1168 lines
46 KiB
Go
1168 lines
46 KiB
Go
/*
|
|
Copyright 2022 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package dynamicresources
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"sort"
|
|
"sync"
|
|
|
|
"github.com/google/go-cmp/cmp"
|
|
|
|
v1 "k8s.io/api/core/v1"
|
|
resourcev1alpha2 "k8s.io/api/resource/v1alpha2"
|
|
apiequality "k8s.io/apimachinery/pkg/api/equality"
|
|
apierrors "k8s.io/apimachinery/pkg/api/errors"
|
|
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
|
|
"k8s.io/apimachinery/pkg/runtime"
|
|
"k8s.io/apimachinery/pkg/runtime/schema"
|
|
"k8s.io/apimachinery/pkg/types"
|
|
"k8s.io/apimachinery/pkg/util/sets"
|
|
resourcev1alpha2apply "k8s.io/client-go/applyconfigurations/resource/v1alpha2"
|
|
"k8s.io/client-go/kubernetes"
|
|
resourcev1alpha2listers "k8s.io/client-go/listers/resource/v1alpha2"
|
|
"k8s.io/component-helpers/scheduling/corev1/nodeaffinity"
|
|
"k8s.io/dynamic-resource-allocation/resourceclaim"
|
|
"k8s.io/klog/v2"
|
|
"k8s.io/kubernetes/pkg/scheduler/framework"
|
|
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/feature"
|
|
"k8s.io/kubernetes/pkg/scheduler/framework/plugins/names"
|
|
schedutil "k8s.io/kubernetes/pkg/scheduler/util"
|
|
"k8s.io/utils/ptr"
|
|
)
|
|
|
|
const (
|
|
// Name is the name of the plugin used in Registry and configurations.
|
|
Name = names.DynamicResources
|
|
|
|
stateKey framework.StateKey = Name
|
|
)
|
|
|
|
// The state is initialized in PreFilter phase. Because we save the pointer in
|
|
// framework.CycleState, in the later phases we don't need to call Write method
|
|
// to update the value
|
|
type stateData struct {
|
|
// preScored is true if PreScore was invoked.
|
|
preScored bool
|
|
|
|
// A copy of all claims for the Pod (i.e. 1:1 match with
|
|
// pod.Spec.ResourceClaims), initially with the status from the start
|
|
// of the scheduling cycle. Each claim instance is read-only because it
|
|
// might come from the informer cache. The instances get replaced when
|
|
// the plugin itself successfully does an Update.
|
|
//
|
|
// Empty if the Pod has no claims.
|
|
claims []*resourcev1alpha2.ResourceClaim
|
|
|
|
// The indices of all claims that:
|
|
// - are allocated
|
|
// - use delayed allocation
|
|
// - were not available on at least one node
|
|
//
|
|
// Set in parallel during Filter, so write access there must be
|
|
// protected by the mutex. Used by PostFilter.
|
|
unavailableClaims sets.Set[int]
|
|
|
|
// podSchedulingState keeps track of the PodSchedulingContext
|
|
// (if one exists) and the changes made to it.
|
|
podSchedulingState podSchedulingState
|
|
|
|
mutex sync.Mutex
|
|
|
|
informationsForClaim []informationForClaim
|
|
}
|
|
|
|
type informationForClaim struct {
|
|
// The availableOnNode node filter of the claim converted from the
|
|
// v1 API to nodeaffinity.NodeSelector by PreFilter for repeated
|
|
// evaluation in Filter. Nil for claim which don't have it.
|
|
availableOnNode *nodeaffinity.NodeSelector
|
|
// The status of the claim got from the
|
|
// schedulingCtx by PreFilter for repeated
|
|
// evaluation in Filter. Nil for claim which don't have it.
|
|
status *resourcev1alpha2.ResourceClaimSchedulingStatus
|
|
}
|
|
|
|
func (d *stateData) Clone() framework.StateData {
|
|
return d
|
|
}
|
|
|
|
type podSchedulingState struct {
|
|
// A pointer to the PodSchedulingContext object for the pod, if one exists
|
|
// in the API server.
|
|
//
|
|
// Conceptually, this object belongs into the scheduler framework
|
|
// where it might get shared by different plugins. But in practice,
|
|
// it is currently only used by dynamic provisioning and thus
|
|
// managed entirely here.
|
|
schedulingCtx *resourcev1alpha2.PodSchedulingContext
|
|
|
|
// selectedNode is set if (and only if) a node has been selected.
|
|
selectedNode *string
|
|
|
|
// potentialNodes is set if (and only if) the potential nodes field
|
|
// needs to be updated or set.
|
|
potentialNodes *[]string
|
|
}
|
|
|
|
func (p *podSchedulingState) isDirty() bool {
|
|
return p.selectedNode != nil ||
|
|
p.potentialNodes != nil
|
|
}
|
|
|
|
// init checks whether there is already a PodSchedulingContext object.
