/* Copyright 2016 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package cm import ( "errors" "fmt" "io/ioutil" "os" "path" "path/filepath" "strings" "sync" "time" libcontainercgroups "github.com/opencontainers/runc/libcontainer/cgroups" cgroupfs "github.com/opencontainers/runc/libcontainer/cgroups/fs" cgroupfs2 "github.com/opencontainers/runc/libcontainer/cgroups/fs2" "github.com/opencontainers/runc/libcontainer/cgroups/fscommon" cgroupsystemd "github.com/opencontainers/runc/libcontainer/cgroups/systemd" libcontainerconfigs "github.com/opencontainers/runc/libcontainer/configs" "k8s.io/klog/v2" v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper" utilruntime "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/apimachinery/pkg/util/sets" cmutil "k8s.io/kubernetes/pkg/kubelet/cm/util" "k8s.io/kubernetes/pkg/kubelet/metrics" ) // libcontainerCgroupManagerType defines how to interface with libcontainer type libcontainerCgroupManagerType string const ( // libcontainerCgroupfs means use libcontainer with cgroupfs libcontainerCgroupfs libcontainerCgroupManagerType = "cgroupfs" // libcontainerSystemd means use libcontainer with systemd libcontainerSystemd libcontainerCgroupManagerType = "systemd" // systemdSuffix is the cgroup name suffix for systemd systemdSuffix string = ".slice" // MemoryMin is memory.min for cgroup v2 MemoryMin string = "memory.min" // MemoryHigh is memory.high for cgroup v2 MemoryHigh string = "memory.high" ) var RootCgroupName = CgroupName([]string{}) // NewCgroupName composes a new cgroup name. // Use RootCgroupName as base to start at the root. // This function does some basic check for invalid characters at the name. func NewCgroupName(base CgroupName, components ...string) CgroupName { for _, component := range components { // Forbit using "_" in internal names. When remapping internal // names to systemd cgroup driver, we want to remap "-" => "_", // so we forbid "_" so that we can always reverse the mapping. if strings.Contains(component, "/") || strings.Contains(component, "_") { panic(fmt.Errorf("invalid character in component [%q] of CgroupName", component)) } } return CgroupName(append(append([]string{}, base...), components...)) } func escapeSystemdCgroupName(part string) string { return strings.Replace(part, "-", "_", -1) } func unescapeSystemdCgroupName(part string) string { return strings.Replace(part, "_", "-", -1) } // cgroupName.ToSystemd converts the internal cgroup name to a systemd name. // For example, the name {"kubepods", "burstable", "pod1234-abcd-5678-efgh"} becomes // "/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod1234_abcd_5678_efgh.slice" // This function always expands the systemd name into the cgroupfs form. If only // the last part is needed, use path.Base(...) on it to discard the rest. func (cgroupName CgroupName) ToSystemd() string { if len(cgroupName) == 0 || (len(cgroupName) == 1 && cgroupName[0] == "") { return "/" } newparts := []string{} for _, part := range cgroupName { part = escapeSystemdCgroupName(part) newparts = append(newparts, part) } result, err := cgroupsystemd.ExpandSlice(strings.Join(newparts, "-") + systemdSuffix) if err != nil { // Should never happen... panic(fmt.Errorf("error converting cgroup name [%v] to systemd format: %v", cgroupName, err)) } return result } func ParseSystemdToCgroupName(name string) CgroupName { driverName := path.Base(name) driverName = strings.TrimSuffix(driverName, systemdSuffix) parts := strings.Split(driverName, "-") result := []string{} for _, part := range parts { result = append(result, unescapeSystemdCgroupName(part)) } return CgroupName(result) } func (cgroupName CgroupName) ToCgroupfs() string { return "/" + path.Join(cgroupName...) } func ParseCgroupfsToCgroupName(name string) CgroupName { components := strings.Split(strings.TrimPrefix(name, "/"), "/") if len(components) == 1 && components[0] == "" { components = []string{} } return CgroupName(components) } func IsSystemdStyleName(name string) bool { return strings.HasSuffix(name, systemdSuffix) } // libcontainerAdapter provides a simplified interface to libcontainer based on libcontainer type. type libcontainerAdapter struct { // cgroupManagerType defines how to interface with libcontainer