//go:build linux // +build linux /* Copyright 2018 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package kuberuntime import ( "strconv" "time" libcontainercgroups "github.com/opencontainers/runc/libcontainer/cgroups" cgroupfs "github.com/opencontainers/runc/libcontainer/cgroups/fs" v1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/resource" utilfeature "k8s.io/apiserver/pkg/util/feature" runtimeapi "k8s.io/cri-api/pkg/apis/runtime/v1" "k8s.io/klog/v2" v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper" kubefeatures "k8s.io/kubernetes/pkg/features" "k8s.io/kubernetes/pkg/kubelet/cm" kubecontainer "k8s.io/kubernetes/pkg/kubelet/container" "k8s.io/kubernetes/pkg/kubelet/qos" kubelettypes "k8s.io/kubernetes/pkg/kubelet/types" ) // applyPlatformSpecificContainerConfig applies platform specific configurations to runtimeapi.ContainerConfig. func (m *kubeGenericRuntimeManager) applyPlatformSpecificContainerConfig(config *runtimeapi.ContainerConfig, container *v1.Container, pod *v1.Pod, uid *int64, username string, nsTarget *kubecontainer.ContainerID) error { enforceMemoryQoS := false // Set memory.min and memory.high if MemoryQoS enabled with cgroups v2 if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.MemoryQoS) && libcontainercgroups.IsCgroup2UnifiedMode() { enforceMemoryQoS = true } config.Linux = m.generateLinuxContainerConfig(container, pod, uid, username, nsTarget, enforceMemoryQoS) return nil } // generateLinuxContainerConfig generates linux container config for kubelet runtime v1. func (m *kubeGenericRuntimeManager) generateLinuxContainerConfig(container *v1.Container, pod *v1.Pod, uid *int64, username string, nsTarget *kubecontainer.ContainerID, enforceMemoryQoS bool) *runtimeapi.LinuxContainerConfig { lc := &runtimeapi.LinuxContainerConfig{ Resources: &runtimeapi.LinuxContainerResources{}, SecurityContext: m.determineEffectiveSecurityContext(pod, container, uid, username), } if nsTarget != nil && lc.SecurityContext.NamespaceOptions.Pid == runtimeapi.NamespaceMode_CONTAINER { lc.SecurityContext.NamespaceOptions.Pid = runtimeapi.NamespaceMode_TARGET lc.SecurityContext.NamespaceOptions.TargetId = nsTarget.ID } // set linux container resources lc.Resources = m.calculateLinuxResources(container.Resources.Requests.Cpu(), container.Resources.Limits.Cpu(), container.Resources.Limits.Memory()) lc.Resources.OomScoreAdj = int64(qos.GetContainerOOMScoreAdjust(pod, container, int64(m.machineInfo.MemoryCapacity))) lc.Resources.HugepageLimits = GetHugepageLimitsFromResources(container.Resources) if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NodeSwap) { // NOTE(ehashman): Behaviour is defined in the opencontainers runtime spec: // https://github.com/opencontainers/runtime-spec/blob/1c3f411f041711bbeecf35ff7e93461ea6789220/config-linux.md#memory switch m.memorySwapBehavior { case kubelettypes.UnlimitedSwap: // -1 = unlimited swap lc.Resources.MemorySwapLimitInBytes = -1 case kubelettypes.LimitedSwap: fallthrough default: // memorySwapLimit = total permitted memory+swap; if equal to memory limit, => 0 swap above memory limit // Some swapping is still possible. // Note that if memory limit is 0, memory swap limit is ignored. lc.Resources.MemorySwapLimitInBytes = lc.Resources.MemoryLimitInBytes } } // Set memory.min and memory.high to enforce MemoryQoS if enforceMemoryQoS { unified := map[string]string{} memoryRequest := container.Resources.Requests.Memory().Value() memoryLimit := container.Resources.Limits.Memory().Value() if memoryRequest != 0 { unified[cm.MemoryMin] = strconv.FormatInt(memoryRequest, 10) } // If container sets limits.memory, we set