vendor github.com/prometheus/client_golang/prometheus/testutil package

This commit is contained in:
Yecheng Fu
2018-11-06 13:00:38 +08:00
parent fad23990ce
commit ccb66066a9
39 changed files with 3427 additions and 1507 deletions

View File

@@ -11,10 +11,12 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// Package prometheus provides metrics primitives to instrument code for
// monitoring. It also offers a registry for metrics. Sub-packages allow to
// expose the registered metrics via HTTP (package promhttp) or push them to a
// Pushgateway (package push).
// Package prometheus is the core instrumentation package. It provides metrics
// primitives to instrument code for monitoring. It also offers a registry for
// metrics. Sub-packages allow to expose the registered metrics via HTTP
// (package promhttp) or push them to a Pushgateway (package push). There is
// also a sub-package promauto, which provides metrics constructors with
// automatic registration.
//
// All exported functions and methods are safe to be used concurrently unless
// specified otherwise.
@@ -60,7 +62,7 @@
// // The Handler function provides a default handler to expose metrics
// // via an HTTP server. "/metrics" is the usual endpoint for that.
// http.Handle("/metrics", promhttp.Handler())
// log.Fatal(http.ListenAndServe(":8080", nil))
// log.Fatal(http.ListenAndServe(":8080", nil))
// }
//
//
@@ -72,7 +74,10 @@
// The number of exported identifiers in this package might appear a bit
// overwhelming. However, in addition to the basic plumbing shown in the example
// above, you only need to understand the different metric types and their
// vector versions for basic usage.
// vector versions for basic usage. Furthermore, if you are not concerned with
// fine-grained control of when and how to register metrics with the registry,
// have a look at the promauto package, which will effectively allow you to
// ignore registration altogether in simple cases.
//
// Above, you have already touched the Counter and the Gauge. There are two more
// advanced metric types: the Summary and Histogram. A more thorough description
@@ -116,7 +121,17 @@
// NewConstSummary (and their respective Must… versions). That will happen in
// the Collect method. The Describe method has to return separate Desc
// instances, representative of the “throw-away” metrics to be created later.
// NewDesc comes in handy to create those Desc instances.
// NewDesc comes in handy to create those Desc instances. Alternatively, you
// could return no Desc at all, which will marke the Collector “unchecked”. No
// checks are porformed at registration time, but metric consistency will still
// be ensured at scrape time, i.e. any inconsistencies will lead to scrape
// errors. Thus, with unchecked Collectors, the responsibility to not collect
// metrics that lead to inconsistencies in the total scrape result lies with the
// implementer of the Collector. While this is not a desirable state, it is
// sometimes necessary. The typical use case is a situatios where the exact
// metrics to be returned by a Collector cannot be predicted at registration
// time, but the implementer has sufficient knowledge of the whole system to
// guarantee metric consistency.
//
// The Collector example illustrates the use case. You can also look at the
// source code of the processCollector (mirroring process metrics), the
@@ -145,7 +160,7 @@
// registry.
//
// So far, everything we did operated on the so-called default registry, as it
// can be found in the global DefaultRegistry variable. With NewRegistry, you
// can be found in the global DefaultRegisterer variable. With NewRegistry, you
// can create a custom registry, or you can even implement the Registerer or
// Gatherer interfaces yourself. The methods Register and Unregister work in the
// same way on a custom registry as the global functions Register and Unregister
@@ -153,11 +168,11 @@
//
// There are a number of uses for custom registries: You can use registries with
// special properties, see NewPedanticRegistry. You can avoid global state, as
// it is imposed by the DefaultRegistry. You can use multiple registries at the
// same time to expose different metrics in different ways. You can use separate
// registries for testing purposes.
// it is imposed by the DefaultRegisterer. You can use multiple registries at
// the same time to expose different metrics in different ways. You can use
// separate registries for testing purposes.
//
// Also note that the DefaultRegistry comes registered with a Collector for Go
// Also note that the DefaultRegisterer comes registered with a Collector for Go
// runtime metrics (via NewGoCollector) and a Collector for process metrics (via
// NewProcessCollector). With a custom registry, you are in control and decide
// yourself about the Collectors to register.