Discussion is ongoing about how to best handle dual-stack with clouds
and autodetected IPs, but there is at least agreement that people on
bare metal ought to be able to specify two explicit IPs on dual-stack
hosts, so allow that.
When the dual-stack feature gate is enabled, set up dual-stack
iptables rules. (When it is not enabled, preserve the traditional
behavior of setting up IPv4 rules only, unless the user explicitly
passed an IPv6 --node-ip.)
DockerLegacyService interface is used throughout `pkg/kubelet`.
It used to live in the `pkg/kubelet/dockershim` package. While we
would eventually like to remove it entirely, we need to give users some form
of warning.
By including the interface in
`pkg/kubelet/legacy/logs.go`, we ensure the interface is
available to `pkg/kubelet`, even when we are building with the `dockerless`
tag (i.e. not compiling the dockershim).
While the interface always exists, there will be no implementations of the
interface when building with the `dockerless` tag. The lack of
implementations should not be an issue, as we only expect `pkg/kubelet` code
to need an implementation of the `DockerLegacyService` when we are using
docker. If we are using docker, but building with the `dockerless` tag, than
this will be just one of many things that breaks.
`pkg/kubelet/legacy` might not be the best name for the package... I'm
very open to finding a different package name or even an already
existing package.
We can remove all uses of `dockershim` from `cmd/kubelet`, by just
passing the docker options to the kubelet in their pure form, instead of
using them to create a `dockerClientConfig` (which is defined in
dockershim). We can then construct the `dockerClientConfig` only when we
actually need it.
Extract a `runDockershim` function into a file outside of `kubelet.go`.
We can use build tags to compile two separate functions... one which
actually runs dockershim and one that is a no-op.
As far as I can tell, nothing uses this type. As a result, it doesn't
really provide any benefit, and just clutters `kubelet.go`.
There's also the risk of it falling out of date with `NewMainKubelet`,
as nothing enforces `NewMainKubelet` being of the `Builder` type.
After a pod reaches a terminal state and all containers are complete
we can delete the pod from the API server. The dispatchWork method
needs to wait for all container status to be available before invoking
delete. Even after the worker stops, status updates will continue to
be delivered and the sync handler will continue to sync the pods, so
dispatchWork gets multiple opportunities to see status.
The previous code assumed that a pod in Failed or Succeeded had no
running containers, but eviction or deletion of running pods could
still have running containers whose status needed to be reported.
This modifies earlier test to guarantee that the "fallback" exit
code 137 is never reported to match the expectation that all pods
exit with valid status for all containers (unless some exceptional
failure like eviction were to occur while the test is running).
The kubelet must not allow a container that was reported failed in a
restartPolicy=Never pod to be reported to the apiserver as success.
If a client deletes a restartPolicy=Never pod, the dispatchWork and
status manager race to update the container status. When dispatchWork
(specifically podIsTerminated) returns true, it means all containers
are stopped, which means status in the container is accurate. However,
the TerminatePod method then clears this status. This results in a
pod that has been reported with status.phase=Failed getting reset to
status.phase.Succeeded, which is a violation of the guarantees around
terminal phase.
Ensure the Kubelet never reports that a container succeeded when it
hasn't run or been executed by guarding the terminate pod loop from
ever reporting 0 in the absence of container status.