Merge pull request #101946 from chendave/balance_allocation
Support extended resource in NodeResourcesBalancedAllocation plugin
This commit is contained in:
@@ -23,6 +23,8 @@ import (
|
||||
|
||||
v1 "k8s.io/api/core/v1"
|
||||
"k8s.io/apimachinery/pkg/runtime"
|
||||
"k8s.io/kubernetes/pkg/scheduler/apis/config"
|
||||
"k8s.io/kubernetes/pkg/scheduler/apis/config/validation"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/feature"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/names"
|
||||
@@ -53,11 +55,10 @@ func (ba *BalancedAllocation) Score(ctx context.Context, state *framework.CycleS
|
||||
}
|
||||
|
||||
// ba.score favors nodes with balanced resource usage rate.
|
||||
// It calculates the difference between the cpu and memory fraction of capacity,
|
||||
// and prioritizes the host based on how close the two metrics are to each other.
|
||||
// Detail: score = (1 - variance(cpuFraction,memoryFraction,volumeFraction)) * MaxNodeScore. The algorithm is partly inspired by:
|
||||
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced
|
||||
// Resource Utilization"
|
||||
// It calculates the standard deviation for those resources and prioritizes the node based on how close the usage of those resources is to each other.
|
||||
// Detail: score = (1 - std) * MaxNodeScore, where std is calculated by the root square of Σ((fraction(i)-mean)^2)/len(resources)
|
||||
// The algorithm is partly inspired by:
|
||||
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced Resource Utilization"
|
||||
return ba.score(pod, nodeInfo)
|
||||
}
|
||||
|
||||
@@ -67,42 +68,63 @@ func (ba *BalancedAllocation) ScoreExtensions() framework.ScoreExtensions {
|
||||
}
|
||||
|
||||
// NewBalancedAllocation initializes a new plugin and returns it.
|
||||
func NewBalancedAllocation(_ runtime.Object, h framework.Handle, fts feature.Features) (framework.Plugin, error) {
|
||||
func NewBalancedAllocation(baArgs runtime.Object, h framework.Handle, fts feature.Features) (framework.Plugin, error) {
|
||||
args, ok := baArgs.(*config.NodeResourcesBalancedAllocationArgs)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("want args to be of type NodeResourcesBalancedAllocationArgs, got %T", baArgs)
|
||||
}
|
||||
|
||||
if err := validation.ValidateNodeResourcesBalancedAllocationArgs(nil, args); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
resToWeightMap := make(resourceToWeightMap)
|
||||
|
||||
for _, resource := range args.Resources {
|
||||
resToWeightMap[v1.ResourceName(resource.Name)] = resource.Weight
|
||||
}
|
||||
|
||||
return &BalancedAllocation{
|
||||
handle: h,
|
||||
resourceAllocationScorer: resourceAllocationScorer{
|
||||
Name: BalancedAllocationName,
|
||||
scorer: balancedResourceScorer,
|
||||
resourceToWeightMap: defaultRequestedRatioResources,
|
||||
resourceToWeightMap: resToWeightMap,
|
||||
enablePodOverhead: fts.EnablePodOverhead,
|
||||
},
|
||||
}, nil
|
||||
}
|
||||
|
||||
// todo: use resource weights in the scorer function
|
||||
func balancedResourceScorer(requested, allocable resourceToValueMap) int64 {
|
||||
cpuFraction := fractionOfCapacity(requested[v1.ResourceCPU], allocable[v1.ResourceCPU])
|
||||
memoryFraction := fractionOfCapacity(requested[v1.ResourceMemory], allocable[v1.ResourceMemory])
|
||||
// fractions might be greater than 1 because pods with no requests get minimum
|
||||
// values.
