Many clusters block direct requests from internal resources to the nodes
external IPs as best practice. All accesses from internal resources that
want to access resources running on nodes go through load balancers,
nodes being on private or public subnets. Let's prefer internal IPs
first, so the tests can work even when there are security group rules
present blocking requests to the external IPs.
We should not require ExternalIP for Conformance, but should keep
testing ExternalIPs in sig network.
Signed-off-by: Rafael Fonseca <r4f4rfs@gmail.com>
This removes WaitTimeoutForPodNoLongerRunningOrNotFoundInNamespace
introduced in f2b9479f8e and changes
the test to use goroutines to speed up the cleanups.
Most CI jobs run an OS that does not support SELinux, therefore tests that
need it should be skipped by default.
* [Feature:SELinux] marks tests that need SELinux (for any feature)
* [Feature:SELinuxMountReadWriteOncePod] marks tests that need
SELinuxMountReadWriteOncePod alpha gate enabled.
Currently, all SELinux tests have both, but it will change in the future.
Also make some design changes exposed in testing and review.
Do not remove the ambiguous old metric
`apiserver_flowcontrol_request_concurrency_limit` because reviewers
though it is too early. This creates a problem, that metric can not
keep both of its old meanings. I chose the configured concurrency
limit.
Testing has revealed a design flaw, which concerns the initialization
of the seat demand state tracking. The current design in the KEP is
as follows.
> Adjustment is also done on configuration change … For a newly
> introduced priority level, we set HighSeatDemand, AvgSeatDemand, and
> SmoothSeatDemand to NominalCL-LendableSD/2 and StDevSeatDemand to
> zero.
But this does not work out well at server startup. As part of its
construction, the APF controller does a configuration change with zero
objects read, to initialize its request-handling state. As always,
the two mandatory priority levels are implicitly added whenever they
are not read. So this initial reconfig has one non-exempt priority
level, the mandatory one called catch-all --- and it gets its
SmoothSeatDemand initialized to the whole server concurrency limit.
From there it decays slowly, as per the regular design. So for a
fairly long time, it appears to have a high demand and competes
strongly with the other priority levels. Its Target is higher than
all the others, once they start to show up. It properly gets a low
NominalCL once other levels show up, which actually makes it compete
harder for borrowing: it has an exceptionally high Target and a rather
low NominalCL.
I have considered the following fix. The idea is that the designed
initialization is not appropriate before all the default objects are
read. So the fix is to have a mode bit in the controller. In the
initial state, those seat demand tracking variables are set to zero.
Once the config-producing controller detects that all the default
objects are pre-existing, it flips the mode bit. In the later mode,
the seat demand tracking variables are initialized as originally
designed.
However, that still gives preferential treatment to the default
PriorityLevelConfiguration objects, over any that may be added later.
So I have made a universal and simpler fix: always initialize those
seat demand tracking variables to zero. Even if a lot of load shows
up quickly, remember that adjustments are frequent (every 10 sec) and
the very next one will fully respond to that load.
Also: revise logging logic, to log at numerically lower V level when
there is a change.
Also: bug fix in float64close.
Also, separate imports in some file
Co-authored-by: Han Kang <hankang@google.com>
so that it explicitly describe group information defined in the
container image will be kept. This also adds e2e test case of
SupplementalGroups with pre-defined groups in the container
image to make the behaivier clearer.
- New API field .spec.schedulingGates
- Validation and drop disabled fields
- Disallow binding a Pod carrying non-nil schedulingGates
- Disallow creating a Pod with non-nil nodeName and non-nil schedulingGates
- Adds a {type:PodScheduled, reason:WaitingForGates} condition if necessary
- New literal SchedulingGated in the STATUS column of `k get pod`
In the PR https://github.com/kubernetes/kubernetes/pull/86139, two more lifecycle hook tests (poststart / prestop)
were added using HTTPS. They are similar with the existing HTTP tests.
However, this causes failures on Windows due to how networking
works there. We previously fixed this in the HTTP tests via f9e4a015e2.
This commit applies the same fix on the lifecycle hook HTTPS tests.
Signed-off-by: Ionut Balutoiu <ibalutoiu@cloudbasesolutions.com>
The cloud-provider and the e2e test were racing on deleting the
cloud resources.
Also, the cloud-provider should not leave orphan resources, that will
be detected by the job and fail, thus we should not have additional
logic to cleanup masking these errors.
Removed the unit tests that test the cases when the MixedProtocolLBService feature flag was false - the feature flag is locked to true with GA
Added an integration test to test whether the API server accepts an LB Service with different protocols.
Added an e2e test to test whether a service which is exposed by a multi-protocol LB Service is accessible via both ports.
Removed the conditional validation that compared the new and the old Service definitions during an update - the feature flag is locked to true with GA.