 +47,12 @@ $ ./cluster/kubectl.sh create -f examples/update-demo/nautilus-rc.yaml
After pulling the image from the Docker Hub to your worker nodes (which may take a minute or so) you'll see a couple of squares in the UI detailing the pods that are running along with the image that they are serving up. A cute little nautilus.
### Step Three: Try resizing the controller
### Step Three: Try scaling the controller
Now we will increase the number of replicas from two to four:
```bash
$ ./cluster/kubectl.sh resize rc update-demo-nautilus --replicas=4
$ ./cluster/kubectl.sh scale rc update-demo-nautilus --replicas=4
```
If you go back to the [demo website](http://localhost:8001/static/index.html) you should eventually see four boxes, one for each pod.
@ -66,7 +66,7 @@ $ ./cluster/kubectl.sh rolling-update update-demo-nautilus --update-period=10s -
The rolling-update command in kubectl will do 2 things:
1. Create a new replication controller with a pod template that uses the new image (`gcr.io/google_containers/update-demo:kitten`)
2. Resize the old and new replication controllers until the new controller replaces the old. This will kill the current pods one at a time, spinnning up new ones to replace them.
2. Scale the old and new replication controllers until the new controller replaces the old. This will kill the current pods one at a time, spinnning up new ones to replace them.
Watch the [demo website](http://localhost:8001/static/index.html), it will update one pod every 10 seconds until all of the pods have the new image.

View File

@ -499,27 +499,27 @@ __EOF__
# Describe command should print detailed information
kube::test::describe_object_assert rc 'frontend' "Name:" "Image(s):" "Labels:" "Selector:" "Replicas:" "Pods Status:"
### Resize replication controller frontend with current-replicas and replicas
### Scale replication controller frontend with current-replicas and replicas
# Pre-condition: 3 replicas
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '3'
# Command
kubectl resize --current-replicas=3 --replicas=2 replicationcontrollers frontend "${kube_flags[@]}"
kubectl scale --current-replicas=3 --replicas=2 replicationcontrollers frontend "${kube_flags[@]}"
# Post-condition: 2 replicas
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '2'
### Resize replication controller frontend with (wrong) current-replicas and replicas
### Scale replication controller frontend with (wrong) current-replicas and replicas
# Pre-condition: 2 replicas
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '2'
# Command
! kubectl resize --current-replicas=3 --replicas=2 replicationcontrollers frontend "${kube_flags[@]}"
! kubectl scale --current-replicas=3 --replicas=2 replicationcontrollers frontend "${kube_flags[@]}"
# Post-condition: nothing changed
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '2'
### Resize replication controller frontend with replicas only
### Scale replication controller frontend with replicas only
# Pre-condition: 2 replicas
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '2'
# Command
kubectl resize --replicas=3 replicationcontrollers frontend "${kube_flags[@]}"
kubectl scale --replicas=3 replicationcontrollers frontend "${kube_flags[@]}"
# Post-condition: 3 replicas
kube::test::get_object_assert 'rc frontend' "{{$rc_replicas_field}}" '3'

View File

@ -138,7 +138,7 @@ func NewReplicationManager(kubeClient client.Interface, burstReplicas int) *Repl
rm.enqueueController(cur)
},
// This will enter the sync loop and no-op, becuase the controller has been deleted from the store.
// Note that deleting a controller immediately after resizing it to 0 will not work. The recommended
// Note that deleting a controller immediately after scaling it to 0 will not work. The recommended
// way of achieving this is by performing a `stop` operation on the controller.
DeleteFunc: rm.enqueueController,
},

View File

@ -120,7 +120,7 @@ Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
cmds.AddCommand(NewCmdNamespace(out))
cmds.AddCommand(NewCmdLog(f, out))
cmds.AddCommand(NewCmdRollingUpdate(f, out))
cmds.AddCommand(NewCmdResize(f, out))
cmds.AddCommand(NewCmdScale(f, out))
cmds.AddCommand(NewCmdExec(f, in, out, err))
cmds.AddCommand(NewCmdPortForward(f))

View File

@ -227,7 +227,7 @@ func RunRollingUpdate(f *cmdutil.Factory, out io.Writer, cmd *cobra.Command, arg
return cmdutil.UsageError(cmd, "%s must specify a matching key with non-equal value in Selector for %s",
filename, oldName)
}
// TODO: handle resizes during rolling update
// TODO: handle scales during rolling update
if newRc.Spec.Replicas == 0 {
newRc.Spec.Replicas = oldRc.Spec.Replicas
}