|
||||
if cpuFraction > 1 {
|
||||
cpuFraction = 1
|
||||
}
|
||||
if memoryFraction > 1 {
|
||||
memoryFraction = 1
|
||||
var resourceToFractions []float64
|
||||
var totalFraction float64
|
||||
for name, value := range requested {
|
||||
fraction := float64(value) / float64(allocable[name])
|
||||
if fraction > 1 {
|
||||
fraction = 1
|
||||
}
|
||||
totalFraction += fraction
|
||||
resourceToFractions = append(resourceToFractions, fraction)
|
||||
}
|
||||
|
||||
// Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
|
||||
// respectively. Multiplying the absolute value of the difference by `MaxNodeScore` scales the value to
|
||||
// 0-MaxNodeScore with 0 representing well balanced allocation and `MaxNodeScore` poorly balanced. Subtracting it from
|
||||
// `MaxNodeScore` leads to the score which also scales from 0 to `MaxNodeScore` while `MaxNodeScore` representing well balanced.
|
||||
diff := math.Abs(cpuFraction - memoryFraction)
|
||||
return int64((1 - diff) * float64(framework.MaxNodeScore))
|
||||
}
|
||||
std := 0.0
|
||||
|
||||
func fractionOfCapacity(requested, capacity int64) float64 {
|
||||
if capacity == 0 {
|
||||
return 1
|
||||
// For most cases, resources are limited to cpu and memory, the std could be simplified to std := (fraction1-fraction2)/2
|
||||
// len(fractions) > 2: calculate std based on the well-known formula - root square of Σ((fraction(i)-mean)^2)/len(fractions)
|
||||
// Otherwise, set the std to zero is enough.
|
||||
if len(resourceToFractions) == 2 {
|
||||
std = math.Abs((resourceToFractions[0] - resourceToFractions[1]) / 2)
|
||||
|
||||
} else if len(resourceToFractions) > 2 {
|
||||
mean := totalFraction / float64(len(resourceToFractions))
|
||||
var sum float64
|
||||
for _, fraction := range resourceToFractions {
|
||||
sum = sum + (fraction-mean)*(fraction-mean)
|
||||
}
|
||||
std = math.Sqrt(sum / float64(len(resourceToFractions)))
|
||||
}
|
||||
return float64(requested) / float64(capacity)
|
||||
|
||||
// STD (standard deviation) is always a positive value. 1-deviation lets the score to be higher for node which has least deviation and
|
||||
// multiplying it with `MaxNodeScore` provides the scaling factor needed.
|
||||
return int64((1 - std) * float64(framework.MaxNodeScore))
|
||||
}
|
||||
|
@@ -24,6 +24,7 @@ import (
|
||||
v1 "k8s.io/api/core/v1"
|
||||
"k8s.io/apimachinery/pkg/api/resource"
|
||||
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
|
||||
"k8s.io/kubernetes/pkg/scheduler/apis/config"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/feature"
|
||||
"k8s.io/kubernetes/pkg/scheduler/framework/runtime"
|
||||
@@ -31,6 +32,28 @@ import (
|
||||
)
|
||||
|
||||
func TestNodeResourcesBalancedAllocation(t *testing.T) {
|
||||
cpuAndMemoryAndGPU := v1.PodSpec{
|
||||
Containers: []v1.Container{
|
||||
{
|
||||
Resources: v1.ResourceRequirements{
|
||||
Requests: v1.ResourceList{
|
||||
v1.ResourceCPU: resource.MustParse("1000m"),
|
||||
v1.ResourceMemory: resource.MustParse("2000"),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
Resources: v1.ResourceRequirements{
|
||||
Requests: v1.ResourceList{
|
||||
v1.ResourceCPU: resource.MustParse("2000m"),
|
||||
v1.ResourceMemory: resource.MustParse("3000"),
|
||||
"nvidia.com/gpu": resource.MustParse("3"),
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
NodeName: "machine1",
|
||||
}
|
||||
labels1 := map[string]string{
|
||||
"foo": "bar",
|
||||
"baz": "blah",
|
||||
@@ -99,91 +122,113 @@ func TestNodeResourcesBalancedAllocation(t *testing.T) {
|
||||
NodeName: "machine1",
|
||||
Containers: []v1.Container{{}},
|
||||
}
|
||||
|
||||
defaultResourceBalancedAllocationSet := []config.ResourceSpec{
|
||||
{Name: string(v1.ResourceCPU), Weight: 1},
