Godeps changes for kube-dns
This commit is contained in:
464
vendor/github.com/miekg/dns/dnssec.go
generated
vendored
464
vendor/github.com/miekg/dns/dnssec.go
generated
vendored
@@ -1,16 +1,3 @@
|
||||
// DNSSEC
|
||||
//
|
||||
// DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It
|
||||
// uses public key cryptography to sign resource records. The
|
||||
// public keys are stored in DNSKEY records and the signatures in RRSIG records.
|
||||
//
|
||||
// Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit
|
||||
// to an request.
|
||||
//
|
||||
// m := new(dns.Msg)
|
||||
// m.SetEdns0(4096, true)
|
||||
//
|
||||
// Signature generation, signature verification and key generation are all supported.
|
||||
package dns
|
||||
|
||||
import (
|
||||
@@ -19,15 +6,14 @@ import (
|
||||
"crypto/dsa"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/md5"
|
||||
_ "crypto/md5"
|
||||
"crypto/rand"
|
||||
"crypto/rsa"
|
||||
"crypto/sha1"
|
||||
"crypto/sha256"
|
||||
"crypto/sha512"
|
||||
_ "crypto/sha1"
|
||||
_ "crypto/sha256"
|
||||
_ "crypto/sha512"
|
||||
"encoding/asn1"
|
||||
"encoding/hex"
|
||||
"hash"
|
||||
"io"
|
||||
"math/big"
|
||||
"sort"
|
||||
"strings"
|
||||
@@ -56,6 +42,38 @@ const (
|
||||
PRIVATEOID uint8 = 254
|
||||
)
|
||||
|
||||
// Map for algorithm names.
|
||||
var AlgorithmToString = map[uint8]string{
|
||||
RSAMD5: "RSAMD5",
|
||||
DH: "DH",
|
||||
DSA: "DSA",
|
||||
RSASHA1: "RSASHA1",
|
||||
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
|
||||
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
|
||||
RSASHA256: "RSASHA256",
|
||||
RSASHA512: "RSASHA512",
|
||||
ECCGOST: "ECC-GOST",
|
||||
ECDSAP256SHA256: "ECDSAP256SHA256",
|
||||
ECDSAP384SHA384: "ECDSAP384SHA384",
|
||||
INDIRECT: "INDIRECT",
|
||||
PRIVATEDNS: "PRIVATEDNS",
|
||||
PRIVATEOID: "PRIVATEOID",
|
||||
}
|
||||
|
||||
// Map of algorithm strings.
|
||||
var StringToAlgorithm = reverseInt8(AlgorithmToString)
|
||||
|
||||
// Map of algorithm crypto hashes.
|
||||
var AlgorithmToHash = map[uint8]crypto.Hash{
|
||||
RSAMD5: crypto.MD5, // Deprecated in RFC 6725
|
||||
RSASHA1: crypto.SHA1,
|
||||
RSASHA1NSEC3SHA1: crypto.SHA1,
|
||||
RSASHA256: crypto.SHA256,
|
||||
ECDSAP256SHA256: crypto.SHA256,
|
||||
ECDSAP384SHA384: crypto.SHA384,
|
||||
RSASHA512: crypto.SHA512,
|
||||
}
|
||||
|
||||
// DNSSEC hashing algorithm codes.
|
||||
const (
|
||||
_ uint8 = iota
|
||||
@@ -66,6 +84,18 @@ const (
|
||||
SHA512 // Experimental
|
||||
)
|
||||
|
||||
// Map for hash names.
|
||||
var HashToString = map[uint8]string{
|
||||
SHA1: "SHA1",
|
||||
SHA256: "SHA256",
|
||||
GOST94: "GOST94",
|
||||
SHA384: "SHA384",
|
||||
SHA512: "SHA512",
|
||||
}
|
||||
|
||||
// Map of hash strings.
|
||||
var StringToHash = reverseInt8(HashToString)
|
||||
|
||||
// DNSKEY flag values.