cgroupManagerType libcontainerCgroupManagerType } // newLibcontainerAdapter returns a configured libcontainerAdapter for specified manager. // it does any initialization required by that manager to function. func newLibcontainerAdapter(cgroupManagerType libcontainerCgroupManagerType) *libcontainerAdapter { return &libcontainerAdapter{cgroupManagerType: cgroupManagerType} } // newManager returns an implementation of cgroups.Manager func (l *libcontainerAdapter) newManager(cgroups *libcontainerconfigs.Cgroup, paths map[string]string) (libcontainercgroups.Manager, error) { switch l.cgroupManagerType { case libcontainerCgroupfs: if libcontainercgroups.IsCgroup2UnifiedMode() { return cgroupfs2.NewManager(cgroups, paths["memory"], false) } return cgroupfs.NewManager(cgroups, paths, false), nil case libcontainerSystemd: // this means you asked systemd to manage cgroups, but systemd was not on the host, so all you can do is panic... if !cgroupsystemd.IsRunningSystemd() { panic("systemd cgroup manager not available") } if libcontainercgroups.IsCgroup2UnifiedMode() { return cgroupsystemd.NewUnifiedManager(cgroups, paths["memory"], false), nil } return cgroupsystemd.NewLegacyManager(cgroups, paths), nil } return nil, fmt.Errorf("invalid cgroup manager configuration") } // CgroupSubsystems holds information about the mounted cgroup subsystems type CgroupSubsystems struct { // Cgroup subsystem mounts. // e.g.: "/sys/fs/cgroup/cpu" -> ["cpu", "cpuacct"] Mounts []libcontainercgroups.Mount // Cgroup subsystem to their mount location. // e.g.: "cpu" -> "/sys/fs/cgroup/cpu" MountPoints map[string]string } // cgroupManagerImpl implements the CgroupManager interface. // Its a stateless object which can be used to // update,create or delete any number of cgroups // It uses the Libcontainer raw fs cgroup manager for cgroup management. type cgroupManagerImpl struct { // subsystems holds information about all the // mounted cgroup subsystems on the node subsystems *CgroupSubsystems // simplifies interaction with libcontainer and its cgroup managers adapter *libcontainerAdapter } // Make sure that cgroupManagerImpl implements the CgroupManager interface var _ CgroupManager = &cgroupManagerImpl{} // NewCgroupManager is a factory method that returns a CgroupManager func NewCgroupManager(cs *CgroupSubsystems, cgroupDriver string) CgroupManager { managerType := libcontainerCgroupfs if cgroupDriver == string(libcontainerSystemd) { managerType = libcontainerSystemd } return &cgroupManagerImpl{ subsystems: cs, adapter: newLibcontainerAdapter(managerType), } } // Name converts the cgroup to the driver specific value in cgroupfs form. // This always returns a valid cgroupfs path even when systemd driver is in use! func (m *cgroupManagerImpl) Name(name CgroupName) string { if m.adapter.cgroupManagerType == libcontainerSystemd { return name.ToSystemd() } return name.ToCgroupfs() } // CgroupName converts the literal cgroupfs name on the host to an internal identifier. func (m *cgroupManagerImpl) CgroupName(name string) CgroupName { if m.adapter.cgroupManagerType == libcontainerSystemd { return ParseSystemdToCgroupName(name) } return ParseCgroupfsToCgroupName(name) } // buildCgroupPaths builds a path to each cgroup subsystem for the specified name. func (m *cgroupManagerImpl) buildCgroupPaths(name CgroupName) map[string]string { cgroupFsAdaptedName := m.Name(name) cgroupPaths := make(map[string]string, len(m.subsystems.MountPoints)) for key, val := range m.subsystems.MountPoints { cgroupPaths[key] = path.Join(val, cgroupFsAdaptedName) } return cgroupPaths } // buildCgroupUnifiedPath builds a path to the specified name. func (m *cgroupManagerImpl) buildCgroupUnifiedPath(name CgroupName) string { cgroupFsAdaptedName := m.Name(name) return path.Join(cmutil.CgroupRoot, cgroupFsAdaptedName) } // TODO(filbranden): This logic belongs in libcontainer/cgroup/systemd instead. // It should take a libcontainerconfigs.Cgroup.Path field (rather than Name and Parent) // and split it appropriately, using essentially the logic below. // This was done for cgroupfs in opencontainers/runc#497 but a counterpart // for systemd was never introduced. func updateSystemdCgroupInfo(cgroupConfig *libcontainerconfigs.Cgroup, cgroupName