Added a new scheduling queue based on priority queue.

This commit is contained in:
Bobby (Babak) Salamat
2017-10-24 11:14:29 -07:00
parent ff0d72a3fa
commit daf8492bc5
6 changed files with 1090 additions and 32 deletions

View File

@@ -15,47 +15,701 @@ limitations under the License.
*/
// This file contains structures that implement scheduling queue types.
// Scheduling queues hold pending pods waiting to be scheduled.
// Scheduling queues hold pods waiting to be scheduled. This file has two types
// of scheduling queue: 1) a FIFO, which is mostly the same as cache.FIFO, 2) a
// priority queue which has two sub queues. One sub-queue holds pods that are
// being considered for scheduling. This is called activeQ. Another queue holds
// pods that are already tried and are determined to be unschedulable. The latter
// is called unschedulableQ.
// FIFO is here for flag-gating purposes and allows us to use the traditional
// scheduling queue when Pod Priority flag is false.
package core
import (
"container/heap"
"fmt"
"sync"
"k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/client-go/tools/cache"
"k8s.io/kubernetes/plugin/pkg/scheduler/algorithm/predicates"
priorityutil "k8s.io/kubernetes/plugin/pkg/scheduler/algorithm/priorities/util"
"k8s.io/kubernetes/plugin/pkg/scheduler/util"
"github.com/golang/glog"
"reflect"
)
// SchedulingQueue is an interface for a queue to store pods waiting to be scheduled.
// The interface follows a pattern similar to cache.FIFO and cache.Heap and
// makes it easy to use those data structures as a SchedulingQueue.
type SchedulingQueue interface {
Add(obj interface{}) error
AddIfNotPresent(obj interface{}) error
Pop() (interface{}, error)
Update(obj interface{}) error
Delete(obj interface{}) error
List() []interface{}
ListKeys() []string
Get(obj interface{}) (item interface{}, exists bool, err error)
GetByKey(key string) (item interface{}, exists bool, err error)
Add(pod *v1.Pod) error
AddIfNotPresent(pod *v1.Pod) error
AddUnschedulableIfNotPresent(pod *v1.Pod) error
Pop() (*v1.Pod, error)
Update(pod *v1.Pod) error
Delete(pod *v1.Pod) error
MoveAllToActiveQueue()
AssignedPodAdded(pod *v1.Pod)
AssignedPodUpdated(pod *v1.Pod)
WaitingPodsForNode(nodeName string) []*v1.Pod
}
// FIFO is only used to add a Pop() method to cache.FIFO so that it can be
// used as a SchedulingQueue interface.
// NewSchedulingQueue initializes a new scheduling queue. If pod priority is
// enabled a priority queue is returned. If it is disabled, a FIFO is returned.
func NewSchedulingQueue() SchedulingQueue {
if util.PodPriorityEnabled() {
return NewPriorityQueue()
}
return NewFIFO()
}
// FIFO is basically a simple wrapper around cache.FIFO to make it compatible
// with the SchedulingQueue interface.
type FIFO struct {
*cache.FIFO
}
var _ = SchedulingQueue(&FIFO{}) // Making sure that FIFO implements SchedulingQueue.
func (f *FIFO) Add(pod *v1.Pod) error {
return f.FIFO.Add(pod)
}
func (f *FIFO) AddIfNotPresent(pod *v1.Pod) error {
return f.FIFO.AddIfNotPresent(pod)
}
// AddUnschedulableIfNotPresent adds an unschedulable pod back to the queue. In
// FIFO it is added to the end of the queue.
func (f *FIFO) AddUnschedulableIfNotPresent(pod *v1.Pod) error {
return f.FIFO.AddIfNotPresent(pod)
}
func (f *FIFO) Update(pod *v1.Pod) error {
return f.FIFO.Update(pod)
}
func (f *FIFO) Delete(pod *v1.Pod) error {
return f.FIFO.Delete(pod)
}
// Pop removes the head of FIFO and returns it.