|
||||
const (
|
||||
SEP = 1
|
||||
@@ -74,7 +104,7 @@ const (
|
||||
)
|
||||
|
||||
// The RRSIG needs to be converted to wireformat with some of
|
||||
// the rdata (the signature) missing. Use this struct to easy
|
||||
// the rdata (the signature) missing. Use this struct to ease
|
||||
// the conversion (and re-use the pack/unpack functions).
|
||||
type rrsigWireFmt struct {
|
||||
TypeCovered uint16
|
||||
@@ -182,35 +212,49 @@ func (k *DNSKEY) ToDS(h uint8) *DS {
|
||||
// digest buffer
|
||||
digest := append(owner, wire...) // another copy
|
||||
|
||||
var hash crypto.Hash
|
||||
switch h {
|
||||
case SHA1:
|
||||
s := sha1.New()
|
||||
io.WriteString(s, string(digest))
|
||||
ds.Digest = hex.EncodeToString(s.Sum(nil))
|
||||
hash = crypto.SHA1
|
||||
case SHA256:
|
||||
s := sha256.New()
|
||||
io.WriteString(s, string(digest))
|
||||
ds.Digest = hex.EncodeToString(s.Sum(nil))
|
||||
hash = crypto.SHA256
|
||||
case SHA384:
|
||||
s := sha512.New384()
|
||||
io.WriteString(s, string(digest))
|
||||
ds.Digest = hex.EncodeToString(s.Sum(nil))
|
||||
case GOST94:
|
||||
/* I have no clue */
|
||||
hash = crypto.SHA384
|
||||
case SHA512:
|
||||
hash = crypto.SHA512
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
|
||||
s := hash.New()
|
||||
s.Write(digest)
|
||||
ds.Digest = hex.EncodeToString(s.Sum(nil))
|
||||
return ds
|
||||
}
|
||||
|
||||
// Sign signs an RRSet. The signature needs to be filled in with
|
||||
// the values: Inception, Expiration, KeyTag, SignerName and Algorithm.
|
||||
// The rest is copied from the RRset. Sign returns true when the signing went OK,
|
||||
// otherwise false.
|
||||
// There is no check if RRSet is a proper (RFC 2181) RRSet.
|
||||
// If OrigTTL is non zero, it is used as-is, otherwise the TTL of the RRset
|
||||
// is used as the OrigTTL.
|
||||
func (rr *RRSIG) Sign(k PrivateKey, rrset []RR) error {
|
||||
// ToCDNSKEY converts a DNSKEY record to a CDNSKEY record.
|
||||
func (k *DNSKEY) ToCDNSKEY() *CDNSKEY {
|
||||
c := &CDNSKEY{DNSKEY: *k}
|
||||
c.Hdr = *k.Hdr.copyHeader()
|
||||
c.Hdr.Rrtype = TypeCDNSKEY
|
||||
return c
|
||||
}
|
||||
|
||||
// ToCDS converts a DS record to a CDS record.
|
||||
func (d *DS) ToCDS() *CDS {
|
||||
c := &CDS{DS: *d}
|
||||
c.Hdr = *d.Hdr.copyHeader()
|
||||
c.Hdr.Rrtype = TypeCDS
|
||||
return c
|
||||
}
|
||||
|
||||
// Sign signs an RRSet. The signature needs to be filled in with the values:
|
||||
// Inception, Expiration, KeyTag, SignerName and Algorithm. The rest is copied
|
||||
// from the RRset. Sign returns a non-nill error when the signing went OK.
|
||||
// There is no check if RRSet is a proper (RFC 2181) RRSet. If OrigTTL is non
|
||||
// zero, it is used as-is, otherwise the TTL of the RRset is used as the
|
||||
// OrigTTL.
|
||||
func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error {
|
||||
if k == nil {
|
||||
return ErrPrivKey
|
||||
}
|
||||
@@ -256,72 +300,72 @@ func (rr *RRSIG) Sign(k PrivateKey, rrset []RR) error {
|
||||
}
|
||||
signdata = append(signdata, wire...)
