* api: structure change
* api: defaulting, conversion, and validation
* [FIX] validation: auto remove second ip/family when service changes to SingleStack
* [FIX] api: defaulting, conversion, and validation
* api-server: clusterIPs alloc, printers, storage and strategy
* [FIX] clusterIPs default on read
* alloc: auto remove second ip/family when service changes to SingleStack
* api-server: repair loop handling for clusterIPs
* api-server: force kubernetes default service into single stack
* api-server: tie dualstack feature flag with endpoint feature flag
* controller-manager: feature flag, endpoint, and endpointSlice controllers handling multi family service
* [FIX] controller-manager: feature flag, endpoint, and endpointSlicecontrollers handling multi family service
* kube-proxy: feature-flag, utils, proxier, and meta proxier
* [FIX] kubeproxy: call both proxier at the same time
* kubenet: remove forced pod IP sorting
* kubectl: modify describe to include ClusterIPs, IPFamilies, and IPFamilyPolicy
* e2e: fix tests that depends on IPFamily field AND add dual stack tests
* e2e: fix expected error message for ClusterIP immutability
* add integration tests for dualstack
the third phase of dual stack is a very complex change in the API,
basically it introduces Dual Stack services. Main changes are:
- It pluralizes the Service IPFamily field to IPFamilies,
and removes the singular field.
- It introduces a new field IPFamilyPolicyType that can take
3 values to express the "dual-stack(mad)ness" of the cluster:
SingleStack, PreferDualStack and RequireDualStack
- It pluralizes ClusterIP to ClusterIPs.
The goal is to add coverage to the services API operations,
taking into account the 6 different modes a cluster can have:
- single stack: IP4 or IPv6 (as of today)
- dual stack: IPv4 only, IPv6 only, IPv4 - IPv6, IPv6 - IPv4
* [FIX] add integration tests for dualstack
* generated data
* generated files
Co-authored-by: Antonio Ojea <aojea@redhat.com>
This includes IPv4 and IPv6 address types and IPVS dual stack support.
Importantly this ensures that EndpointSlices with a FQDN address type
are not processed by kube-proxy.
Computing EndpointChanges is a relatively expensive operation for
kube-proxy when Endpoint Slices are used. This had been computed on
every EndpointSlice update which became quite inefficient at high levels
of scale when multiple EndpointSlice update events would be triggered
before a syncProxyRules call.
Profiling results showed that computing this on each update could
consume ~80% of total kube-proxy CPU utilization at high levels of
scale. This change reduced that to as little as 3% of total kube-proxy
utilization at high levels of scale.
It's worth noting that the difference is minimal when there is a 1:1
relationship between EndpointSlice updates and proxier syncs. This is
primarily beneficial when there are many EndpointSlice updates between
proxier sync loops.
The detectStaleConnections function in kube-proxy is very expensive in
terms of CPU utilization. The results of this function are only actually
used for UDP ports. This adds a protocol attribute to ServicePortName to
make it simple to only run this function for UDP connections. For
clusters with primarily TCP connections this can improve kube-proxy
performance by 2x.
This should fix a bug that could break masters when the EndpointSlice
feature gate was enabled. This was all tied to how the apiserver creates
and manages it's own services and endpoints (or in this case endpoint
slices). Consumers of endpoint slices also need to know about the
corresponding service. Previously we were trying to set an owner
reference here for this purpose, but that came with potential downsides
and increased complexity. This commit changes behavior of the apiserver
endpointslice integration to set the service name label instead of owner
references, and simplifies consumer logic to reference that (both are
set by the EndpointSlice controller).
Additionally, this should fix a bug with the EndpointSlice GenerateName
value that had previously been set with a "." as a suffix.
This adds some useful metrics around pending changes and last successful
sync time.
The goal is for administrators to be able to alert on proxies that, for
whatever reason, are quite stale.
Signed-off-by: Casey Callendrello <cdc@redhat.com>
- Move from the old github.com/golang/glog to k8s.io/klog
- klog as explicit InitFlags() so we add them as necessary
- we update the other repositories that we vendor that made a similar
change from glog to klog
* github.com/kubernetes/repo-infra
* k8s.io/gengo/
* k8s.io/kube-openapi/
* github.com/google/cadvisor
- Entirely remove all references to glog
- Fix some tests by explicit InitFlags in their init() methods
Change-Id: I92db545ff36fcec83afe98f550c9e630098b3135