|
||||
{Name: string(v1.ResourceMemory), Weight: 1},
|
||||
}
|
||||
scalarResource := map[string]int64{
|
||||
"nvidia.com/gpu": 8,
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
pod *v1.Pod
|
||||
pods []*v1.Pod
|
||||
nodes []*v1.Node
|
||||
expectedList framework.NodeScoreList
|
||||
name string
|
||||
args config.NodeResourcesBalancedAllocationArgs
|
||||
}{
|
||||
{
|
||||
// Node1 scores (remaining resources) on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 0 / 4000 = 0%
|
||||
// Memory Fraction: 0 / 10000 = 0%
|
||||
// Node1 Score: MaxNodeScore - (0-0)*MaxNodeScore = MaxNodeScore
|
||||
// Node1 Score: (1-0) * MaxNodeScore = MaxNodeScore
|
||||
// Node2 scores (remaining resources) on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 0 / 4000 = 0 %
|
||||
// Memory Fraction: 0 / 10000 = 0%
|
||||
// Node2 Score: MaxNodeScore - (0-0)*MaxNodeScore = MaxNodeScore
|
||||
// Node2 Score: (1-0) * MaxNodeScore = MaxNodeScore
|
||||
pod: &v1.Pod{Spec: noResources},
|
||||
nodes: []*v1.Node{makeNode("machine1", 4000, 10000), makeNode("machine2", 4000, 10000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: framework.MaxNodeScore}, {Name: "machine2", Score: framework.MaxNodeScore}},
|
||||
name: "nothing scheduled, nothing requested",
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 3000 / 4000= 75%
|
||||
// Memory Fraction: 5000 / 10000 = 50%
|
||||
// Node1 Score: MaxNodeScore - (0.75-0.5)*MaxNodeScore = 75
|
||||
// Node1 std: (0.75 - 0.5) / 2 = 0.125
|
||||
// Node1 Score: (1 - 0.125)*MaxNodeScore = 87
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 3000 / 6000= 50%
|
||||
// Memory Fraction: 5000/10000 = 50%
|
||||
// Node2 Score: MaxNodeScore - (0.5-0.5)*MaxNodeScore = MaxNodeScore
|
||||
// Node2 std: 0
|
||||
// Node2 Score: (1-0) * MaxNodeScore = MaxNodeScore
|
||||
pod: &v1.Pod{Spec: cpuAndMemory},
|
||||
nodes: []*v1.Node{makeNode("machine1", 4000, 10000), makeNode("machine2", 6000, 10000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 75}, {Name: "machine2", Score: framework.MaxNodeScore}},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 87}, {Name: "machine2", Score: framework.MaxNodeScore}},
|
||||
name: "nothing scheduled, resources requested, differently sized machines",
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 0 / 4000= 0%
|
||||
// Memory Fraction: 0 / 10000 = 0%
|
||||
// Node1 Score: MaxNodeScore - (0-0)*MaxNodeScore = MaxNodeScore
|
||||
// Node1 std: 0
|
||||
// Node1 Score: (1-0) * MaxNodeScore = MaxNodeScore
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 0 / 4000= 0%
|
||||
// Memory Fraction: 0 / 10000 = 0%
|
||||
// Node2 Score: MaxNodeScore - (0-0)*MaxNodeScore= MaxNodeScore
|
||||
// Node2 std: 0
|
||||
// Node2 Score: (1-0) * MaxNodeScore = MaxNodeScore
|
||||
pod: &v1.Pod{Spec: noResources},
|
||||
nodes: []*v1.Node{makeNode("machine1", 4000, 10000), makeNode("machine2", 4000, 10000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: framework.MaxNodeScore}, {Name: "machine2", Score: framework.MaxNodeScore}},
|
||||
name: "no resources requested, pods scheduled",
|
||||
name: "no resources requested, pods without container scheduled",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: machine1Spec, ObjectMeta: metav1.ObjectMeta{Labels: labels2}},
|
||||
{Spec: machine1Spec, ObjectMeta: metav1.ObjectMeta{Labels: labels1}},
|
||||
{Spec: machine2Spec, ObjectMeta: metav1.ObjectMeta{Labels: labels1}},
|
||||
{Spec: machine2Spec, ObjectMeta: metav1.ObjectMeta{Labels: labels1}},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 300 / 250 = 100%
|
||||
// Memory Fraction: 600 / 10000 = 60%
|
||||
// Node1 Score: MaxNodeScore - (100-60)*MaxNodeScore = 60
|
||||