|
||||
|
||||
var sighash []byte
|
||||
var h hash.Hash
|
||||
var ch crypto.Hash // Only need for RSA
|
||||
var intlen int
|
||||
switch rr.Algorithm {
|
||||
case DSA, DSANSEC3SHA1:
|
||||
// Implicit in the ParameterSizes
|
||||
case RSASHA1, RSASHA1NSEC3SHA1:
|
||||
h = sha1.New()
|
||||
ch = crypto.SHA1
|
||||
case RSASHA256, ECDSAP256SHA256:
|
||||
h = sha256.New()
|
||||
ch = crypto.SHA256
|
||||
intlen = 32
|
||||
case ECDSAP384SHA384:
|
||||
h = sha512.New384()
|
||||
intlen = 48
|
||||
case RSASHA512:
|
||||
h = sha512.New()
|
||||
ch = crypto.SHA512
|
||||
case RSAMD5:
|
||||
fallthrough // Deprecated in RFC 6725
|
||||
default:
|
||||
hash, ok := AlgorithmToHash[rr.Algorithm]
|
||||
if !ok {
|
||||
return ErrAlg
|
||||
}
|
||||
io.WriteString(h, string(signdata))
|
||||
sighash = h.Sum(nil)
|
||||
|
||||
switch p := k.(type) {
|
||||
case *dsa.PrivateKey:
|
||||
r1, s1, err := dsa.Sign(rand.Reader, p, sighash)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
signature := []byte{0x4D} // T value, here the ASCII M for Miek (not used in DNSSEC)
|
||||
signature = append(signature, intToBytes(r1, 20)...)
|
||||
signature = append(signature, intToBytes(s1, 20)...)
|
||||
rr.Signature = toBase64(signature)
|
||||
case *rsa.PrivateKey:
|
||||
// We can use nil as rand.Reader here (says AGL)
|
||||
signature, err := rsa.SignPKCS1v15(nil, p, ch, sighash)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
rr.Signature = toBase64(signature)
|
||||
case *ecdsa.PrivateKey:
|
||||
r1, s1, err := ecdsa.Sign(rand.Reader, p, sighash)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
signature := intToBytes(r1, intlen)
|
||||
signature = append(signature, intToBytes(s1, intlen)...)
|
||||
rr.Signature = toBase64(signature)
|
||||
default:
|
||||
// Not given the correct key
|
||||
return ErrKeyAlg
|
||||
h := hash.New()
|
||||
h.Write(signdata)
|
||||
|
||||
signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
rr.Signature = toBase64(signature)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) {
|
||||
signature, err := k.Sign(rand.Reader, hashed, hash)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch alg {
|
||||
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512:
|
||||
return signature, nil
|
||||
|
||||
case ECDSAP256SHA256, ECDSAP384SHA384:
|
||||
ecdsaSignature := &struct {
|
||||
R, S *big.Int
|
||||
}{}
|
||||
if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var intlen int
|
||||
switch alg {
|
||||
case ECDSAP256SHA256:
|
||||
intlen = 32
|
||||
case ECDSAP384SHA384:
|
||||
intlen = 48
|
||||
}
|
||||
|
||||
signature := intToBytes(ecdsaSignature.R, intlen)
|
||||
signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...)
|
||||
return signature, nil
|
||||
|
||||
// There is no defined interface for what a DSA backed crypto.Signer returns
|
||||
case DSA, DSANSEC3SHA1:
|
||||
// t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8)
|
||||
// signature := []byte{byte(t)}
|
||||
// signature = append(signature, intToBytes(r1, 20)...)
|
||||
// signature = append(signature, intToBytes(s1, 20)...)
|
||||
// rr.Signature = signature
|
||||
}
|
||||
|
||||
return nil, ErrAlg
|
||||
}
|
||||
|
||||
// Verify validates an RRSet with the signature and key. This is only the
|
||||
// cryptographic test, the signature validity period must be checked separately.