View File

@ -19,6 +19,7 @@ package cmd
import (
"fmt"
"io"
"os"
"github.com/spf13/cobra"
@ -28,38 +29,46 @@ import (
)
const (
resize_long = `Set a new size for a Replication Controller.
scale_long = `Set a new size for a Replication Controller.
Resize also allows users to specify one or more preconditions for the resize action.
Scale also allows users to specify one or more preconditions for the scale action.
If --current-replicas or --resource-version is specified, it is validated before the
resize is attempted, and it is guaranteed that the precondition holds true when the
resize is sent to the server.`
resize_example = `// Resize replication controller named 'foo' to 3.
$ kubectl resize --replicas=3 replicationcontrollers foo
scale is attempted, and it is guaranteed that the precondition holds true when the
scale is sent to the server.`
scale_example = `// Scale replication controller named 'foo' to 3.
$ kubectl scale --replicas=3 replicationcontrollers foo
// If the replication controller named foo's current size is 2, resize foo to 3.
$ kubectl resize --current-replicas=2 --replicas=3 replicationcontrollers foo`
// If the replication controller named foo's current size is 2, scale foo to 3.
$ kubectl scale --current-replicas=2 --replicas=3 replicationcontrollers foo`
)
func NewCmdResize(f *cmdutil.Factory, out io.Writer) *cobra.Command {
// NewCmdScale returns a cobra command with the appropriate configuration and flags to run scale
func NewCmdScale(f *cmdutil.Factory, out io.Writer) *cobra.Command {
cmd := &cobra.Command{
Use: "resize [--resource-version=version] [--current-replicas=count] --replicas=COUNT RESOURCE ID",
Use: "scale [--resource-version=version] [--current-replicas=count] --replicas=COUNT RESOURCE ID",
// resize is deprecated
Aliases: []string{"resize"},
Short: "Set a new size for a Replication Controller.",
Long: resize_long,
Example: resize_example,
Long: scale_long,
Example: scale_example,
Run: func(cmd *cobra.Command, args []string) {
err := RunResize(f, out, cmd, args)
err := RunScale(f, out, cmd, args)
cmdutil.CheckErr(err)
},
}
cmd.Flags().String("resource-version", "", "Precondition for resource version. Requires that the current resource version match this value in order to resize.")
cmd.Flags().Int("current-replicas", -1, "Precondition for current size. Requires that the current size of the replication controller match this value in order to resize.")
cmd.Flags().String("resource-version", "", "Precondition for resource version. Requires that the current resource version match this value in order to scale.")
cmd.Flags().Int("current-replicas", -1, "Precondition for current size. Requires that the current size of the replication controller match this value in order to scale.")
cmd.Flags().Int("replicas", -1, "The new desired number of replicas. Required.")
cmd.MarkFlagRequired("replicas")
return cmd
}
func RunResize(f *cmdutil.Factory, out io.Writer, cmd *cobra.Command, args []string) error {
// RunScale executes the scaling
func RunScale(f *cmdutil.Factory, out io.Writer, cmd *cobra.Command, args []string) error {
if os.Args[1] == "resize" {
printDeprecationWarning("scale", "resize")
}
count := cmdutil.GetFlagInt(cmd, "replicas")
if count < 0 {
return cmdutil.UsageError(cmd, "--replicas=COUNT RESOURCE ID")
@ -95,19 +104,19 @@ func RunResize(f *cmdutil.Factory, out io.Writer, cmd *cobra.Command, args []str
}
info := infos[0]
resizer, err := f.Resizer(mapping)
scaler, err := f.Scaler(mapping)
if err != nil {
return err
}
resourceVersion := cmdutil.GetFlagString(cmd, "resource-version")
currentSize := cmdutil.GetFlagInt(cmd, "current-replicas")
precondition := &kubectl.ResizePrecondition{currentSize, resourceVersion}
precondition := &kubectl.ScalePrecondition{currentSize, resourceVersion}
retry := kubectl.NewRetryParams(kubectl.Interval, kubectl.Timeout)
waitForReplicas := kubectl.NewRetryParams(kubectl.Interval, kubectl.Timeout)
if err := resizer.Resize(info.Namespace, info.Name, uint(count), precondition, retry, waitForReplicas); err != nil {
if err := scaler.Scale(info.Namespace, info.Name, uint(count), precondition, retry, waitForReplicas); err != nil {
return err
}
fmt.Fprint(out, "resized\n")
fmt.Fprint(out, "scaled\n")
return nil
}

View File

@ -30,7 +30,7 @@ const (
stop_long = `Gracefully shut down a resource by id or filename.
Attempts to shut down and delete a resource that supports graceful termination.
If the resource is resizable it will be resized to 0 before deletion.`
If the resource is scalable it will be scaled to 0 before deletion.`
stop_example = `// Shut down foo.
$ kubectl stop replicationcontroller foo

