1. Add API definitions;
2. Add feature gate and drops the field when feature gate is not on;
3. Set default values for the field;
4. Add API Validation
5. add kube-proxy iptables and ipvs implementations
6. add tests
1. For iptables mode, add KUBE-NODEPORTS chain in filter table. Add
rules to allow healthcheck node port traffic.
2. For ipvs mode, add KUBE-NODE-PORT chain in filter table. Add
KUBE-HEALTH-CHECK-NODE-PORT ipset to allow traffic to healthcheck
node port.
When running in ipvs mode, kube-proxy generated wrong iptables-restore
input because the chain names are hardcoded.
It also fixed a typo in method name.
* api: structure change
* api: defaulting, conversion, and validation
* [FIX] validation: auto remove second ip/family when service changes to SingleStack
* [FIX] api: defaulting, conversion, and validation
* api-server: clusterIPs alloc, printers, storage and strategy
* [FIX] clusterIPs default on read
* alloc: auto remove second ip/family when service changes to SingleStack
* api-server: repair loop handling for clusterIPs
* api-server: force kubernetes default service into single stack
* api-server: tie dualstack feature flag with endpoint feature flag
* controller-manager: feature flag, endpoint, and endpointSlice controllers handling multi family service
* [FIX] controller-manager: feature flag, endpoint, and endpointSlicecontrollers handling multi family service
* kube-proxy: feature-flag, utils, proxier, and meta proxier
* [FIX] kubeproxy: call both proxier at the same time
* kubenet: remove forced pod IP sorting
* kubectl: modify describe to include ClusterIPs, IPFamilies, and IPFamilyPolicy
* e2e: fix tests that depends on IPFamily field AND add dual stack tests
* e2e: fix expected error message for ClusterIP immutability
* add integration tests for dualstack
the third phase of dual stack is a very complex change in the API,
basically it introduces Dual Stack services. Main changes are:
- It pluralizes the Service IPFamily field to IPFamilies,
and removes the singular field.
- It introduces a new field IPFamilyPolicyType that can take
3 values to express the "dual-stack(mad)ness" of the cluster:
SingleStack, PreferDualStack and RequireDualStack
- It pluralizes ClusterIP to ClusterIPs.
The goal is to add coverage to the services API operations,
taking into account the 6 different modes a cluster can have:
- single stack: IP4 or IPv6 (as of today)
- dual stack: IPv4 only, IPv6 only, IPv4 - IPv6, IPv6 - IPv4
* [FIX] add integration tests for dualstack
* generated data
* generated files
Co-authored-by: Antonio Ojea <aojea@redhat.com>
Kube-proxy runs two different health servers; one for monitoring the
health of kube-proxy itself, and one for monitoring the health of
specific services. Rename them to "ProxierHealthServer" and
"ServiceHealthServer" to make this clearer, and do a bit of API
cleanup too.
The detectStaleConnections function in kube-proxy is very expensive in
terms of CPU utilization. The results of this function are only actually
used for UDP ports. This adds a protocol attribute to ServicePortName to
make it simple to only run this function for UDP connections. For
clusters with primarily TCP connections this can improve kube-proxy
performance by 2x.
This should fix a bug that could break masters when the EndpointSlice
feature gate was enabled. This was all tied to how the apiserver creates
and manages it's own services and endpoints (or in this case endpoint
slices). Consumers of endpoint slices also need to know about the
corresponding service. Previously we were trying to set an owner
reference here for this purpose, but that came with potential downsides
and increased complexity. This commit changes behavior of the apiserver
endpointslice integration to set the service name label instead of owner
references, and simplifies consumer logic to reference that (both are
set by the EndpointSlice controller).
Additionally, this should fix a bug with the EndpointSlice GenerateName
value that had previously been set with a "." as a suffix.
Work around Linux kernel bug that sometimes causes multiple flows to
get mapped to the same IP:PORT and consequently some suffer packet
drops.
Also made the same update in kubelet.
Also added cross-pointers between the two bodies of code, in comments.
Some day we should eliminate the duplicate code. But today is not
that day.