* Slightly changed pod spec to repro issue #116262
* Refactor test to ensure that the static pod is deleted even if the
test fails
Signed-off-by: David Porter <david@porter.me>
We now get structured output using jsonpath for the
name and version fields of the node object and then
compare the outputs.
Signed-off-by: Madhav Jivrajani <madhav.jiv@gmail.com>
* api changes adding match conditions
* feature gate and registry strategy to drop fields
* matchConditions logic for admission webhooks
* feedback
* update test
* import order
* bears.com
* update fail policy ignore behavior
* update docs and matcher to hold fail policy as non-pointer
* update matcher error aggregation, fix early fail failpolicy ignore, update docs
* final cleanup
* openapi gen
This PR makes the NodePrepareResources() and NodeUnprepareResource()
calls of the kubeletplugin API for DynamicResourceAllocation
symmetrical. It wasn't clear how one would use the set of CDIDevices
passed back in the NodeUnprepareResource() of the v1alpha1 API, and the
new API now passes back the full ResourceHandle that was originally
passed to the Prepare() call. Passing the ResourceHandle is strictly
more informative and a plugin could always (re)derive the set of
CDIDevice from it.
This is a breaking change, but this release is scheduled to break
multiple APIs for DynamicResourceAllocation, so it makes sense to do
this now instead of later.
Signed-off-by: Kevin Klues <kklues@nvidia.com>
They contain some nice-to-have improvements (for example, better printing of
errors with gomega/format.Object) but nothing that is critical right now.
"go mod tidy" was run manually in
staging/src/k8s.io/kms/internal/plugins/mock (https://github.com/kubernetes/kubernetes/pull/116613
not merged yet).
This change updates KMS v2 to not create a new DEK for every
encryption. Instead, we re-use the DEK while the key ID is stable.
Specifically:
We no longer use a random 12 byte nonce per encryption. Instead, we
use both a random 4 byte nonce and an 8 byte nonce set via an atomic
counter. Since each DEK is randomly generated and never re-used,
the combination of DEK and counter are always unique. Thus there
can never be a nonce collision. AES GCM strongly encourages the use
of a 12 byte nonce, hence the additional 4 byte random nonce. We
could leave those 4 bytes set to all zeros, but there is no harm in
setting them to random data (it may help in some edge cases such as
live VM migration).
If the plugin is not healthy, the last DEK will be used for
encryption for up to three minutes (there is no difference on the
behavior of reads which have always used the DEK cache). This will
reduce the impact of a short plugin outage while making it easy to
perform storage migration after a key ID change (i.e. simply wait
ten minutes after the key ID change before starting the migration).
The DEK rotation cycle is performed in sync with the KMS v2 status
poll thus we always have the correct information to determine if a
read is stale in regards to storage migration.
Signed-off-by: Monis Khan <mok@microsoft.com>