|
||||
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
|
||||
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
|
||||
// First the easy checks
|
||||
if len(rrset) == 0 {
|
||||
if !IsRRset(rrset) {
|
||||
return ErrRRset
|
||||
}
|
||||
if rr.KeyTag != k.KeyTag() {
|
||||
@@ -339,14 +383,17 @@ func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
|
||||
if k.Protocol != 3 {
|
||||
return ErrKey
|
||||
}
|
||||
for _, r := range rrset {
|
||||
if r.Header().Class != rr.Hdr.Class {
|
||||
return ErrRRset
|
||||
}
|
||||
if r.Header().Rrtype != rr.TypeCovered {
|
||||
return ErrRRset
|
||||
}
|
||||
|
||||
// IsRRset checked that we have at least one RR and that the RRs in
|
||||
// the set have consistent type, class, and name. Also check that type and
|
||||
// class matches the RRSIG record.
|
||||
if rrset[0].Header().Class != rr.Hdr.Class {
|
||||
return ErrRRset
|
||||
}
|
||||
if rrset[0].Header().Rrtype != rr.TypeCovered {
|
||||
return ErrRRset
|
||||
}
|
||||
|
||||
// RFC 4035 5.3.2. Reconstructing the Signed Data
|
||||
// Copy the sig, except the rrsig data
|
||||
sigwire := new(rrsigWireFmt)
|
||||
@@ -373,8 +420,13 @@ func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
|
||||
|
||||
sigbuf := rr.sigBuf() // Get the binary signature data
|
||||
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
|
||||
// TODO(mg)
|
||||
// remove the domain name and assume its our
|
||||
// TODO(miek)
|
||||
// remove the domain name and assume its ours?
|
||||
}
|
||||
|
||||
hash, ok := AlgorithmToHash[rr.Algorithm]
|
||||
if !ok {
|
||||
return ErrAlg
|
||||
}
|
||||
|
||||
switch rr.Algorithm {
|
||||
@@ -384,57 +436,37 @@ func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
|
||||
if pubkey == nil {
|
||||
return ErrKey
|
||||
}
|
||||
// Setup the hash as defined for this alg.
|
||||
var h hash.Hash
|
||||
var ch crypto.Hash
|
||||
switch rr.Algorithm {
|
||||
case RSAMD5:
|
||||
h = md5.New()
|
||||
ch = crypto.MD5
|
||||
case RSASHA1, RSASHA1NSEC3SHA1:
|
||||
h = sha1.New()
|
||||
ch = crypto.SHA1
|
||||
case RSASHA256:
|
||||
h = sha256.New()
|
||||
ch = crypto.SHA256
|
||||
case RSASHA512:
|
||||
h = sha512.New()
|
||||
ch = crypto.SHA512
|
||||
}
|
||||
io.WriteString(h, string(signeddata))
|
||||
sighash := h.Sum(nil)
|
||||
return rsa.VerifyPKCS1v15(pubkey, ch, sighash, sigbuf)
|
||||
|
||||
h := hash.New()
|
||||
h.Write(signeddata)
|
||||
return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf)
|
||||
|
||||
case ECDSAP256SHA256, ECDSAP384SHA384:
|
||||
pubkey := k.publicKeyCurve()
|
||||
pubkey := k.publicKeyECDSA()
|
||||
if pubkey == nil {
|
||||
return ErrKey
|
||||
}
|
||||
var h hash.Hash
|
||||
switch rr.Algorithm {
|
||||
case ECDSAP256SHA256:
|
||||
h = sha256.New()
|
||||
case ECDSAP384SHA384:
|
||||
h = sha512.New384()
|
||||
}
|
||||
io.WriteString(h, string(signeddata))
|
||||
sighash := h.Sum(nil)
|
||||
|
||||
// Split sigbuf into the r and s coordinates
|
||||
r := big.NewInt(0)
|
||||
r.SetBytes(sigbuf[:len(sigbuf)/2])
|
||||
s := big.NewInt(0)
|
||||
s.SetBytes(sigbuf[len(sigbuf)/2:])
|
||||
if ecdsa.Verify(pubkey, sighash, r, s) {
|
||||
r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2])
|
||||
s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:])
|
||||
|
||||
h := hash.New()
|
||||
h.Write(signeddata)
|
||||
if ecdsa.Verify(pubkey, h.Sum(nil), r, s) {
|
||||
return nil
|
||||
}
|
||||
return ErrSig
|
||||
|
||||
default:
|
||||
return ErrAlg
|
||||
}
|
||||
// Unknown alg
|
||||
return ErrAlg
|
||||
}
|
||||
|
||||
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
|
||||
// if a signature period is valid. If t is the zero time, the
|
||||
// current time is taken other t is.