// Node1 std: (1 - 0.6) / 2 = 0.2
|
||||
// Node1 Score: (1 - 0.2)*MaxNodeScore = 80
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 100 / 250 = 40%
|
||||
// Memory Fraction: 200 / 10000 = 20%
|
||||
// Node2 Score: MaxNodeScore - (40-20)*MaxNodeScore= 80
|
||||
// Node2 std: (0.4 - 0.2) / 2 = 0.1
|
||||
// Node2 Score: (1 - 0.1)*MaxNodeScore = 90
|
||||
pod: &v1.Pod{Spec: nonZeroContainer},
|
||||
nodes: []*v1.Node{makeNode("machine1", 250, 1000*1024*1024), makeNode("machine2", 250, 1000*1024*1024)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 60}, {Name: "machine2", Score: 80}},
|
||||
name: "no resources requested, pods scheduled",
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 80}, {Name: "machine2", Score: 90}},
|
||||
name: "no resources requested, pods with container scheduled",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: nonZeroContainer1},
|
||||
{Spec: nonZeroContainer1},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 0 / 20000 = 0%
|
||||
// Node1 Score: MaxNodeScore - (0.6-0)*MaxNodeScore = 40
|
||||
// Node1 std: (0.6 - 0) / 2 = 0.3
|
||||
// Node1 Score: (1 - 0.3)*MaxNodeScore = 70
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 5000 / 20000 = 25%
|
||||
// Node2 Score: MaxNodeScore - (0.6-0.25)*MaxNodeScore = 65
|
||||
// Node2 std: (0.6 - 0.25) / 2 = 0.175
|
||||
// Node2 Score: (1 - 0.175)*MaxNodeScore = 82
|
||||
pod: &v1.Pod{Spec: noResources},
|
||||
nodes: []*v1.Node{makeNode("machine1", 10000, 20000), makeNode("machine2", 10000, 20000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 40}, {Name: "machine2", Score: 65}},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 70}, {Name: "machine2", Score: 82}},
|
||||
name: "no resources requested, pods scheduled with resources",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly, ObjectMeta: metav1.ObjectMeta{Labels: labels2}},
|
||||
@@ -191,60 +236,139 @@ func TestNodeResourcesBalancedAllocation(t *testing.T) {
|
||||
{Spec: cpuOnly2, ObjectMeta: metav1.ObjectMeta{Labels: labels1}},
|
||||
{Spec: cpuAndMemory, ObjectMeta: metav1.ObjectMeta{Labels: labels1}},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 5000 / 20000 = 25%
|
||||
// Node1 Score: MaxNodeScore - (0.6-0.25)*MaxNodeScore = 65
|
||||
// Node1 std: (0.6 - 0.25) / 2 = 0.175
|
||||
// Node1 Score: (1 - 0.175)*MaxNodeScore = 82
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 10000 / 20000 = 50%
|
||||
// Node2 Score: MaxNodeScore - (0.6-0.5)*MaxNodeScore = 90
|
||||
// Node2 std: (0.6 - 0.5) / 2 = 0.05
|
||||
// Node2 Score: (1 - 0.05)*MaxNodeScore = 95
|
||||
pod: &v1.Pod{Spec: cpuAndMemory},
|
||||
nodes: []*v1.Node{makeNode("machine1", 10000, 20000), makeNode("machine2", 10000, 20000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 65}, {Name: "machine2", Score: 90}},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 82}, {Name: "machine2", Score: 95}},
|
||||
name: "resources requested, pods scheduled with resources",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly},
|
||||
{Spec: cpuAndMemory},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 5000 / 20000 = 25%
|
||||
// Node1 Score: MaxNodeScore - (0.6-0.25)*MaxNodeScore = 65
|
||||
// Node1 std: (0.6 - 0.25) / 2 = 0.175
|
||||
// Node1 Score: (1 - 0.175)*MaxNodeScore = 82
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 10000 = 60%
|
||||
// Memory Fraction: 10000 / 50000 = 20%
|
||||
// Node2 Score: MaxNodeScore - (0.6-0.2)*MaxNodeScore = 60
|
||||
// Node2 std: (0.6 - 0.2) / 2 = 0.2
|
||||
// Node2 Score: (1 - 0.2)*MaxNodeScore = 80
|
||||
pod: &v1.Pod{Spec: cpuAndMemory},
|
||||
nodes: []*v1.Node{makeNode("machine1", 10000, 20000), makeNode("machine2", 10000, 50000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 65}, {Name: "machine2", Score: 60}},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 82}, {Name: "machine2", Score: 80}},