// This is just a copy/paste of cache.Pop(queue Queue) from fifo.go that scheduler
// has always been using. There is a comment in that file saying that this method
// shouldn't be used in production code, but scheduler has always been using it.
// This function does minimal error checking.
func (f *FIFO) Pop() (interface{}, error) {
func (f *FIFO) Pop() (*v1.Pod, error) {
var result interface{}
f.FIFO.Pop(func(obj interface{}) error {
result = obj
return nil
})
return result, nil
return result.(*v1.Pod), nil
}
var _ = SchedulingQueue(&FIFO{}) // Making sure that FIFO implements SchedulingQueue.
// FIFO does not need to react to events, as all pods are always in the active
// scheduling queue anyway.
func (f *FIFO) AssignedPodAdded(pod *v1.Pod) {}
func (f *FIFO) AssignedPodUpdated(pod *v1.Pod) {}
// MoveAllToActiveQueue does nothing in FIFO as all pods are always in the active queue.
func (f *FIFO) MoveAllToActiveQueue() {}
// WaitingPodsForNode returns pods that are nominated to run on the given node,
// but FIFO does not support it.
func (f *FIFO) WaitingPodsForNode(nodeName string) []*v1.Pod {
return nil
}
func NewFIFO() *FIFO {
return &FIFO{FIFO: cache.NewFIFO(cache.MetaNamespaceKeyFunc)}
}
// UnschedulablePods is an interface for a queue that is used to keep unschedulable
// pods. These pods are not actively reevaluated for scheduling. They are moved
// to the active scheduling queue on certain events, such as termination of a pod
// in the cluster, addition of nodes, etc.
type UnschedulablePods interface {
Add(pod *v1.Pod)
Delete(pod *v1.Pod)
Update(pod *v1.Pod)
GetPodsWaitingForNode(nodeName string) []*v1.Pod
Get(pod *v1.Pod) *v1.Pod
Clear()
}
// PriorityQueue implements a scheduling queue. It is an alternative to FIFO.
// The head of PriorityQueue is the highest priority pending pod. This structure
// has two sub queues. One sub-queue holds pods that are being considered for
// scheduling. This is called activeQ and is a Heap. Another queue holds
// pods that are already tried and are determined to be unschedulable. The latter
// is called unschedulableQ.
// Heap is already thread safe, but we need to acquire another lock here to ensure
// atomicity of operations on the two data structures..
type PriorityQueue struct {
lock sync.RWMutex
cond sync.Cond
// activeQ is heap structure that scheduler actively looks at to find pods to
// schedule. Head of heap is the highest priority pod.
activeQ *Heap
// unschedulableQ holds pods that have been tried and determined unschedulable.
unschedulableQ *UnschedulablePodsMap
// receivedMoveRequest is set to true whenever we receive a request to move a
// pod from the unschedulableQ to the activeQ, and is set to false, when we pop
// a pod from the activeQ. It indicates if we received a move request when a
// pod was in flight (we were trying to schedule it). In such a case, we put
// the pod back into the activeQ if it is determined unschedulable.
receivedMoveRequest bool
}
// Making sure that PriorityQueue implements SchedulingQueue.
var _ = SchedulingQueue(&PriorityQueue{})
func NewPriorityQueue() *PriorityQueue {
pq := &PriorityQueue{
activeQ: newHeap(cache.MetaNamespaceKeyFunc, util.HigherPriorityPod),
unschedulableQ: newUnschedulablePodsMap(),
}
pq.cond.L = &pq.lock
return pq
}
// Add adds a pod to the active queue. It should be called only when a new pod
// is added so there is no chance the pod is already in either queue.
func (p *PriorityQueue) Add(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
err := p.activeQ.Add(pod)
if err != nil {
glog.Errorf("Error adding pod %v to the scheduling queue: %v", pod.Name, err)
} else {
if p.unschedulableQ.Get(pod) != nil {
glog.Errorf("Error: pod %v is already in the unschedulable queue.", pod.Name)
p.unschedulableQ.Delete(pod)
}
p.cond.Broadcast()
}
return err
}
// AddIfNotPresent adds a pod to the active queue if it is not present in any of
// the two queues. If it is present in any, it doesn't do any thing.