CgroupName) { dir, base := path.Split(cgroupName.ToSystemd()) if dir == "/" { dir = "-.slice" } else { dir = path.Base(dir) } cgroupConfig.Parent = dir cgroupConfig.Name = base } // Validate checks if all subsystem cgroups already exist func (m *cgroupManagerImpl) Validate(name CgroupName) error { if libcontainercgroups.IsCgroup2UnifiedMode() { cgroupPath := m.buildCgroupUnifiedPath(name) neededControllers := getSupportedUnifiedControllers() enabledControllers, err := readUnifiedControllers(cgroupPath) if err != nil { return fmt.Errorf("could not read controllers for cgroup %q: %w", name, err) } difference := neededControllers.Difference(enabledControllers) if difference.Len() > 0 { return fmt.Errorf("cgroup %q has some missing controllers: %v", name, strings.Join(difference.List(), ", ")) } return nil // valid V2 cgroup } // Get map of all cgroup paths on the system for the particular cgroup cgroupPaths := m.buildCgroupPaths(name) // the presence of alternative control groups not known to runc confuses // the kubelet existence checks. // ideally, we would have a mechanism in runc to support Exists() logic // scoped to the set control groups it understands. this is being discussed // in https://github.com/opencontainers/runc/issues/1440 // once resolved, we can remove this code. allowlistControllers := sets.NewString("cpu", "cpuacct", "cpuset", "memory", "systemd", "pids") if _, ok := m.subsystems.MountPoints["hugetlb"]; ok { allowlistControllers.Insert("hugetlb") } var missingPaths []string // If even one cgroup path doesn't exist, then the cgroup doesn't exist. for controller, path := range cgroupPaths { // ignore mounts we don't care about if !allowlistControllers.Has(controller) { continue } if !libcontainercgroups.PathExists(path) { missingPaths = append(missingPaths, path) } } if len(missingPaths) > 0 { return fmt.Errorf("cgroup %q has some missing paths: %v", name, strings.Join(missingPaths, ", ")) } return nil // valid V1 cgroup } // Exists checks if all subsystem cgroups already exist func (m *cgroupManagerImpl) Exists(name CgroupName) bool { return m.Validate(name) == nil } // Destroy destroys the specified cgroup func (m *cgroupManagerImpl) Destroy(cgroupConfig *CgroupConfig) error { start := time.Now() defer func() { metrics.CgroupManagerDuration.WithLabelValues("destroy").Observe(metrics.SinceInSeconds(start)) }() cgroupPaths := m.buildCgroupPaths(cgroupConfig.Name) libcontainerCgroupConfig := &libcontainerconfigs.Cgroup{} // libcontainer consumes a different field and expects a different syntax // depending on the cgroup driver in use, so we need this conditional here. if m.adapter.cgroupManagerType == libcontainerSystemd { updateSystemdCgroupInfo(libcontainerCgroupConfig, cgroupConfig.Name) } else { libcontainerCgroupConfig.Path = cgroupConfig.Name.ToCgroupfs() } manager, err := m.adapter.newManager(libcontainerCgroupConfig, cgroupPaths) if err != nil { return err } // Delete cgroups using libcontainers Managers Destroy() method if err = manager.Destroy(); err != nil { return fmt.Errorf("unable to destroy cgroup paths for cgroup %v : %v", cgroupConfig.Name, err) } return nil } // getCpuWeight converts from the range [2, 262144] to [1, 10000] func getCpuWeight(cpuShares *uint64) uint64 { if cpuShares == nil { return 0 } if *cpuShares >= 262144 { return 10000 } return 1 + ((*cpuShares-2)*9999)/262142 } // readUnifiedControllers reads the controllers available at the specified cgroup func readUnifiedControllers(path string) (sets.String, error) { controllersFileContent, err := ioutil.ReadFile(filepath.Join(path, "cgroup.controllers")) if err != nil { return nil, err } controllers := strings.Fields(string(controllersFileContent)) return sets.NewString(controllers...), nil } var ( availableRootControllersOnce sync.Once availableRootControllers sets.String ) // getSupportedUnifiedControllers returns a set of supported controllers when running on cgroup v2 func getSupportedUnifiedControllers() sets.String { // This is the set of controllers used by the Kubelet supportedControllers := sets.NewString("cpu", "cpuset", "memory", "hugetlb", "pids") // Memoize the set of controllers that are present in the root cgroup availableRootControllersOnce.Do(func() { var