|
||||
name: "resources requested, pods scheduled with resources, differently sized machines",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly},
|
||||
{Spec: cpuAndMemory},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 6000 = 1
|
||||
// Memory Fraction: 0 / 10000 = 0
|
||||
// Node1 std: (1 - 0) / 2 = 0.5
|
||||
// Node1 Score: (1 - 0.5)*MaxNodeScore = 50
|
||||
// Node1 Score: MaxNodeScore - (1 - 0) * MaxNodeScore = 0
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 6000 / 6000 = 1
|
||||
// Memory Fraction 5000 / 10000 = 50%
|
||||
// Node2 Score: MaxNodeScore - (1 - 0.5) * MaxNodeScore = 50
|
||||
// Node2 std: (1 - 0.5) / 2 = 0.25
|
||||
// Node2 Score: (1 - 0.25)*MaxNodeScore = 75
|
||||
pod: &v1.Pod{Spec: cpuOnly},
|
||||
nodes: []*v1.Node{makeNode("machine1", 6000, 10000), makeNode("machine2", 6000, 10000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 0}, {Name: "machine2", Score: 50}},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 50}, {Name: "machine2", Score: 75}},
|
||||
name: "requested resources at node capacity",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly},
|
||||
{Spec: cpuAndMemory},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
{
|
||||
pod: &v1.Pod{Spec: noResources},
|
||||
nodes: []*v1.Node{makeNode("machine1", 0, 0), makeNode("machine2", 0, 0)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 100}, {Name: "machine2", Score: 100}},
|
||||
name: "zero node resources, pods scheduled with resources",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly},
|
||||
{Spec: cpuAndMemory},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: defaultResourceBalancedAllocationSet},
|
||||
},
|
||||
// Node1 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 3100 / 3500 = 88.57%
|
||||
// Memory Fraction: 5000 / 40000 = 12.5%
|
||||
// GPU Fraction: 4 / 8 = 0.5%
|
||||
// Node1 std: sqrt(((0.8857 - 0.503) * (0.8857 - 0.503) + (0.503 - 0.125) * (0.503 - 0.125) + (0.503 - 0.5) * (0.503 - 0.5)) / 3) = 0.3105
|
||||
// Node1 Score: (1 - 0.3105)*MaxNodeScore = 68
|
||||
// Node2 scores on 0-MaxNodeScore scale
|
||||
// CPU Fraction: 3100 / 3500 = 88.57%
|
||||
// Memory Fraction: 5000 / 40000 = 12.5%
|
||||
// GPU Fraction: 1 / 8 = 12.5%
|
||||
// Node2 std: sqrt(((0.8875 - 0.378) * (0.8875 - 0.378) + (0.378 - 0.125) * (0.378 - 0.125)) + (0.378 - 0.125) * (0.378 - 0.125)) / 3) = 0.358
|
||||
// Node2 Score: (1 - 0.358)*MaxNodeScore = 64
|
||||
{
|
||||
pod: &v1.Pod{
|
||||
Spec: v1.PodSpec{
|
||||
Containers: []v1.Container{
|
||||
{
|
||||
Resources: v1.ResourceRequirements{
|
||||
Requests: v1.ResourceList{
|
||||
v1.ResourceMemory: resource.MustParse("0"),
|
||||
"nvidia.com/gpu": resource.MustParse("1"),
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
nodes: []*v1.Node{makeNodeWithExtendedResource("machine1", 3500, 40000, scalarResource), makeNodeWithExtendedResource("machine2", 3500, 40000, scalarResource)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 68}, {Name: "machine2", Score: 64}},
|
||||
name: "include scalar resource on a node for balanced resource allocation",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuAndMemory},
|
||||
{Spec: cpuAndMemoryAndGPU},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: []config.ResourceSpec{
|
||||
{Name: string(v1.ResourceCPU), Weight: 1},
|
||||
{Name: string(v1.ResourceMemory), Weight: 1},
|
||||
{Name: "nvidia.com/gpu", Weight: 1},
|
||||
}},
|
||||
},
|
||||
// Only one node (machine1) has the scalar resource, pod doesn't request the scalar resource and the scalar resource should be skipped for consideration.