func (p *PriorityQueue) AddIfNotPresent(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
if p.unschedulableQ.Get(pod) != nil {
return nil
}
if _, exists, _ := p.activeQ.Get(pod); exists {
return nil
}
err := p.activeQ.Add(pod)
if err != nil {
glog.Errorf("Error adding pod %v to the scheduling queue: %v", pod.Name, err)
} else {
p.cond.Broadcast()
}
return err
}
// AddUnschedulableIfNotPresent does nothing if the pod is present in either
// queue. Otherwise it adds the pod to the unschedulable queue if
// p.receivedMoveRequest is false, and to the activeQ if p.receivedMoveRequest is true.
func (p *PriorityQueue) AddUnschedulableIfNotPresent(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
if p.unschedulableQ.Get(pod) != nil {
return fmt.Errorf("pod is already present in unschedulableQ")
}
if _, exists, _ := p.activeQ.Get(pod); exists {
return fmt.Errorf("pod is already present in the activeQ")
}
if p.receivedMoveRequest {
return p.activeQ.Add(pod)
}
p.unschedulableQ.Add(pod)
return nil
}
// Pop removes the head of the active queue and returns it. It blocks if the
// activeQ is empty and waits until a new item is added to the queue. It also
// clears receivedMoveRequest to mark the beginning of a new scheduling cycle.
func (p *PriorityQueue) Pop() (*v1.Pod, error) {
p.lock.Lock()
defer p.lock.Unlock()
for len(p.activeQ.data.queue) == 0 {
p.cond.Wait()
}
obj, err := p.activeQ.Pop()
if err != nil {
return nil, err
}
p.receivedMoveRequest = false
return obj.(*v1.Pod), err
}
// isPodUpdated checks if the pod is updated in a way that it may have become
// schedulable. It drops status of the pod and compares it with old version.
func isPodUpdated(oldPod, newPod *v1.Pod) bool {
strip := func(pod *v1.Pod) *v1.Pod {
p := pod.DeepCopy()
p.ResourceVersion = ""
p.Status = v1.PodStatus{}
return p
}
return !reflect.DeepEqual(strip(oldPod), strip(newPod))
}
// Update updates a pod in the active queue if present. Otherwise, it removes
// the item from the unschedulable queue and adds the updated one to the active
// queue.
func (p *PriorityQueue) Update(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
// If the pod is already in the active queue, just update it there.
if _, exists, _ := p.activeQ.Get(pod); exists {
err := p.activeQ.Update(pod)
if err == nil {
p.cond.Broadcast()
}
return err
}
// If the pod is in the unschedulable queue, updating it may make it schedulable.
if oldPod := p.unschedulableQ.Get(pod); oldPod != nil {
if isPodUpdated(oldPod, pod) {
p.unschedulableQ.Delete(pod)
err := p.activeQ.Add(pod)
if err == nil {
p.cond.Broadcast()
}
return err
} else {
p.unschedulableQ.Update(pod)
return nil
}
}
// If pod is not in any of the two queue, we put it in the active queue.
err := p.activeQ.Add(pod)
if err == nil {
p.cond.Broadcast()
}
return err
}
// Delete deletes the item from either of the two queues. It assumes the pod is
// only in one queue.
func (p *PriorityQueue) Delete(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
if _, exists, _ := p.activeQ.Get(pod); exists {
return p.activeQ.Delete(pod)
}
p.unschedulableQ.Delete(pod)
return nil
}
// AssignedPodAdded is called when a bound pod is added. Creation of this pod
// may make pending pods with matching affinity terms schedulable.
func (p *PriorityQueue) AssignedPodAdded(pod *v1.Pod) {
p.movePodsToActiveQueue(p.getUnschedulablePodsWithMatchingAffinityTerm(pod))
}
// AssignedPodUpdated is called when a bound pod is updated. Change of labels
// may make pending pods with matching affinity terms schedulable.
func (p *PriorityQueue) AssignedPodUpdated(pod *v1.Pod) {
p.movePodsToActiveQueue(p.getUnschedulablePodsWithMatchingAffinityTerm(pod))
}
// MoveAllToActiveQueue moves all pods from unschedulableQ to activeQ. This
// function adds all pods and then signals the condition variable to ensure that
// if Pop() is waiting for an item, it receives it after all the pods are in the
// queue and the head is the highest priority pod.