|
||||
// current time is taken other t is. Returns true if the signature
|
||||
// is valid at the given time, otherwise returns false.
|
||||
func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
|
||||
var utc int64
|
||||
if t.IsZero() {
|
||||
@@ -450,39 +482,14 @@ func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
|
||||
}
|
||||
|
||||
// Return the signatures base64 encodedig sigdata as a byte slice.
|
||||
func (s *RRSIG) sigBuf() []byte {
|
||||
sigbuf, err := fromBase64([]byte(s.Signature))
|
||||
func (rr *RRSIG) sigBuf() []byte {
|
||||
sigbuf, err := fromBase64([]byte(rr.Signature))
|
||||
if err != nil {
|
||||
return nil
|
||||
}
|
||||
return sigbuf
|
||||
}
|
||||
|
||||
// setPublicKeyInPrivate sets the public key in the private key.
|
||||
func (k *DNSKEY) setPublicKeyInPrivate(p PrivateKey) bool {
|
||||
switch t := p.(type) {
|
||||
case *dsa.PrivateKey:
|
||||
x := k.publicKeyDSA()
|
||||
if x == nil {
|
||||
return false
|
||||
}
|
||||
t.PublicKey = *x
|
||||
case *rsa.PrivateKey:
|
||||
x := k.publicKeyRSA()
|
||||
if x == nil {
|
||||
return false
|
||||
}
|
||||
t.PublicKey = *x
|
||||
case *ecdsa.PrivateKey:
|
||||
x := k.publicKeyCurve()
|
||||
if x == nil {
|
||||
return false
|
||||
}
|
||||
t.PublicKey = *x
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// publicKeyRSA returns the RSA public key from a DNSKEY record.
|
||||
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
|
||||
keybuf, err := fromBase64([]byte(k.PublicKey))
|
||||
@@ -521,8 +528,8 @@ func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
|
||||
return pubkey
|
||||
}
|
||||
|
||||
// publicKeyCurve returns the Curve public key from the DNSKEY record.
|
||||
func (k *DNSKEY) publicKeyCurve() *ecdsa.PublicKey {
|
||||
// publicKeyECDSA returns the Curve public key from the DNSKEY record.
|
||||
func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey {
|
||||
keybuf, err := fromBase64([]byte(k.PublicKey))
|
||||
if err != nil {
|
||||
return nil
|
||||
@@ -573,81 +580,6 @@ func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
|
||||
return pubkey
|
||||
}
|
||||
|
||||
// Set the public key (the value E and N)
|
||||
func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
|
||||
if _E == 0 || _N == nil {
|
||||
return false
|
||||
}
|
||||
buf := exponentToBuf(_E)
|
||||
buf = append(buf, _N.Bytes()...)
|
||||
k.PublicKey = toBase64(buf)
|
||||
return true
|
||||
}
|
||||
|
||||
// Set the public key for Elliptic Curves
|
||||
func (k *DNSKEY) setPublicKeyCurve(_X, _Y *big.Int) bool {
|
||||
if _X == nil || _Y == nil {
|
||||
return false
|
||||
}
|
||||
var intlen int
|
||||
switch k.Algorithm {
|
||||
case ECDSAP256SHA256:
|
||||
intlen = 32
|
||||
case ECDSAP384SHA384:
|
||||
intlen = 48
|
||||
}
|
||||
k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
|
||||
return true
|
||||
}
|
||||
|
||||
// Set the public key for DSA
|
||||
func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
|
||||
if _Q == nil || _P == nil || _G == nil || _Y == nil {
|
||||
return false
|
||||
}
|
||||
buf := dsaToBuf(_Q, _P, _G, _Y)
|
||||
k.PublicKey = toBase64(buf)
|
||||
return true
|
||||
}
|
||||
|
||||
// Set the public key (the values E and N) for RSA
|
||||
// RFC 3110: Section 2. RSA Public KEY Resource Records
|
||||
func exponentToBuf(_E int) []byte {
|
||||
var buf []byte
|
||||
i := big.NewInt(int64(_E))
|
||||
if len(i.Bytes()) < 256 {
|
||||
buf = make([]byte, 1)
|
||||
buf[0] = uint8(len(i.Bytes()))
|
||||
} else {
|
||||
buf = make([]byte, 3)
|
||||
buf[0] = 0
|
||||
buf[1] = uint8(len(i.Bytes()) >> 8)
|
||||
buf[2] = uint8(len(i.Bytes()))
|
||||
}
|
||||
buf = append(buf, i.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// Set the public key for X and Y for Curve. The two
|
||||
// values are just concatenated.