|
|
// Must not be called concurrently,
|
|
func (p *podSchedulingState) init(ctx context.Context, pod *v1.Pod, podSchedulingContextLister resourcev1alpha2listers.PodSchedulingContextLister) error {
|
|
schedulingCtx, err := podSchedulingContextLister.PodSchedulingContexts(pod.Namespace).Get(pod.Name)
|
|
switch {
|
|
case apierrors.IsNotFound(err):
|
|
return nil
|
|
case err != nil:
|
|
return err
|
|
default:
|
|
// We have an object, but it might be obsolete.
|
|
if !metav1.IsControlledBy(schedulingCtx, pod) {
|
|
return fmt.Errorf("PodSchedulingContext object with UID %s is not owned by Pod %s/%s", schedulingCtx.UID, pod.Namespace, pod.Name)
|
|
}
|
|
}
|
|
p.schedulingCtx = schedulingCtx
|
|
return nil
|
|
}
|
|
|
|
// publish creates or updates the PodSchedulingContext object, if necessary.
|
|
// Must not be called concurrently.
|
|
func (p *podSchedulingState) publish(ctx context.Context, pod *v1.Pod, clientset kubernetes.Interface) error {
|
|
if !p.isDirty() {
|
|
return nil
|
|
}
|
|
|
|
var err error
|
|
logger := klog.FromContext(ctx)
|
|
if p.schedulingCtx != nil {
|
|
// Update it.
|
|
schedulingCtx := p.schedulingCtx.DeepCopy()
|
|
if p.selectedNode != nil {
|
|
schedulingCtx.Spec.SelectedNode = *p.selectedNode
|
|
}
|
|
if p.potentialNodes != nil {
|
|
schedulingCtx.Spec.PotentialNodes = *p.potentialNodes
|
|
}
|
|
if loggerV := logger.V(6); loggerV.Enabled() {
|
|
// At a high enough log level, dump the entire object.
|
|
loggerV.Info("Updating PodSchedulingContext", "podSchedulingCtx", klog.KObj(schedulingCtx), "podSchedulingCtxObject", klog.Format(schedulingCtx))
|
|
} else {
|
|
logger.V(5).Info("Updating PodSchedulingContext", "podSchedulingCtx", klog.KObj(schedulingCtx))
|
|
}
|
|
_, err = clientset.ResourceV1alpha2().PodSchedulingContexts(schedulingCtx.Namespace).Update(ctx, schedulingCtx, metav1.UpdateOptions{})
|
|
if apierrors.IsConflict(err) {
|
|
// We don't use SSA by default for performance reasons
|
|
// (https://github.com/kubernetes/kubernetes/issues/113700#issuecomment-1698563918)
|
|
// because most of the time an Update doesn't encounter
|
|
// a conflict and is faster.
|
|
//
|
|
// We could return an error here and rely on
|
|
// backoff+retry, but scheduling attempts are expensive
|
|
// and the backoff delay would cause a (small)
|
|
// slowdown. Therefore we fall back to SSA here if needed.
|
|
//
|
|
// Using SSA instead of Get+Update has the advantage that
|
|
// there is no delay for the Get. SSA is safe because only
|
|
// the scheduler updates these fields.
|
|
spec := resourcev1alpha2apply.PodSchedulingContextSpec()
|
|
spec.SelectedNode = p.selectedNode
|
|
if p.potentialNodes != nil {
|
|
spec.PotentialNodes = *p.potentialNodes
|
|
} else {
|
|
// Unchanged. Has to be set because the object that we send
|
|
// must represent the "fully specified intent". Not sending
|
|
// the list would clear it.
|
|
spec.PotentialNodes = p.schedulingCtx.Spec.PotentialNodes
|
|
}
|
|
schedulingCtxApply := resourcev1alpha2apply.PodSchedulingContext(pod.Name, pod.Namespace).WithSpec(spec)
|
|
|
|
if loggerV := logger.V(6); loggerV.Enabled() {
|
|
// At a high enough log level, dump the entire object.
|
|
loggerV.Info("Patching PodSchedulingContext", "podSchedulingCtx", klog.KObj(pod), "podSchedulingCtxApply", klog.Format(schedulingCtxApply))
|
|
} else {
|
|
logger.V(5).Info("Patching PodSchedulingContext", "podSchedulingCtx", klog.KObj(pod))
|
|
}
|
|
_, err = clientset.ResourceV1alpha2().PodSchedulingContexts(pod.Namespace).Apply(ctx, schedulingCtxApply, metav1.ApplyOptions{FieldManager: "kube-scheduler", Force: true})
|
|
}
|
|
|
|
} else {
|
|
// Create it.
