migrate UsageToPerfDataWithLabels to perf_util.go

This commit is contained in:
Zhou Fang
2016-08-10 10:48:32 -07:00
parent 67a071eb6c
commit ad81b6da80
4 changed files with 148 additions and 203 deletions

View File

@@ -57,56 +57,12 @@ const currentKubeletPerfMetricsVersion = "v1"
// ResourceUsageToPerfData transforms ResourceUsagePerNode to PerfData. Notice that this function
// only cares about memory usage, because cpu usage information will be extracted from NodesCPUSummary.
func ResourceUsageToPerfData(usagePerNode ResourceUsagePerNode) *perftype.PerfData {
items := []perftype.DataItem{}
for node, usages := range usagePerNode {
for c, usage := range usages {
item := perftype.DataItem{
Data: map[string]float64{
"memory": float64(usage.MemoryUsageInBytes) / (1024 * 1024),
"workingset": float64(usage.MemoryWorkingSetInBytes) / (1024 * 1024),
"rss": float64(usage.MemoryRSSInBytes) / (1024 * 1024),
},
Unit: "MB",
Labels: map[string]string{
"node": node,
"container": c,
"resource": "memory",
},
}
items = append(items, item)
}
}
return &perftype.PerfData{
Version: currentKubeletPerfMetricsVersion,
DataItems: items,
}
return ResourceUsageToPerfDataWithLabels(usagePerNode, nil)
}
// CPUUsageToPerfData transforms NodesCPUSummary to PerfData.
func CPUUsageToPerfData(usagePerNode NodesCPUSummary) *perftype.PerfData {
items := []perftype.DataItem{}
for node, usages := range usagePerNode {
for c, usage := range usages {
data := map[string]float64{}
for perc, value := range usage {
data[fmt.Sprintf("Perc%02.0f", perc*100)] = value * 1000
}
item := perftype.DataItem{
Data: data,
Unit: "mCPU",
Labels: map[string]string{
"node": node,
"container": c,
"resource": "cpu",
},
}
items = append(items, item)
}
}
return &perftype.PerfData{
Version: currentKubeletPerfMetricsVersion,
DataItems: items,
}
return CPUUsageToPerfDataWithLabels(usagePerNode, nil)
}
// PrintPerfData prints the perfdata in json format with PerfResultTag prefix.
@@ -117,3 +73,73 @@ func PrintPerfData(p *perftype.PerfData) {
Logf("%s %s\n%s", perftype.PerfResultTag, str, perftype.PerfResultEnd)
}
}
// ResourceUsageToPerfDataWithLabels transforms ResourceUsagePerNode to PerfData with additional labels.
// Notice that this function only cares about memory usage, because cpu usage information will be extracted from NodesCPUSummary.
func ResourceUsageToPerfDataWithLabels(usagePerNode ResourceUsagePerNode, labels map[string]string) *perftype.PerfData {
items := []perftype.DataItem{}
for node, usages := range usagePerNode {
for c, usage := range usages {
newLabels := map[string]string{
"node": node,
"container": c,
"resource": "memory",
}
if labels != nil {
for k, v := range labels {
newLabels[k] = v
}
}
item := perftype.DataItem{
Data: map[string]float64{
"memory": float64(usage.MemoryUsageInBytes) / (1024 * 1024),
"workingset": float64(usage.MemoryWorkingSetInBytes) / (1024 * 1024),
"rss": float64(usage.MemoryRSSInBytes) / (1024 * 1024),
},
Unit: "MB",
Labels: newLabels,
}
items = append(items, item)
}
}
return &perftype.PerfData{
Version: currentKubeletPerfMetricsVersion,
DataItems: items,
}
}
// CPUUsageToPerfDataWithLabels transforms NodesCPUSummary to PerfData with additional labels.
func CPUUsageToPerfDataWithLabels(usagePerNode NodesCPUSummary, labels map[string]string) *perftype.PerfData {
items := []perftype.DataItem{}
for node, usages := range usagePerNode {
for c, usage := range usages {
newLabels := map[string]string{
"node": node,
"container": c,
"resource": "cpu",
}
if labels != nil {
for k, v := range labels {
newLabels[k] = v
}
}
data := map[string]float64{}
for perc, value := range usage {
data[fmt.Sprintf("Perc%02.0f", perc*100)] = value * 1000
}
item := perftype.DataItem{
Data: data,
Unit: "mCPU",
Labels: newLabels,
}
items = append(items, item)
}
}
return &perftype.PerfData{
Version: currentKubeletPerfMetricsVersion,
DataItems: items,
}
}