// TODO(bsalamat): We should add a back-off mechanism here so that a high priority
// pod which is unschedulable does not go to the head of the queue frequently. For
// example in a cluster where a lot of pods being deleted, such a high priority
// pod can deprive other pods from getting scheduled.
func (p *PriorityQueue) MoveAllToActiveQueue() {
p.lock.Lock()
defer p.lock.Unlock()
var unschedulablePods []interface{}
for _, pod := range p.unschedulableQ.pods {
unschedulablePods = append(unschedulablePods, pod)
}
p.activeQ.BulkAdd(unschedulablePods)
p.unschedulableQ.Clear()
p.receivedMoveRequest = true
p.cond.Broadcast()
}
func (p *PriorityQueue) movePodsToActiveQueue(pods []*v1.Pod) {
p.lock.Lock()
defer p.lock.Unlock()
for _, pod := range pods {
p.activeQ.Add(pod)
p.unschedulableQ.Delete(pod)
}
p.receivedMoveRequest = true
p.cond.Broadcast()
}
// getUnschedulablePodsWithMatchingAffinityTerm returns unschedulable pods which have
// any affinity term that matches "pod".
func (p *PriorityQueue) getUnschedulablePodsWithMatchingAffinityTerm(pod *v1.Pod) []*v1.Pod {
p.lock.RLock()
defer p.lock.RUnlock()
podsToMove := []*v1.Pod{}
for _, up := range p.unschedulableQ.pods {
affinity := up.Spec.Affinity
if affinity != nil && affinity.PodAffinity != nil {
terms := predicates.GetPodAffinityTerms(affinity.PodAffinity)
for _, term := range terms {
namespaces := priorityutil.GetNamespacesFromPodAffinityTerm(up, &term)
selector, err := metav1.LabelSelectorAsSelector(term.LabelSelector)
if err != nil {
glog.Errorf("Error getting label selectors for pod: %v.", up.Name)
}
if priorityutil.PodMatchesTermsNamespaceAndSelector(pod, namespaces, selector) {
podsToMove = append(podsToMove, up)
}
}
}
}
return podsToMove
}
// WaitingPodsForNode returns pods that are nominated to run on the given node,
// but they are waiting for other pods to be removed from the node before they
// can be actually scheduled.
func (p *PriorityQueue) WaitingPodsForNode(nodeName string) []*v1.Pod {
return p.unschedulableQ.GetPodsWaitingForNode(nodeName)
}
// UnschedulablePodsMap holds pods that cannot be scheduled. This data structure
// is used to implement unschedulableQ.
type UnschedulablePodsMap struct {
// pods is a map key by a pod's full-name and the value is a pointer to the pod.
pods map[string]*v1.Pod
// nominatedPods is a map keyed by a node name and the value is a list of
// pods' full-names which are nominated to run on the node.
nominatedPods map[string][]string
keyFunc func(*v1.Pod) string
}
var _ = UnschedulablePods(&UnschedulablePodsMap{})
func NominatedNodeName(pod *v1.Pod) string {
nominatedNodeName, ok := pod.Annotations[NominatedNodeAnnotationKey]
if !ok {
return ""
}
return nominatedNodeName
}
// Add adds a pod to the unschedulable pods.
