* api: structure change
* api: defaulting, conversion, and validation
* [FIX] validation: auto remove second ip/family when service changes to SingleStack
* [FIX] api: defaulting, conversion, and validation
* api-server: clusterIPs alloc, printers, storage and strategy
* [FIX] clusterIPs default on read
* alloc: auto remove second ip/family when service changes to SingleStack
* api-server: repair loop handling for clusterIPs
* api-server: force kubernetes default service into single stack
* api-server: tie dualstack feature flag with endpoint feature flag
* controller-manager: feature flag, endpoint, and endpointSlice controllers handling multi family service
* [FIX] controller-manager: feature flag, endpoint, and endpointSlicecontrollers handling multi family service
* kube-proxy: feature-flag, utils, proxier, and meta proxier
* [FIX] kubeproxy: call both proxier at the same time
* kubenet: remove forced pod IP sorting
* kubectl: modify describe to include ClusterIPs, IPFamilies, and IPFamilyPolicy
* e2e: fix tests that depends on IPFamily field AND add dual stack tests
* e2e: fix expected error message for ClusterIP immutability
* add integration tests for dualstack
the third phase of dual stack is a very complex change in the API,
basically it introduces Dual Stack services. Main changes are:
- It pluralizes the Service IPFamily field to IPFamilies,
and removes the singular field.
- It introduces a new field IPFamilyPolicyType that can take
3 values to express the "dual-stack(mad)ness" of the cluster:
SingleStack, PreferDualStack and RequireDualStack
- It pluralizes ClusterIP to ClusterIPs.
The goal is to add coverage to the services API operations,
taking into account the 6 different modes a cluster can have:
- single stack: IP4 or IPv6 (as of today)
- dual stack: IPv4 only, IPv6 only, IPv4 - IPv6, IPv6 - IPv4
* [FIX] add integration tests for dualstack
* generated data
* generated files
Co-authored-by: Antonio Ojea <aojea@redhat.com>
When trying to fix a dockershim issue, there were not any unit tests
for dockershim/exec.go and it was difficult to add the corresponding
unit test for the bug.
This adds the unit tests for avoiding such situation in the future.
use the new libcontainer feature of skipping setting the devices
cgroup. This is necessary on cgroup v2 to avoid leaking a eBPF
program every time the cgroup is re-configured.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
last CNI library release is 0.7.1 from Jun 11, 2019.
Since then, there was introduced new feature and bugfixes.
Currently, this library is only being used by dockershim,
the other CRI plugins are vendoring it directly
However, this will help also to mitigate some of the issues with the
CI jobs that are still using dockershim.
Signed-off-by: Antonio Ojea <antonio.ojea.garcia@gmail.com>
As the final step, add the `dockerless` tags to all files in the
dockershim. Using `-tags=dockerless` in `go build`, we can compile
kubelet without the dockershim.
Once cadvisor no longer depends on `docker/docker`, compiling with
`-tags=dockerless` should be sufficient to compile the Kubelet w/o a
dependency on `docker/docker`.
DockerLegacyService interface is used throughout `pkg/kubelet`.
It used to live in the `pkg/kubelet/dockershim` package. While we
would eventually like to remove it entirely, we need to give users some form
of warning.
By including the interface in
`pkg/kubelet/legacy/logs.go`, we ensure the interface is
available to `pkg/kubelet`, even when we are building with the `dockerless`
tag (i.e. not compiling the dockershim).
While the interface always exists, there will be no implementations of the
interface when building with the `dockerless` tag. The lack of
implementations should not be an issue, as we only expect `pkg/kubelet` code
to need an implementation of the `DockerLegacyService` when we are using
docker. If we are using docker, but building with the `dockerless` tag, than
this will be just one of many things that breaks.
`pkg/kubelet/legacy` might not be the best name for the package... I'm
very open to finding a different package name or even an already
existing package.
Extract a `runDockershim` function into a file outside of `kubelet.go`.
We can use build tags to compile two separate functions... one which
actually runs dockershim and one that is a no-op.
Following changes in #87730, Kubelet is directly hcsshim to gather stats.
However, unlike `docker stats` API that was used before, hcsshim does not
keep information about exited containers.
When the Kubelet lists containers (`docker_container.go:ListContainers()`),
it sets `All: true`, retrieving non-running containers.
When docker stats is called with such container id, it'll return a valid JSON
with all values set to 0. The non-running containers are filtered later on in the process.
When the hcsshim is called with such container id, it'll return an error, effectively
stopping the stats retrieval for all containers.
docker folks added NumCPU implementation for windows that
supported hot-plugging of CPUs. The implementation used the
GetProcessAffinityMask to be able to check which CPUs are
active as well.
3707a76921
The golang "runtime" package has also bene using GetProcessAffinityMask
since 1.6 beta1:
6410e67a1e
So we don't seem to need the sysinfo.NumCPU from docker/docker.
(Note that this is PR is an effort to get away from dependencies from
docker/docker)
Signed-off-by: Davanum Srinivas <davanum@gmail.com>