View File

@ -65,8 +65,8 @@ type Factory struct {
Describer func(mapping *meta.RESTMapping) (kubectl.Describer, error)
// Returns a Printer for formatting objects of the given type or an error.
Printer func(mapping *meta.RESTMapping, noHeaders, withNamespace bool) (kubectl.ResourcePrinter, error)
// Returns a Resizer for changing the size of the specified RESTMapping type or an error
Resizer func(mapping *meta.RESTMapping) (kubectl.Resizer, error)
// Returns a Scaler for changing the size of the specified RESTMapping type or an error
Scaler func(mapping *meta.RESTMapping) (kubectl.Scaler, error)
// Returns a Reaper for gracefully shutting down resources.
Reaper func(mapping *meta.RESTMapping) (kubectl.Reaper, error)
// PodSelectorForObject returns the pod selector associated with the provided object
@ -187,12 +187,12 @@ func NewFactory(optionalClientConfig clientcmd.ClientConfig) *Factory {
LabelsForObject: func(object runtime.Object) (map[string]string, error) {
return meta.NewAccessor().Labels(object)
},
Resizer: func(mapping *meta.RESTMapping) (kubectl.Resizer, error) {
Scaler: func(mapping *meta.RESTMapping) (kubectl.Scaler, error) {
client, err := clients.ClientForVersion(mapping.APIVersion)
if err != nil {
return nil, err
}
return kubectl.ResizerFor(mapping.Kind, kubectl.NewResizerClient(client))
return kubectl.ScalerFor(mapping.Kind, kubectl.NewScalerClient(client))
},
Reaper: func(mapping *meta.RESTMapping) (kubectl.Reaper, error) {
client, err := clients.ClientForVersion(mapping.APIVersion)

View File

@ -297,7 +297,7 @@ func FindSourceController(r RollingUpdaterClient, namespace, name string) (*api.
}
// Update all pods for a ReplicationController (oldRc) by creating a new
// controller (newRc) with 0 replicas, and synchronously resizing oldRc,newRc
// controller (newRc) with 0 replicas, and synchronously scaling oldRc,newRc
// by 1 until oldRc has 0 replicas and newRc has the original # of desired
// replicas. Cleanup occurs based on a RollingUpdaterCleanupPolicy.
//
@ -364,12 +364,12 @@ func (r *RollingUpdater) Update(config *RollingUpdaterConfig) error {
oldName, oldRc.Spec.Replicas,
newName, newRc.Spec.Replicas)
newRc, err = r.resizeAndWait(newRc, retry, waitForReplicas)
newRc, err = r.scaleAndWait(newRc, retry, waitForReplicas)
if err != nil {
return err
}
time.Sleep(updatePeriod)
oldRc, err = r.resizeAndWait(oldRc, retry, waitForReplicas)
oldRc, err = r.scaleAndWait(oldRc, retry, waitForReplicas)
if err != nil {
return err
}
@ -382,18 +382,18 @@ func (r *RollingUpdater) Update(config *RollingUpdaterConfig) error {
fmt.Fprintf(out, "Stopping %s replicas: %d -> %d\n",
oldName, oldRc.Spec.Replicas, 0)
oldRc.Spec.Replicas = 0
oldRc, err = r.resizeAndWait(oldRc, retry, waitForReplicas)
// oldRc, err = r.resizeAndWait(oldRc, interval, timeout)
oldRc, err = r.scaleAndWait(oldRc, retry, waitForReplicas)
// oldRc, err = r.scaleAndWait(oldRc, interval, timeout)
if err != nil {
return err
}
}
// add remaining replicas on newRc
if newRc.Spec.Replicas != desired {
fmt.Fprintf(out, "Resizing %s replicas: %d -> %d\n",
fmt.Fprintf(out, "Scaling %s replicas: %d -> %d\n",
newName, newRc.Spec.Replicas, desired)
newRc.Spec.Replicas = desired
newRc, err = r.resizeAndWait(newRc, retry, waitForReplicas)
newRc, err = r.scaleAndWait(newRc, retry, waitForReplicas)
if err != nil {
return err
}
@ -444,12 +444,12 @@ func (r *RollingUpdater) getExistingNewRc(sourceId, name string) (rc *api.Replic
return
}
func (r *RollingUpdater) resizeAndWait(rc *api.ReplicationController, retry *RetryParams, wait *RetryParams) (*api.ReplicationController, error) {
resizer, err := ResizerFor("ReplicationController", r.c)
func (r *RollingUpdater) scaleAndWait(rc *api.ReplicationController, retry *RetryParams, wait *RetryParams) (*api.ReplicationController, error) {
scaler, err := ScalerFor("ReplicationController", r.c)
if err != nil {
return nil, err
}
if err := resizer.Resize(rc.Namespace, rc.Name, uint(rc.Spec.Replicas), &ResizePrecondition{-1, ""}, retry, wait); err != nil {
if err := scaler.Scale(rc.Namespace, rc.Name, uint(rc.Spec.Replicas), &ScalePrecondition{-1, ""}, retry, wait); err != nil {
return nil, err
}
return r.c.GetReplicationController(r.ns, rc.ObjectMeta.Name)