func (u *UnschedulablePodsMap) Add(pod *v1.Pod) {
podKey := u.keyFunc(pod)
if _, exists := u.pods[podKey]; !exists {
u.pods[podKey] = pod
nominatedNodeName := NominatedNodeName(pod)
if len(nominatedNodeName) > 0 {
u.nominatedPods[nominatedNodeName] = append(u.nominatedPods[nominatedNodeName], podKey)
}
}
}
func (u *UnschedulablePodsMap) deleteFromNominated(pod *v1.Pod) {
nominatedNodeName := NominatedNodeName(pod)
if len(nominatedNodeName) > 0 {
podKey := u.keyFunc(pod)
nps := u.nominatedPods[nominatedNodeName]
for i, np := range nps {
if np == podKey {
u.nominatedPods[nominatedNodeName] = append(nps[:i], nps[i+1:]...)
if len(u.nominatedPods[nominatedNodeName]) == 0 {
delete(u.nominatedPods, nominatedNodeName)
}
break
}
}
}
}
// Delete deletes a pod from the unschedulable pods.
func (u *UnschedulablePodsMap) Delete(pod *v1.Pod) {
podKey := u.keyFunc(pod)
if p, exists := u.pods[podKey]; exists {
u.deleteFromNominated(p)
delete(u.pods, podKey)
}
}
// Update updates a pod in the unschedulable pods.
func (u *UnschedulablePodsMap) Update(pod *v1.Pod) {
podKey := u.keyFunc(pod)
oldPod, exists := u.pods[podKey]
if !exists {
u.Add(pod)
return
}
u.pods[podKey] = pod
oldNominateNodeName := NominatedNodeName(oldPod)
nominatedNodeName := NominatedNodeName(pod)
if oldNominateNodeName != nominatedNodeName {
u.deleteFromNominated(oldPod)
if len(nominatedNodeName) > 0 {
u.nominatedPods[nominatedNodeName] = append(u.nominatedPods[nominatedNodeName], podKey)
}
}
}
// Get returns the pod if a pod with the same key as the key of the given "pod"
// is found in the map. It returns nil otherwise.
func (u *UnschedulablePodsMap) Get(pod *v1.Pod) *v1.Pod {
podKey := u.keyFunc(pod)
if p, exists := u.pods[podKey]; exists {
return p
}
return nil
}
// GetPodsWaitingForNode returns a list of unschedulable pods whose NominatedNodeNames
// are equal to the given nodeName.
func (u *UnschedulablePodsMap) GetPodsWaitingForNode(nodeName string) []*v1.Pod {
var pods []*v1.Pod
for _, key := range u.nominatedPods[nodeName] {
pods = append(pods, u.pods[key])
}
return pods
}
// Clear removes all the entries from the unschedulable maps.
func (u *UnschedulablePodsMap) Clear() {
u.pods = make(map[string]*v1.Pod)
u.nominatedPods = make(map[string][]string)
}
// newUnschedulablePodsMap initializes a new object of UnschedulablePodsMap.
func newUnschedulablePodsMap() *UnschedulablePodsMap {
return &UnschedulablePodsMap{
pods: make(map[string]*v1.Pod),
nominatedPods: make(map[string][]string),
keyFunc: util.GetPodFullName,
}
}
// Below is the implementation of the a heap. The logic is pretty much the same
// as cache.heap, however, this heap does not perform synchronization. It leaves
// synchronization to the SchedulingQueue.
type LessFunc func(interface{}, interface{}) bool
type KeyFunc func(obj interface{}) (string, error)
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Heap is a thread-safe producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// BulkAdd adds all the items in the list to the queue.
func (h *Heap) BulkAdd(list []interface{}) error {
for _, obj := range list {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue{key, obj})
}
}
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if _, exists := h.data.items[key]; !exists {
heap.Push(h.data, &itemKeyValue{key, obj})
}
return nil
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return cache.KeyError{Obj: obj, Err: err}
}
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Pop returns the head of the heap.
func (h *Heap) Pop() (interface{}, error) {
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
} else {
return nil, fmt.Errorf("object was removed from heap data")
}
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, cache.KeyError{Obj: obj, Err: err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// newHeap returns a Heap which can be used to queue up items to process.
func newHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
return &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
}