|
||||
func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
|
||||
buf := intToBytes(_X, intlen)
|
||||
buf = append(buf, intToBytes(_Y, intlen)...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// Set the public key for X and Y for Curve. The two
|
||||
// values are just concatenated.
|
||||
func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
|
||||
t := divRoundUp(divRoundUp(_G.BitLen(), 8)-64, 8)
|
||||
buf := []byte{byte(t)}
|
||||
buf = append(buf, intToBytes(_Q, 20)...)
|
||||
buf = append(buf, intToBytes(_P, 64+t*8)...)
|
||||
buf = append(buf, intToBytes(_G, 64+t*8)...)
|
||||
buf = append(buf, intToBytes(_Y, 64+t*8)...)
|
||||
return buf
|
||||
}
|
||||
|
||||
type wireSlice [][]byte
|
||||
|
||||
func (p wireSlice) Len() int { return len(p) }
|
||||
@@ -676,6 +608,12 @@ func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
|
||||
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
|
||||
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
|
||||
// SRV, DNAME, A6
|
||||
//
|
||||
// RFC 6840 - Clarifications and Implementation Notes for DNS Security (DNSSEC):
|
||||
// Section 6.2 of [RFC4034] also erroneously lists HINFO as a record
|
||||
// that needs conversion to lowercase, and twice at that. Since HINFO
|
||||
// records contain no domain names, they are not subject to case
|
||||
// conversion.
|
||||
switch x := r1.(type) {
|
||||
case *NS:
|
||||
x.Ns = strings.ToLower(x.Ns)
|
||||
@@ -716,41 +654,11 @@ func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
|
||||
wires[i] = wire
|
||||
}
|
||||
sort.Sort(wires)
|
||||
for _, wire := range wires {
|
||||
for i, wire := range wires {
|
||||
if i > 0 && bytes.Equal(wire, wires[i-1]) {
|
||||
continue
|
||||
}
|
||||
buf = append(buf, wire...)
|
||||
}
|
||||
return buf, nil
|
||||
}
|
||||
|
||||
// Map for algorithm names.
|
||||
var AlgorithmToString = map[uint8]string{
|
||||
RSAMD5: "RSAMD5",
|
||||
DH: "DH",
|
||||
DSA: "DSA",
|
||||
RSASHA1: "RSASHA1",
|
||||
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
|
||||
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
|
||||
RSASHA256: "RSASHA256",
|
||||
RSASHA512: "RSASHA512",
|
||||
ECCGOST: "ECC-GOST",
|
||||
ECDSAP256SHA256: "ECDSAP256SHA256",
|
||||
ECDSAP384SHA384: "ECDSAP384SHA384",
|
||||
INDIRECT: "INDIRECT",
|
||||
PRIVATEDNS: "PRIVATEDNS",
|
||||
PRIVATEOID: "PRIVATEOID",
|
||||
}
|
||||
|
||||
// Map of algorithm strings.
|
||||
var StringToAlgorithm = reverseInt8(AlgorithmToString)
|
||||
|
||||
// Map for hash names.
|
||||
var HashToString = map[uint8]string{
|
||||
SHA1: "SHA1",
|
||||
SHA256: "SHA256",
|
||||
GOST94: "GOST94",
|
||||
SHA384: "SHA384",
|
||||
SHA512: "SHA512",
|
||||
}
|
||||
|
||||
// Map of hash strings.
|
||||
var StringToHash = reverseInt8(HashToString)
|
||||
|
Reference in New Issue
Block a user