Because the proxy.Provider interface included
proxyconfig.EndpointsHandler, all the backends needed to
implement its methods. But iptables, ipvs, and winkernel implemented
them as no-ops, and metaproxier had an implementation that wouldn't
actually work (because it couldn't handle Services with no active
Endpoints).
Since Endpoints processing in kube-proxy is deprecated (and can't be
re-enabled unless you're using a backend that doesn't support
EndpointSlice), remove proxyconfig.EndpointsHandler from the
definition of proxy.Provider and drop all the useless implementations.
The nat KUBE-SERVICES chain is called from OUTPUT and PREROUTING stages. In
clusters with large number of services, the nat-KUBE-SERVICES chain is the largest
chain with for eg: 33k rules. This patch aims to move the KubeMarkMasq rules from
the kubeServicesChain into the respective KUBE-SVC-* chains. This way during each
packet-rule matching we won't have to traverse the MASQ rules of all services which
get accumulated in the KUBE-SERVICES and/or KUBE-NODEPORTS chains. Since the
jump to KUBE-MARK-MASQ ultimately sets the 0x400 mark for nodeIP SNAT, it should not
matter whether the jump is made from KUBE-SERVICES or KUBE-SVC-* chains.
Specifically we change:
1) For ClusterIP svc, we move the KUBE-MARK-MASQ jump rule from KUBE-SERVICES
chain into KUBE-SVC-* chain.
2) For ExternalIP svc, we move the KUBE-MARK-MASQ jump rule in the case of
non-ServiceExternalTrafficPolicyTypeLocal from KUBE-SERVICES
chain into KUBE-SVC-* chain.
3) For NodePorts svc, we move the KUBE-MARK-MASQ jump rule in case of
non-ServiceExternalTrafficPolicyTypeLocal from KUBE-NODEPORTS chain to
KUBE-SVC-* chain.
4) For load-balancer svc, we don't change anything since it is already svc specific
due to creation of KUBE-FW-* chains per svc.
This would cut the rules per svc in KUBE-SERVICES and KUBE-NODEPORTS in half.
1. Add API definitions;
2. Add feature gate and drops the field when feature gate is not on;
3. Set default values for the field;
4. Add API Validation
5. add kube-proxy iptables and ipvs implementations
6. add tests
Clear conntrack entries for UDP NodePorts,
this has to be done AFTER the iptables rules are programmed.
It can happen that traffic to the NodePort hits the host before
the iptables rules are programmed this will create an stale entry
in conntrack that will blackhole the traffic, so we need to
clear it ONLY when the service has endpoints.
1. For iptables mode, add KUBE-NODEPORTS chain in filter table. Add
rules to allow healthcheck node port traffic.
2. For ipvs mode, add KUBE-NODE-PORT chain in filter table. Add
KUBE-HEALTH-CHECK-NODE-PORT ipset to allow traffic to healthcheck
node port.
* api: structure change
* api: defaulting, conversion, and validation
* [FIX] validation: auto remove second ip/family when service changes to SingleStack
* [FIX] api: defaulting, conversion, and validation
* api-server: clusterIPs alloc, printers, storage and strategy
* [FIX] clusterIPs default on read
* alloc: auto remove second ip/family when service changes to SingleStack
* api-server: repair loop handling for clusterIPs
* api-server: force kubernetes default service into single stack
* api-server: tie dualstack feature flag with endpoint feature flag
* controller-manager: feature flag, endpoint, and endpointSlice controllers handling multi family service
* [FIX] controller-manager: feature flag, endpoint, and endpointSlicecontrollers handling multi family service
* kube-proxy: feature-flag, utils, proxier, and meta proxier
* [FIX] kubeproxy: call both proxier at the same time
* kubenet: remove forced pod IP sorting
* kubectl: modify describe to include ClusterIPs, IPFamilies, and IPFamilyPolicy
* e2e: fix tests that depends on IPFamily field AND add dual stack tests
* e2e: fix expected error message for ClusterIP immutability
* add integration tests for dualstack
the third phase of dual stack is a very complex change in the API,
basically it introduces Dual Stack services. Main changes are:
- It pluralizes the Service IPFamily field to IPFamilies,
and removes the singular field.