View File

@ -143,7 +143,7 @@ func TestUpdate(t *testing.T) {
[]fakeResponse{
// no existing newRc
{nil, fmt.Errorf("not found")},
// 3 gets for each resize
// 3 gets for each scale
{newRc(1, 1), nil},
{newRc(1, 1), nil},
{newRc(1, 1), nil},
@ -165,7 +165,7 @@ Update succeeded. Deleting foo-v1
[]fakeResponse{
// no existing newRc
{nil, fmt.Errorf("not found")},
// 3 gets for each resize
// 3 gets for each scale
{newRc(1, 2), nil},
{newRc(1, 2), nil},
{newRc(1, 2), nil},
@ -196,7 +196,7 @@ Update succeeded. Deleting foo-v1
[]fakeResponse{
// no existing newRc
{nil, fmt.Errorf("not found")},
// 3 gets for each resize
// 3 gets for each scale
{newRc(1, 2), nil},
{newRc(1, 2), nil},
{newRc(1, 2), nil},
@ -211,7 +211,7 @@ Update succeeded. Deleting foo-v1
{oldRc(0), nil},
{oldRc(0), nil},
{oldRc(0), nil},
// final resize on newRc
// final scale on newRc
{newRc(7, 7), nil},
{newRc(7, 7), nil},
{newRc(7, 7), nil},
@ -222,7 +222,7 @@ Update succeeded. Deleting foo-v1
`Creating foo-v2
Updating foo-v1 replicas: 1, foo-v2 replicas: 1
Updating foo-v1 replicas: 0, foo-v2 replicas: 2
Resizing foo-v2 replicas: 2 -> 7
Scaling foo-v2 replicas: 2 -> 7
Update succeeded. Deleting foo-v1
`,
}, {
@ -298,7 +298,7 @@ Update succeeded. Deleting foo-v1
responses := []fakeResponse{
// Existing newRc
{rcExisting, nil},
// 3 gets for each resize
// 3 gets for each scale
{newRc(2, 2), nil},
{newRc(2, 2), nil},
{newRc(2, 2), nil},

