/* Copyright 2017 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package node import ( "sync" "k8s.io/kubernetes/pkg/api" pvutil "k8s.io/kubernetes/pkg/api/persistentvolume" podutil "k8s.io/kubernetes/pkg/api/pod" "k8s.io/kubernetes/third_party/forked/gonum/graph" "k8s.io/kubernetes/third_party/forked/gonum/graph/simple" ) // namedVertex implements graph.Node and remembers the type, namespace, and name of its related API object type namedVertex struct { name string namespace string id int vertexType vertexType } func newNamedVertex(vertexType vertexType, namespace, name string, id int) *namedVertex { return &namedVertex{ vertexType: vertexType, name: name, namespace: namespace, id: id, } } func (n *namedVertex) ID() int { return n.id } func (n *namedVertex) String() string { if len(n.namespace) == 0 { return vertexTypes[n.vertexType] + ":" + n.name } return vertexTypes[n.vertexType] + ":" + n.namespace + "/" + n.name } // destinationEdge is a graph edge that includes a denormalized reference to the final destination vertex. // This should only be used when there is a single leaf vertex reachable from T. type destinationEdge struct { F graph.Node T graph.Node Destination graph.Node } func newDestinationEdge(from, to, destination graph.Node) graph.Edge { return &destinationEdge{F: from, T: to, Destination: destination} } func (e *destinationEdge) From() graph.Node { return e.F } func (e *destinationEdge) To() graph.Node { return e.T } func (e *destinationEdge) Weight() float64 { return 0 } func (e *destinationEdge) DestinationID() int { return e.Destination.ID() } // Graph holds graph vertices and a way to look up a vertex for a particular API type/namespace/name. // All edges point toward the vertices representing Kubernetes nodes: // // node <- pod // pod <- secret,configmap,pvc // pvc <- pv // pv <- secret type Graph struct { lock sync.RWMutex graph *simple.DirectedAcyclicGraph // vertices is a map of type -> namespace -> name -> vertex vertices map[vertexType]namespaceVertexMapping } // namespaceVertexMapping is a map of namespace -> name -> vertex type namespaceVertexMapping map[string]nameVertexMapping // nameVertexMapping is a map of name -> vertex type nameVertexMapping map[string]*namedVertex func NewGraph() *Graph { return &Graph{ vertices: map[vertexType]namespaceVertexMapping{}, graph: simple.NewDirectedAcyclicGraph(0, 0), } } // vertexType indicates the type of the API object the vertex represents. // represented as a byte to minimize space used in the vertices. type vertexType byte const ( configMapVertexType vertexType = iota nodeVertexType podVertexType pvcVertexType pvVertexType secretVertexType ) var vertexTypes = map[vertexType]string{ configMapVertexType: "configmap", nodeVertexType: "node", podVertexType: "pod", pvcVertexType: "pvc", pvVertexType: "pv", secretVertexType: "secret", } // must be called under a write lock func (g *Graph) getOrCreateVertex_locked(vertexType vertexType, namespace, name string) *namedVertex { if vertex, exists := g.getVertex_rlocked(vertexType, namespace, name); exists { return vertex } return g.createVertex_locked(vertexType, namespace, name) } // must be called under a read lock func (g *Graph) getVertex_rlocked(vertexType vertexType, namespace, name string) (*namedVertex, bool) { vertex, exists := g.vertices[vertexType][namespace][name] return vertex, exists } // must be called under a write lock func (g *Graph) createVertex_locked(vertexType vertexType, namespace, name string) *namedVertex { typedVertices, exists := g.vertices[vertexType] if !exists { typedVertices = namespaceVertexMapping{} g.vertices[vertexType] = typedVertices } namespacedVertices, exists := typedVertices[namespace] if !exists { namespacedVertices = map[string]*namedVertex{} typedVertices[namespace] = namespacedVertices } vertex := newNamedVertex(vertexType, namespace, name, g.graph.NewNodeID()) namespacedVertices[name] = vertex