err error availableRootControllers, err = readUnifiedControllers(cmutil.CgroupRoot) if err != nil { panic(fmt.Errorf("cannot read cgroup controllers at %s", cmutil.CgroupRoot)) } }) // Return the set of controllers that are supported both by the Kubelet and by the kernel return supportedControllers.Intersection(availableRootControllers) } func (m *cgroupManagerImpl) toResources(resourceConfig *ResourceConfig) *libcontainerconfigs.Resources { resources := &libcontainerconfigs.Resources{ SkipDevices: true, SkipFreezeOnSet: true, } if resourceConfig == nil { return resources } if resourceConfig.Memory != nil { resources.Memory = *resourceConfig.Memory } if resourceConfig.CpuShares != nil { if libcontainercgroups.IsCgroup2UnifiedMode() { resources.CpuWeight = getCpuWeight(resourceConfig.CpuShares) } else { resources.CpuShares = *resourceConfig.CpuShares } } if resourceConfig.CpuQuota != nil { resources.CpuQuota = *resourceConfig.CpuQuota } if resourceConfig.CpuPeriod != nil { resources.CpuPeriod = *resourceConfig.CpuPeriod } if resourceConfig.PidsLimit != nil { resources.PidsLimit = *resourceConfig.PidsLimit } // if huge pages are enabled, we set them in libcontainer // for each page size enumerated, set that value pageSizes := sets.NewString() for pageSize, limit := range resourceConfig.HugePageLimit { sizeString, err := v1helper.HugePageUnitSizeFromByteSize(pageSize) if err != nil { klog.InfoS("Invalid pageSize", "err", err) continue } resources.HugetlbLimit = append(resources.HugetlbLimit, &libcontainerconfigs.HugepageLimit{ Pagesize: sizeString, Limit: uint64(limit), }) pageSizes.Insert(sizeString) } // for each page size omitted, limit to 0 for _, pageSize := range cgroupfs.HugePageSizes { if pageSizes.Has(pageSize) { continue } resources.HugetlbLimit = append(resources.HugetlbLimit, &libcontainerconfigs.HugepageLimit{ Pagesize: pageSize, Limit: uint64(0), }) } // Ideally unified is used for all the resources when running on cgroup v2. // It doesn't make difference for the memory.max limit, but for e.g. the cpu controller // you can specify the correct setting without relying on the conversions performed by the OCI runtime. if resourceConfig.Unified != nil && libcontainercgroups.IsCgroup2UnifiedMode() { resources.Unified = make(map[string]string) for k, v := range resourceConfig.Unified { resources.Unified[k] = v } } return resources } // Update updates the cgroup with the specified Cgroup Configuration func (m *cgroupManagerImpl) Update(cgroupConfig *CgroupConfig) error { start := time.Now() defer func() { metrics.CgroupManagerDuration.WithLabelValues("update").Observe(metrics.SinceInSeconds(start)) }() // Extract the cgroup resource parameters resourceConfig := cgroupConfig.ResourceParameters resources := m.toResources(resourceConfig) libcontainerCgroupConfig := &libcontainerconfigs.Cgroup{ Resources: resources, } unified := libcontainercgroups.IsCgroup2UnifiedMode() var paths map[string]string if unified { libcontainerCgroupConfig.Path = m.Name(cgroupConfig.Name) } else { paths = m.buildCgroupPaths(cgroupConfig.Name) } // libcontainer consumes a different field and expects a different syntax // depending on the cgroup driver in use, so we need this conditional here. if m.adapter.cgroupManagerType == libcontainerSystemd { updateSystemdCgroupInfo(libcontainerCgroupConfig, cgroupConfig.Name) } if cgroupConfig.ResourceParameters != nil && cgroupConfig.ResourceParameters.PidsLimit != nil { resources.PidsLimit = *cgroupConfig.ResourceParameters.PidsLimit } if unified { supportedControllers := getSupportedUnifiedControllers() if !supportedControllers.Has("hugetlb") { resources.HugetlbLimit = nil klog.V(6).InfoS("Optional subsystem not supported: hugetlb") } } else if _, ok := m.subsystems.MountPoints["hugetlb"]; !ok { resources.HugetlbLimit = nil klog.V(6).InfoS("Optional subsystem not supported: hugetlb") } manager, err := m.adapter.newManager(libcontainerCgroupConfig, paths) if err != nil { return fmt.Errorf("failed to create cgroup manager: %v", err) } return manager.Set(resources) } // Create creates the specified cgroup func (m *cgroupManagerImpl) Create(cgroupConfig *CgroupConfig) error { start := time.Now() defer