View File

@ -26,17 +26,17 @@ import (
"github.com/GoogleCloudPlatform/kubernetes/pkg/util/wait"
)
// ResizePrecondition describes a condition that must be true for the resize to take place
// ScalePrecondition describes a condition that must be true for the scale to take place
// If CurrentSize == -1, it is ignored.
// If CurrentResourceVersion is the empty string, it is ignored.
// Otherwise they must equal the values in the replication controller for it to be valid.
type ResizePrecondition struct {
type ScalePrecondition struct {
Size int
ResourceVersion string
}
// A PreconditionError is returned when a replication controller fails to match
// the resize preconditions passed to kubectl.
// the scale preconditions passed to kubectl.
type PreconditionError struct {
Precondition string
ExpectedValue string
@ -47,29 +47,29 @@ func (pe PreconditionError) Error() string {
return fmt.Sprintf("Expected %s to be %s, was %s", pe.Precondition, pe.ExpectedValue, pe.ActualValue)
}
type ControllerResizeErrorType int
type ControllerScaleErrorType int
const (
ControllerResizeGetFailure ControllerResizeErrorType = iota
ControllerResizeUpdateFailure
ControllerScaleGetFailure ControllerScaleErrorType = iota
ControllerScaleUpdateFailure
)
// A ControllerResizeError is returned when a the resize request passes
// preconditions but fails to actually resize the controller.
type ControllerResizeError struct {
FailureType ControllerResizeErrorType
// A ControllerScaleError is returned when a scale request passes
// preconditions but fails to actually scale the controller.
type ControllerScaleError struct {
FailureType ControllerScaleErrorType
ResourceVersion string
ActualError error
}
func (c ControllerResizeError) Error() string {
func (c ControllerScaleError) Error() string {
return fmt.Sprintf(
"Resizing the controller failed with: %s; Current resource version %s",
"Scaling the controller failed with: %s; Current resource version %s",
c.ActualError, c.ResourceVersion)
}
// Validate ensures that the preconditions match. Returns nil if they are valid, an error otherwise
func (precondition *ResizePrecondition) Validate(controller *api.ReplicationController) error {
func (precondition *ScalePrecondition) Validate(controller *api.ReplicationController) error {
if precondition.Size != -1 && controller.Spec.Replicas != precondition.Size {
return PreconditionError{"replicas", strconv.Itoa(precondition.Size), strconv.Itoa(controller.Spec.Replicas)}
}
@ -79,29 +79,29 @@ func (precondition *ResizePrecondition) Validate(controller *api.ReplicationCont
return nil
}
type Resizer interface {
// Resize resizes the named resource after checking preconditions. It optionally
type Scaler interface {
// Scale scales the named resource after checking preconditions. It optionally
// retries in the event of resource version mismatch (if retry is not nil),
// and optionally waits until the status of the resource matches newSize (if wait is not nil)
Resize(namespace, name string, newSize uint, preconditions *ResizePrecondition, retry, wait *RetryParams) error
// ResizeSimple does a simple one-shot attempt at resizing - not useful on it's own, but
// a necessary building block for Resize
ResizeSimple(namespace, name string, preconditions *ResizePrecondition, newSize uint) (string, error)
Scale(namespace, name string, newSize uint, preconditions *ScalePrecondition, retry, wait *RetryParams) error
// ScaleSimple does a simple one-shot attempt at scaling - not useful on it's own, but
// a necessary building block for Scale
ScaleSimple(namespace, name string, preconditions *ScalePrecondition, newSize uint) (string, error)
}
func ResizerFor(kind string, c ResizerClient) (Resizer, error) {
func ScalerFor(kind string, c ScalerClient) (Scaler, error) {
switch kind {
case "ReplicationController":
return &ReplicationControllerResizer{c}, nil
return &ReplicationControllerScaler{c}, nil
}
return nil, fmt.Errorf("no resizer has been implemented for %q", kind)
return nil, fmt.Errorf("no scaler has been implemented for %q", kind)
}
type ReplicationControllerResizer struct {
c ResizerClient
type ReplicationControllerScaler struct {
c ScalerClient
}
// RetryParams encapsulates the retry parameters used by kubectl's resizer.
// RetryParams encapsulates the retry parameters used by kubectl's scaler.
type RetryParams struct {
Interval, Timeout time.Duration
}
@ -110,15 +110,15 @@ func NewRetryParams(interval, timeout time.Duration) *RetryParams {
return &RetryParams{interval, timeout}
}
// ResizeCondition is a closure around Resize that facilitates retries via util.wait
func ResizeCondition(r Resizer, precondition *ResizePrecondition, namespace, name string, count uint) wait.ConditionFunc {
// ScaleCondition is a closure around Scale that facilitates retries via util.wait
func ScaleCondition(r Scaler, precondition *ScalePrecondition, namespace, name string, count uint) wait.ConditionFunc {
return func() (bool, error) {
_, err := r.ResizeSimple(namespace, name, precondition, count)
switch e, _ := err.(ControllerResizeError); err.(type) {
_, err := r.ScaleSimple(namespace, name, precondition, count)
switch e, _ := err.(ControllerScaleError); err.(type) {
case nil:
return true, nil
case ControllerResizeError:
if e.FailureType == ControllerResizeUpdateFailure {
case ControllerScaleError:
if e.FailureType == ControllerScaleUpdateFailure {
return false, nil
}
}
@ -126,10 +126,10 @@ func ResizeCondition(r Resizer, precondition *ResizePrecondition, namespace, nam
}
}
func (resizer *ReplicationControllerResizer) ResizeSimple(namespace, name string, preconditions *ResizePrecondition, newSize uint) (string, error) {
controller, err := resizer.c.GetReplicationController(namespace, name)
func (scaler *ReplicationControllerScaler) ScaleSimple(namespace, name string, preconditions *ScalePrecondition, newSize uint) (string, error) {
controller, err := scaler.c.GetReplicationController(namespace, name)
if err != nil {
return "", ControllerResizeError{ControllerResizeGetFailure, "Unknown", err}
return "", ControllerScaleError{ControllerScaleGetFailure, "Unknown", err}
}
if preconditions != nil {
if err := preconditions.Validate(controller); err != nil {
@ -138,60 +138,60 @@ func (resizer *ReplicationControllerResizer) ResizeSimple(namespace, name string
}
controller.Spec.Replicas = int(newSize)
// TODO: do retry on 409 errors here?
if _, err := resizer.c.UpdateReplicationController(namespace, controller); err != nil {
return "", ControllerResizeError{ControllerResizeUpdateFailure, controller.ResourceVersion, err}
if _, err := scaler.c.UpdateReplicationController(namespace, controller); err != nil {
return "", ControllerScaleError{ControllerScaleUpdateFailure, controller.ResourceVersion, err}
}
// TODO: do a better job of printing objects here.
return "resized", nil
return "scaled", nil
}
// Resize updates a ReplicationController to a new size, with optional precondition check (if preconditions is not nil),
// Scale updates a ReplicationController to a new size, with optional precondition check (if preconditions is not nil),
// optional retries (if retry is not nil), and then optionally waits for it's replica count to reach the new value
// (if wait is not nil).
func (resizer *ReplicationControllerResizer) Resize(namespace, name string, newSize uint, preconditions *ResizePrecondition, retry, waitForReplicas *RetryParams) error {
func (scaler *ReplicationControllerScaler) Scale(namespace, name string, newSize uint, preconditions *ScalePrecondition, retry, waitForReplicas *RetryParams) error {
if preconditions == nil {
preconditions = &ResizePrecondition{-1, ""}
preconditions = &ScalePrecondition{-1, ""}
}
if retry == nil {
// Make it try only once, immediately
retry = &RetryParams{Interval: time.Millisecond, Timeout: time.Millisecond}
}
cond := ResizeCondition(resizer, preconditions, namespace, name, newSize)
cond := ScaleCondition(scaler, preconditions, namespace, name, newSize)
if err := wait.Poll(retry.Interval, retry.Timeout, cond); err != nil {
return err
}
if waitForReplicas != nil {
rc := &api.ReplicationController{ObjectMeta: api.ObjectMeta{Namespace: namespace, Name: name}}
return wait.Poll(waitForReplicas.Interval, waitForReplicas.Timeout,
resizer.c.ControllerHasDesiredReplicas(rc))
scaler.c.ControllerHasDesiredReplicas(rc))
}
return nil
}
// ResizerClient abstracts access to ReplicationControllers.
type ResizerClient interface {
// ScalerClient abstracts access to ReplicationControllers.
type ScalerClient interface {
GetReplicationController(namespace, name string) (*api.ReplicationController, error)
UpdateReplicationController(namespace string, rc *api.ReplicationController) (*api.ReplicationController, error)
ControllerHasDesiredReplicas(rc *api.ReplicationController) wait.ConditionFunc
}
func NewResizerClient(c client.Interface) ResizerClient {
return &realResizerClient{c}
func NewScalerClient(c client.Interface) ScalerClient {
return &realScalerClient{c}
}
// realResizerClient is a ResizerClient which uses a Kube client.
type realResizerClient struct {
// realScalerClient is a ScalerClient which uses a Kube client.
type realScalerClient struct {
client client.Interface
}
func (c *realResizerClient) GetReplicationController(namespace, name string) (*api.ReplicationController, error) {
func (c *realScalerClient) GetReplicationController(namespace, name string) (*api.ReplicationController, error) {
return c.client.ReplicationControllers(namespace).Get(name)
}
func (c *realResizerClient) UpdateReplicationController(namespace string, rc *api.ReplicationController) (*api.ReplicationController, error) {
func (c *realScalerClient) UpdateReplicationController(namespace string, rc *api.ReplicationController) (*api.ReplicationController, error) {
return c.client.ReplicationControllers(namespace).Update(rc)
}
func (c *realResizerClient) ControllerHasDesiredReplicas(rc *api.ReplicationController) wait.ConditionFunc {
func (c *realScalerClient) ControllerHasDesiredReplicas(rc *api.ReplicationController) wait.ConditionFunc {
return client.ControllerHasDesiredReplicas(c.client, rc)
}