g.graph.AddNode(vertex) return vertex } // must be called under write lock func (g *Graph) deleteVertex_locked(vertexType vertexType, namespace, name string) { vertex, exists := g.getVertex_rlocked(vertexType, namespace, name) if !exists { return } // find existing neighbors with a single edge (meaning we are their only neighbor) neighborsToRemove := []graph.Node{} g.graph.VisitFrom(vertex, func(neighbor graph.Node) bool { // this downstream neighbor has only one edge (which must be from us), so remove them as well if g.graph.Degree(neighbor) == 1 { neighborsToRemove = append(neighborsToRemove, neighbor) } return true }) g.graph.VisitTo(vertex, func(neighbor graph.Node) bool { // this upstream neighbor has only one edge (which must be to us), so remove them as well if g.graph.Degree(neighbor) == 1 { neighborsToRemove = append(neighborsToRemove, neighbor) } return true }) // remove the vertex g.graph.RemoveNode(vertex) delete(g.vertices[vertexType][namespace], name) if len(g.vertices[vertexType][namespace]) == 0 { delete(g.vertices[vertexType], namespace) } // remove neighbors that are now edgeless for _, neighbor := range neighborsToRemove { g.graph.RemoveNode(neighbor) n := neighbor.(*namedVertex) delete(g.vertices[n.vertexType][n.namespace], n.name) if len(g.vertices[n.vertexType][n.namespace]) == 0 { delete(g.vertices[n.vertexType], n.namespace) } } } // AddPod should only be called once spec.NodeName is populated. // It sets up edges for the following relationships (which are immutable for a pod once bound to a node): // // pod -> node // // secret -> pod // configmap -> pod // pvc -> pod func (g *Graph) AddPod(pod *api.Pod) { g.lock.Lock() defer g.lock.Unlock() g.deleteVertex_locked(podVertexType, pod.Namespace, pod.Name) podVertex := g.getOrCreateVertex_locked(podVertexType, pod.Namespace, pod.Name) nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", pod.Spec.NodeName) g.graph.SetEdge(newDestinationEdge(podVertex, nodeVertex, nodeVertex)) podutil.VisitPodSecretNames(pod, func(secret string) bool { g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(secretVertexType, pod.Namespace, secret), podVertex, nodeVertex)) return true }) podutil.VisitPodConfigmapNames(pod, func(configmap string) bool { g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(configMapVertexType, pod.Namespace, configmap), podVertex, nodeVertex)) return true }) for _, v := range pod.Spec.Volumes { if v.PersistentVolumeClaim != nil { g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(pvcVertexType, pod.Namespace, v.PersistentVolumeClaim.ClaimName), podVertex, nodeVertex)) } } } func (g *Graph) DeletePod(name, namespace string) { g.lock.Lock() defer g.lock.Unlock() g.deleteVertex_locked(podVertexType, namespace, name) } // AddPV sets up edges for the following relationships: // // secret -> pv // // pv -> pvc func (g *Graph) AddPV(pv *api.PersistentVolume) { g.lock.Lock() defer g.lock.Unlock() // clear existing edges g.deleteVertex_locked(pvVertexType, "", pv.Name) // if we have a pvc, establish new edges if pv.Spec.ClaimRef != nil { pvVertex := g.getOrCreateVertex_locked(pvVertexType, "", pv.Name) // since we don't know the other end of the pvc -> pod -> node chain (or it may not even exist yet), we can't decorate these edges with kubernetes node info g.graph.SetEdge(simple.Edge{F: pvVertex, T: g.getOrCreateVertex_locked(pvcVertexType, pv.Spec.ClaimRef.Namespace, pv.Spec.ClaimRef.Name)}) pvutil.VisitPVSecretNames(pv, func(namespace, secret string) bool { // This grants access to the named secret in the same namespace as the bound PVC g.graph.SetEdge(simple.Edge{F: g.getOrCreateVertex_locked(secretVertexType, namespace, secret), T: pvVertex}) return true }) } } func (g *Graph) DeletePV(name string) { g.lock.Lock() defer g.lock.Unlock() g.deleteVertex_locked(pvVertexType, "", name) }