- It introduces a new field IPFamilyPolicyType that can take
3 values to express the "dual-stack(mad)ness" of the cluster:
SingleStack, PreferDualStack and RequireDualStack
- It pluralizes ClusterIP to ClusterIPs.
The goal is to add coverage to the services API operations,
taking into account the 6 different modes a cluster can have:
- single stack: IP4 or IPv6 (as of today)
- dual stack: IPv4 only, IPv6 only, IPv4 - IPv6, IPv6 - IPv4
* [FIX] add integration tests for dualstack
* generated data
* generated files
Co-authored-by: Antonio Ojea <aojea@redhat.com>
In #56164, we had split the reject rules for non-ep existing services
into KUBE-EXTERNAL-SERVICES chain in order to avoid calling KUBE-SERVICES
from INPUT. However in #74394 KUBE-SERVICES was re-added into INPUT.
As noted in #56164, kernel is sensitive to the size of INPUT chain. This
patch refrains from calling the KUBE-SERVICES chain from INPUT and FORWARD,
instead adds the lb reject rule to the KUBE-EXTERNAL-SERVICES chain which will be
called from INPUT and FORWARD.
Before this fix, a Service with a loadBalancerSourceRange value that
included a space would cause kube-proxy to crashloop. This updates
kube-proxy to trim any space from that field.
It seems that if you set the packet mark on a packet and then route
that packet through a kernel VXLAN interface, the VXLAN-encapsulated
packet will still have the mark from the original packet. Since our
NAT rules are based on the packet mark, this was causing us to
double-NAT some packets, which then triggered a kernel checksumming
bug. But even without the checksum bug, there are reasons to avoid
double-NATting, so fix the rules to unmark the packets before
masquerading them.
Errors from staticcheck:
pkg/proxy/healthcheck/proxier_health.go:55:2: field port is unused (U1000)
pkg/proxy/healthcheck/proxier_health.go:162:20: printf-style function with dynamic format string and no further arguments should use print-style function instead (SA1006)
pkg/proxy/healthcheck/service_health.go:166:20: printf-style function with dynamic format string and no further arguments should use print-style function instead (SA1006)
pkg/proxy/iptables/proxier.go:737:2: this value of args is never used (SA4006)
pkg/proxy/iptables/proxier.go:737:15: this result of append is never used, except maybe in other appends (SA4010)
pkg/proxy/iptables/proxier.go:1287:28: this result of append is never used, except maybe in other appends (SA4010)
pkg/proxy/userspace/proxysocket.go:293:3: this value of n is never used (SA4006)
pkg/proxy/winkernel/metrics.go:74:6: func sinceInMicroseconds is unused (U1000)
pkg/proxy/winkernel/metrics.go:79:6: func sinceInSeconds is unused (U1000)
pkg/proxy/winuserspace/proxier.go:94:2: field portMapMutex is unused (U1000)
pkg/proxy/winuserspace/proxier.go:118:2: field owner is unused (U1000)
pkg/proxy/winuserspace/proxier.go:119:2: field socket is unused (U1000)
pkg/proxy/winuserspace/proxysocket.go:620:4: this value of n is never used (SA4006)
This reverts commit 1ca0ffeaf2.
kube-proxy is not recreating the rules associated to the
KUBE-MARK-DROP chain, that is created by the kubelet.
Is preferrable avoid the dependency between the kubelet and
kube-proxy and that each of them handle their own rules.
Until now, iptables probabilities had 5 decimal places of granularity.
That meant that probabilities would start to repeat once a Service
had 319 or more endpoints.
This doubles the granularity to 10 decimal places, ensuring that
probabilities will not repeat until a Service reaches 100,223 endpoints.