View File

@ -41,37 +41,37 @@ func (c *ErrorReplicationControllerClient) ReplicationControllers(namespace stri
return &ErrorReplicationControllers{testclient.FakeReplicationControllers{Fake: &c.Fake, Namespace: namespace}}
}
func TestReplicationControllerResizeRetry(t *testing.T) {
func TestReplicationControllerScaleRetry(t *testing.T) {
fake := &ErrorReplicationControllerClient{Fake: testclient.Fake{}}
resizer := ReplicationControllerResizer{NewResizerClient(fake)}
preconditions := ResizePrecondition{-1, ""}
scaler := ReplicationControllerScaler{NewScalerClient(fake)}
preconditions := ScalePrecondition{-1, ""}
count := uint(3)
name := "foo"
namespace := "default"
resizeFunc := ResizeCondition(&resizer, &preconditions, namespace, name, count)
pass, err := resizeFunc()
scaleFunc := ScaleCondition(&scaler, &preconditions, namespace, name, count)
pass, err := scaleFunc()
if pass != false {
t.Errorf("Expected an update failure to return pass = false, got pass = %v", pass)
}
if err != nil {
t.Errorf("Did not expect an error on update failure, got %v", err)
}
preconditions = ResizePrecondition{3, ""}
resizeFunc = ResizeCondition(&resizer, &preconditions, namespace, name, count)
pass, err = resizeFunc()
preconditions = ScalePrecondition{3, ""}
scaleFunc = ScaleCondition(&scaler, &preconditions, namespace, name, count)
pass, err = scaleFunc()
if err == nil {
t.Errorf("Expected error on precondition failure")
}
}
func TestReplicationControllerResize(t *testing.T) {
func TestReplicationControllerScale(t *testing.T) {
fake := &testclient.Fake{}
resizer := ReplicationControllerResizer{NewResizerClient(fake)}
preconditions := ResizePrecondition{-1, ""}
scaler := ReplicationControllerScaler{NewScalerClient(fake)}
preconditions := ScalePrecondition{-1, ""}
count := uint(3)
name := "foo"
resizer.Resize("default", name, count, &preconditions, nil, nil)
scaler.Scale("default", name, count, &preconditions, nil, nil)
if len(fake.Actions) != 2 {
t.Errorf("unexpected actions: %v, expected 2 actions (get, update)", fake.Actions)
@ -84,17 +84,17 @@ func TestReplicationControllerResize(t *testing.T) {
}
}
func TestReplicationControllerResizeFailsPreconditions(t *testing.T) {
func TestReplicationControllerScaleFailsPreconditions(t *testing.T) {
fake := testclient.NewSimpleFake(&api.ReplicationController{
Spec: api.ReplicationControllerSpec{
Replicas: 10,
},
})
resizer := ReplicationControllerResizer{NewResizerClient(fake)}
preconditions := ResizePrecondition{2, ""}
scaler := ReplicationControllerScaler{NewScalerClient(fake)}
preconditions := ScalePrecondition{2, ""}
count := uint(3)
name := "foo"
resizer.Resize("default", name, count, &preconditions, nil, nil)
scaler.Scale("default", name, count, &preconditions, nil, nil)
if len(fake.Actions) != 1 {
t.Errorf("unexpected actions: %v, expected 2 actions (get, update)", fake.Actions)
@ -106,18 +106,18 @@ func TestReplicationControllerResizeFailsPreconditions(t *testing.T) {
func TestPreconditionValidate(t *testing.T) {
tests := []struct {
preconditions ResizePrecondition
preconditions ScalePrecondition
controller api.ReplicationController
expectError bool
test string
}{
{
preconditions: ResizePrecondition{-1, ""},
preconditions: ScalePrecondition{-1, ""},
expectError: false,
test: "defaults",
},
{
preconditions: ResizePrecondition{-1, ""},
preconditions: ScalePrecondition{-1, ""},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "foo",
@ -130,7 +130,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "defaults 2",
},
{
preconditions: ResizePrecondition{0, ""},
preconditions: ScalePrecondition{0, ""},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "foo",
@ -143,7 +143,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "size matches",
},
{
preconditions: ResizePrecondition{-1, "foo"},
preconditions: ScalePrecondition{-1, "foo"},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "foo",
@ -156,7 +156,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "resource version matches",
},
{
preconditions: ResizePrecondition{10, "foo"},
preconditions: ScalePrecondition{10, "foo"},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "foo",
@ -169,7 +169,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "both match",
},
{
preconditions: ResizePrecondition{10, "foo"},
preconditions: ScalePrecondition{10, "foo"},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "foo",
@ -182,7 +182,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "size different",
},
{
preconditions: ResizePrecondition{10, "foo"},
preconditions: ScalePrecondition{10, "foo"},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "bar",
@ -195,7 +195,7 @@ func TestPreconditionValidate(t *testing.T) {
test: "version different",
},
{
preconditions: ResizePrecondition{10, "foo"},
preconditions: ScalePrecondition{10, "foo"},
controller: api.ReplicationController{
ObjectMeta: api.ObjectMeta{
ResourceVersion: "bar",