func() { metrics.CgroupManagerDuration.WithLabelValues("create").Observe(metrics.SinceInSeconds(start)) }() resources := m.toResources(cgroupConfig.ResourceParameters) libcontainerCgroupConfig := &libcontainerconfigs.Cgroup{ Resources: resources, } // libcontainer consumes a different field and expects a different syntax // depending on the cgroup driver in use, so we need this conditional here. if m.adapter.cgroupManagerType == libcontainerSystemd { updateSystemdCgroupInfo(libcontainerCgroupConfig, cgroupConfig.Name) } else { libcontainerCgroupConfig.Path = cgroupConfig.Name.ToCgroupfs() } if cgroupConfig.ResourceParameters != nil && cgroupConfig.ResourceParameters.PidsLimit != nil { libcontainerCgroupConfig.PidsLimit = *cgroupConfig.ResourceParameters.PidsLimit } // get the manager with the specified cgroup configuration manager, err := m.adapter.newManager(libcontainerCgroupConfig, nil) if err != nil { return err } // Apply(-1) is a hack to create the cgroup directories for each resource // subsystem. The function [cgroups.Manager.apply()] applies cgroup // configuration to the process with the specified pid. // It creates cgroup files for each subsystems and writes the pid // in the tasks file. We use the function to create all the required // cgroup files but not attach any "real" pid to the cgroup. if err := manager.Apply(-1); err != nil { return err } // it may confuse why we call set after we do apply, but the issue is that runc // follows a similar pattern. it's needed to ensure cpu quota is set properly. if err := m.Update(cgroupConfig); err != nil { utilruntime.HandleError(fmt.Errorf("cgroup update failed %v", err)) } return nil } // Scans through all subsystems to find pids associated with specified cgroup. func (m *cgroupManagerImpl) Pids(name CgroupName) []int { // we need the driver specific name cgroupFsName := m.Name(name) // Get a list of processes that we need to kill pidsToKill := sets.NewInt() var pids []int for _, val := range m.subsystems.MountPoints { dir := path.Join(val, cgroupFsName) _, err := os.Stat(dir) if os.IsNotExist(err) { // The subsystem pod cgroup is already deleted // do nothing, continue continue } // Get a list of pids that are still charged to the pod's cgroup pids, err = getCgroupProcs(dir) if err != nil { continue } pidsToKill.Insert(pids...) // WalkFunc which is called for each file and directory in the pod cgroup dir visitor := func(path string, info os.FileInfo, err error) error { if err != nil { klog.V(4).InfoS("Cgroup manager encountered error scanning cgroup path", "path", path, "err", err) return filepath.SkipDir } if !info.IsDir() { return nil } pids, err = getCgroupProcs(path) if err != nil { klog.V(4).InfoS("Cgroup manager encountered error getting procs for cgroup path", "path", path, "err", err) return filepath.SkipDir } pidsToKill.Insert(pids...) return nil } // Walk through the pod cgroup directory to check if // container cgroups haven't been GCed yet. Get attached processes to // all such unwanted containers under the pod cgroup if err = filepath.Walk(dir, visitor); err != nil { klog.V(4).InfoS("Cgroup manager encountered error scanning pids for directory", "path", dir, "err", err) } } return pidsToKill.List() } // ReduceCPULimits reduces the cgroup's cpu shares to the lowest possible value func (m *cgroupManagerImpl) ReduceCPULimits(cgroupName CgroupName) error { // Set lowest possible CpuShares value for the cgroup minimumCPUShares := uint64(MinShares) resources := &ResourceConfig{ CpuShares: &minimumCPUShares, } containerConfig := &CgroupConfig{ Name: cgroupName, ResourceParameters: resources, } return m.Update(containerConfig) } // MemoryUsage returns the current memory usage of the specified cgroup, // as read from cgroupfs. func (m *cgroupManagerImpl) MemoryUsage(name CgroupName) (int64, error) { var path, file string if libcontainercgroups.IsCgroup2UnifiedMode() { path = m.buildCgroupUnifiedPath(name) file = "memory.current" } else { mp, ok := m.subsystems.MountPoints["memory"] if !ok { // should not happen return -1, errors.New("no cgroup v1 mountpoint for memory controller found") } path = mp + "/" + m.Name(name) file = "memory.usage_in_bytes" } val, err := fscommon.GetCgroupParamUint(path, file) return int64(val), err }