memory.high=pod.spec.containers[i].resources.limits[memory] * memory_throttling_factor // for container level cgroup if memory.high>memory.min. // If container doesn't set limits.memory, we set memory.high=node_allocatable_memory * memory_throttling_factor // for container level cgroup. memoryHigh := int64(0) if memoryLimit != 0 { memoryHigh = int64(float64(memoryLimit) * m.memoryThrottlingFactor) } else { allocatable := m.getNodeAllocatable() allocatableMemory, ok := allocatable[v1.ResourceMemory] if ok && allocatableMemory.Value() > 0 { memoryHigh = int64(float64(allocatableMemory.Value()) * m.memoryThrottlingFactor) } } if memoryHigh > memoryRequest { unified[cm.MemoryHigh] = strconv.FormatInt(memoryHigh, 10) } if len(unified) > 0 { if lc.Resources.Unified == nil { lc.Resources.Unified = unified } else { for k, v := range unified { lc.Resources.Unified[k] = v } } klog.V(4).InfoS("MemoryQoS config for container", "pod", klog.KObj(pod), "containerName", container.Name, "unified", unified) } } return lc } // calculateLinuxResources will create the linuxContainerResources type based on the provided CPU and memory resource requests, limits func (m *kubeGenericRuntimeManager) calculateLinuxResources(cpuRequest, cpuLimit, memoryLimit *resource.Quantity) *runtimeapi.LinuxContainerResources { resources := runtimeapi.LinuxContainerResources{} var cpuShares int64 memLimit := memoryLimit.Value() // If request is not specified, but limit is, we want request to default to limit. // API server does this for new containers, but we repeat this logic in Kubelet // for containers running on existing Kubernetes clusters. if cpuRequest.IsZero() && !cpuLimit.IsZero() { cpuShares = milliCPUToShares(cpuLimit.MilliValue()) } else { // if cpuRequest.Amount is nil, then milliCPUToShares will return the minimal number // of CPU shares. cpuShares = milliCPUToShares(cpuRequest.MilliValue()) } resources.CpuShares = cpuShares if memLimit != 0 { resources.MemoryLimitInBytes = memLimit } if m.cpuCFSQuota { // if cpuLimit.Amount is nil, then the appropriate default value is returned // to allow full usage of cpu resource. cpuPeriod := int64(quotaPeriod) if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.CPUCFSQuotaPeriod) { cpuPeriod = int64(m.cpuCFSQuotaPeriod.Duration / time.Microsecond) } cpuQuota := milliCPUToQuota(cpuLimit.MilliValue(), cpuPeriod) resources.CpuQuota = cpuQuota resources.CpuPeriod = cpuPeriod } return &resources } // GetHugepageLimitsFromResources returns limits of each hugepages from resources. func GetHugepageLimitsFromResources(resources v1.ResourceRequirements) []*runtimeapi.HugepageLimit { var hugepageLimits []*runtimeapi.HugepageLimit // For each page size, limit to 0. for _, pageSize := range cgroupfs.HugePageSizes { hugepageLimits = append(hugepageLimits, &runtimeapi.HugepageLimit{ PageSize: pageSize, Limit: uint64(0), }) } requiredHugepageLimits := map[string]uint64{} for resourceObj, amountObj := range resources.Limits { if !v1helper.IsHugePageResourceName(resourceObj) { continue } pageSize, err := v1helper.HugePageSizeFromResourceName(resourceObj) if err != nil { klog.InfoS("Failed to get hugepage size from resource", "object", resourceObj, "err", err) continue } sizeString, err := v1helper.HugePageUnitSizeFromByteSize(pageSize.Value()) if err != nil { klog.InfoS("Size is invalid", "object", resourceObj, "err", err) continue } requiredHugepageLimits[sizeString] = uint64(amountObj.Value()) } for _, hugepageLimit := range hugepageLimits { if limit, exists := requiredHugepageLimits[hugepageLimit.PageSize]; exists { hugepageLimit.Limit = limit } } return hugepageLimits }