View File

@ -82,13 +82,13 @@ type objInterface interface {
func (reaper *ReplicationControllerReaper) Stop(namespace, name string, gracePeriod *api.DeleteOptions) (string, error) {
rc := reaper.ReplicationControllers(namespace)
resizer, err := ResizerFor("ReplicationController", NewResizerClient(*reaper))
scaler, err := ScalerFor("ReplicationController", NewScalerClient(*reaper))
if err != nil {
return "", err
}
retry := NewRetryParams(reaper.pollInterval, reaper.timeout)
waitForReplicas := NewRetryParams(reaper.pollInterval, reaper.timeout)
if err = resizer.Resize(namespace, name, 0, nil, retry, waitForReplicas); err != nil {
if err = scaler.Scale(namespace, name, 0, nil, retry, waitForReplicas); err != nil {
return "", err
}
if err := rc.Delete(name); err != nil {

View File

@ -88,10 +88,10 @@ var _ = Describe("kubectl", func() {
runKubectl("create", "-f", nautilusPath, fmt.Sprintf("--namespace=%v", ns))
validateController(c, nautilusImage, 2, "update-demo", updateDemoSelector, getUDData("nautilus.jpg", ns), ns)
By("scaling down the replication controller")
runKubectl("resize", "rc", "update-demo-nautilus", "--replicas=1", fmt.Sprintf("--namespace=%v", ns))
runKubectl("scale", "rc", "update-demo-nautilus", "--replicas=1", fmt.Sprintf("--namespace=%v", ns))
validateController(c, nautilusImage, 1, "update-demo", updateDemoSelector, getUDData("nautilus.jpg", ns), ns)
By("scaling up the replication controller")
runKubectl("resize", "rc", "update-demo-nautilus", "--replicas=2", fmt.Sprintf("--namespace=%v", ns))
runKubectl("scale", "rc", "update-demo-nautilus", "--replicas=2", fmt.Sprintf("--namespace=%v", ns))
validateController(c, nautilusImage, 2, "update-demo", updateDemoSelector, getUDData("nautilus.jpg", ns), ns)
})