|
||||
// Node1: std = 0, score = 100
|
||||
// Node2: std = 0, score = 100
|
||||
{
|
||||
pod: &v1.Pod{Spec: v1.PodSpec{Containers: []v1.Container{{}}}},
|
||||
nodes: []*v1.Node{makeNodeWithExtendedResource("machine1", 3500, 40000, scalarResource), makeNode("machine2", 3500, 40000)},
|
||||
expectedList: []framework.NodeScore{{Name: "machine1", Score: 100}, {Name: "machine2", Score: 100}},
|
||||
name: "node without the scalar resource results to a higher score",
|
||||
pods: []*v1.Pod{
|
||||
{Spec: cpuOnly},
|
||||
{Spec: cpuOnly2},
|
||||
},
|
||||
args: config.NodeResourcesBalancedAllocationArgs{Resources: []config.ResourceSpec{
|
||||
{Name: string(v1.ResourceCPU), Weight: 1},
|
||||
{Name: "nvidia.com/gpu", Weight: 1},
|
||||
}},
|
||||
},
|
||||
}
|
||||
|
||||
@@ -252,8 +376,7 @@ func TestNodeResourcesBalancedAllocation(t *testing.T) {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
snapshot := cache.NewSnapshot(test.pods, test.nodes)
|
||||
fh, _ := runtime.NewFramework(nil, nil, runtime.WithSnapshotSharedLister(snapshot))
|
||||
p, _ := NewBalancedAllocation(nil, fh, feature.Features{EnablePodOverhead: true})
|
||||
|
||||
p, _ := NewBalancedAllocation(&test.args, fh, feature.Features{EnablePodOverhead: true})
|
||||
for i := range test.nodes {
|
||||
hostResult, err := p.(framework.ScorePlugin).Score(context.Background(), nil, test.pod, test.nodes[i].Name)
|
||||
if err != nil {
|
||||
|
@@ -30,9 +30,6 @@ type resourceToWeightMap map[v1.ResourceName]int64
|
||||
// scorer is decorator for resourceAllocationScorer
|
||||
type scorer func(args *config.NodeResourcesFitArgs) *resourceAllocationScorer
|
||||
|
||||
// defaultRequestedRatioResources is used to set default requestToWeight map for CPU and memory
|
||||
var defaultRequestedRatioResources = resourceToWeightMap{v1.ResourceMemory: 1, v1.ResourceCPU: 1}
|
||||
|
||||
// resourceAllocationScorer contains information to calculate resource allocation score.
|
||||
type resourceAllocationScorer struct {
|
||||
Name string
|
||||
@@ -42,7 +39,7 @@ type resourceAllocationScorer struct {
|
||||
enablePodOverhead bool
|
||||
}
|
||||
|
||||
// resourceToValueMap contains resource name and score.
|
||||
// resourceToValueMap is keyed with resource name and valued with quantity.
|
||||
type resourceToValueMap map[v1.ResourceName]int64
|
||||
|
||||
// score will use `scorer` function to calculate the score.
|
||||
|
Reference in New Issue
Block a user