View File

@ -112,20 +112,20 @@ func computeRCCounts(total int) (int, int, int) {
return smallRCCount, mediumRCCount, bigRCCount
}
// The function creates a RC and then every few second resize it and with 0.1 probability deletes it.
// The function creates a RC and then every few second scale it and with 0.1 probability deletes it.
func playWithRC(c *client.Client, wg *sync.WaitGroup, ns, name string, size int) {
defer GinkgoRecover()
defer wg.Done()
rcExist := false
// Once every 1-2 minutes perform resize of RC.
// Once every 1-2 minutes perform scale of RC.
for start := time.Now(); time.Since(start) < simulationTime; time.Sleep(time.Duration(60+rand.Intn(60)) * time.Second) {
if !rcExist {
expectNoError(RunRC(c, name, ns, image, size), fmt.Sprintf("creating rc %s in namespace %s", name, ns))
rcExist = true
}
// Resize RC to a random size between 0.5x and 1.5x of the original size.
// Scale RC to a random size between 0.5x and 1.5x of the original size.
newSize := uint(rand.Intn(size+1) + size/2)
expectNoError(ResizeRC(c, ns, name, newSize), fmt.Sprintf("resizing rc %s in namespace %s", name, ns))
expectNoError(ScaleRC(c, ns, name, newSize), fmt.Sprintf("scaling rc %s in namespace %s", name, ns))
// With probability 0.1 remove this RC.
if rand.Intn(10) == 0 {
expectNoError(DeleteRC(c, ns, name), fmt.Sprintf("deleting rc %s in namespace %s", name, ns))

View File

@ -792,14 +792,14 @@ func RunRC(c *client.Client, name string, ns, image string, replicas int) error
return nil
}
func ResizeRC(c *client.Client, ns, name string, size uint) error {
By(fmt.Sprintf("Resizing replication controller %s in namespace %s to %d", name, ns, size))
resizer, err := kubectl.ResizerFor("ReplicationController", kubectl.NewResizerClient(c))
func ScaleRC(c *client.Client, ns, name string, size uint) error {
By(fmt.Sprintf("Scaling replication controller %s in namespace %s to %d", name, ns, size))
scaler, err := kubectl.ScalerFor("ReplicationController", kubectl.NewScalerClient(c))
if err != nil {
return err
}
waitForReplicas := kubectl.NewRetryParams(5*time.Second, 5*time.Minute)
if err = resizer.Resize(ns, name, size, nil, nil, waitForReplicas); err != nil {
if err = scaler.Scale(ns, name, size, nil, nil, waitForReplicas); err != nil {
return err
}
return waitForRCPodsRunning(c, ns, name)

View File

@ -42,7 +42,7 @@ import (
)
const (
// Timeout used in benchmarks, to eg: resize an rc
// Timeout used in benchmarks, to eg: scale an rc
DefaultTimeout = 30 * time.Minute
// Rc manifest used to create pods for benchmarks.
@ -191,26 +191,26 @@ func StopRC(rc *api.ReplicationController, restClient *client.Client) error {
return nil
}
// ResizeRC resizes the given rc to the given replicas.
func ResizeRC(name, ns string, replicas int, restClient *client.Client) (*api.ReplicationController, error) {
resizer, err := kubectl.ResizerFor("ReplicationController", kubectl.NewResizerClient(restClient))
// ScaleRC scales the given rc to the given replicas.
func ScaleRC(name, ns string, replicas int, restClient *client.Client) (*api.ReplicationController, error) {
scaler, err := kubectl.ScalerFor("ReplicationController", kubectl.NewScalerClient(restClient))
if err != nil {
return nil, err
}
retry := &kubectl.RetryParams{50 * time.Millisecond, DefaultTimeout}
waitForReplicas := &kubectl.RetryParams{50 * time.Millisecond, DefaultTimeout}
err = resizer.Resize(ns, name, uint(replicas), nil, retry, waitForReplicas)
err = scaler.Scale(ns, name, uint(replicas), nil, retry, waitForReplicas)
if err != nil {
return nil, err
}
resized, err := restClient.ReplicationControllers(ns).Get(name)
scaled, err := restClient.ReplicationControllers(ns).Get(name)
if err != nil {
return nil, err
}
return resized, nil
return scaled, nil
}
// StartRC creates given rc if it doesn't already exist, then updates it via kubectl's resizer.
// StartRC creates given rc if it doesn't already exist, then updates it via kubectl's scaler.
func StartRC(controller *api.ReplicationController, restClient *client.Client) (*api.ReplicationController, error) {
created, err := restClient.ReplicationControllers(controller.Namespace).Get(controller.Name)
if err != nil {
@ -221,11 +221,11 @@ func StartRC(controller *api.ReplicationController, restClient *client.Client) (
}
}
// If we just created an rc, wait till it creates its replicas.
return ResizeRC(created.Name, created.Namespace, controller.Spec.Replicas, restClient)
return ScaleRC(created.Name, created.Namespace, controller.Spec.Replicas, restClient)
}
// StartPods check for numPods in TestNS. If they exist, it no-ops, otherwise it starts up
// a temp rc, resizes it to match numPods, then deletes the rc leaving behind the pods.
// a temp rc, scales it to match numPods, then deletes the rc leaving behind the pods.
func StartPods(numPods int, host string, restClient *client.Client) error {
start := time.Now()
defer func() {