|
|
schedulingCtx := &resourcev1alpha2.PodSchedulingContext{
|
|
ObjectMeta: metav1.ObjectMeta{
|
|
Name: pod.Name,
|
|
Namespace: pod.Namespace,
|
|
OwnerReferences: []metav1.OwnerReference{*metav1.NewControllerRef(pod, schema.GroupVersionKind{Version: "v1", Kind: "Pod"})},
|
|
},
|
|
}
|
|
if p.selectedNode != nil {
|
|
schedulingCtx.Spec.SelectedNode = *p.selectedNode
|
|
}
|
|
if p.potentialNodes != nil {
|
|
schedulingCtx.Spec.PotentialNodes = *p.potentialNodes
|
|
}
|
|
if loggerV := logger.V(6); loggerV.Enabled() {
|
|
// At a high enough log level, dump the entire object.
|
|
loggerV.Info("Creating PodSchedulingContext", "podSchedulingCtx", klog.KObj(schedulingCtx), "podSchedulingCtxObject", klog.Format(schedulingCtx))
|
|
} else {
|
|
logger.V(5).Info("Creating PodSchedulingContext", "podSchedulingCtx", klog.KObj(schedulingCtx))
|
|
}
|
|
_, err = clientset.ResourceV1alpha2().PodSchedulingContexts(schedulingCtx.Namespace).Create(ctx, schedulingCtx, metav1.CreateOptions{})
|
|
}
|
|
if err != nil {
|
|
return err
|
|
}
|
|
p.potentialNodes = nil
|
|
p.selectedNode = nil
|
|
return nil
|
|
}
|
|
|
|
func statusForClaim(schedulingCtx *resourcev1alpha2.PodSchedulingContext, podClaimName string) *resourcev1alpha2.ResourceClaimSchedulingStatus {
|
|
if schedulingCtx == nil {
|
|
return nil
|
|
}
|
|
for _, status := range schedulingCtx.Status.ResourceClaims {
|
|
if status.Name == podClaimName {
|
|
return &status
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// dynamicResources is a plugin that ensures that ResourceClaims are allocated.
|
|
type dynamicResources struct {
|
|
enabled bool
|
|
fh framework.Handle
|
|
clientset kubernetes.Interface
|
|
claimLister resourcev1alpha2listers.ResourceClaimLister
|
|
classLister resourcev1alpha2listers.ResourceClassLister
|
|
podSchedulingContextLister resourcev1alpha2listers.PodSchedulingContextLister
|
|
}
|
|
|
|
// New initializes a new plugin and returns it.
|
|
func New(_ context.Context, plArgs runtime.Object, fh framework.Handle, fts feature.Features) (framework.Plugin, error) {
|
|
if !fts.EnableDynamicResourceAllocation {
|
|
// Disabled, won't do anything.
|
|
return &dynamicResources{}, nil
|
|
}
|
|
|
|
return &dynamicResources{
|
|
enabled: true,
|
|
fh: fh,
|
|
clientset: fh.ClientSet(),
|
|
claimLister: fh.SharedInformerFactory().Resource().V1alpha2().ResourceClaims().Lister(),
|
|
classLister: fh.SharedInformerFactory().Resource().V1alpha2().ResourceClasses().Lister(),
|
|
podSchedulingContextLister: fh.SharedInformerFactory().Resource().V1alpha2().PodSchedulingContexts().Lister(),
|
|
}, nil
|
|
}
|
|
|
|
var _ framework.PreEnqueuePlugin = &dynamicResources{}
|
|
var _ framework.PreFilterPlugin = &dynamicResources{}
|
|
var _ framework.FilterPlugin = &dynamicResources{}
|
|
var _ framework.PostFilterPlugin = &dynamicResources{}
|
|
var _ framework.PreScorePlugin = &dynamicResources{}
|
|
var _ framework.ReservePlugin = &dynamicResources{}
|
|
var _ framework.EnqueueExtensions = &dynamicResources{}
|
|
var _ framework.PreBindPlugin = &dynamicResources{}
|
|
var _ framework.PostBindPlugin = &dynamicResources{}
|
|
|
|
// Name returns name of the plugin. It is used in logs, etc.
|
|
func (pl *dynamicResources) Name() string {
|
|
return Name
|
|
}
|
|
|
|
// EventsToRegister returns the possible events that may make a Pod
|
|
// failed by this plugin schedulable.
|
|
func (pl *dynamicResources) EventsToRegister() []framework.ClusterEventWithHint {
|
|
if !pl.enabled {
|
|
return nil
|
|
}
|
|
events := []framework.ClusterEventWithHint{
|
|
// Allocation is tracked in ResourceClaims, so any changes may make the pods schedulable.
|
|
{Event: framework.ClusterEvent{Resource: framework.ResourceClaim, ActionType: framework.Add | framework.Update}, QueueingHintFn: pl.isSchedulableAfterClaimChange},
|
|
// When a driver has provided additional information, a pod waiting for that information
|
|
// may be schedulable.
|
|
{Event: framework.ClusterEvent{Resource: framework.PodSchedulingContext, ActionType: framework.Add | framework.Update}, QueueingHintFn: pl.isSchedulableAfterPodSchedulingContextChange},
|
|
// A resource might depend on node labels for topology filtering.
|
|
// A new or updated node may make pods schedulable.
|
|
{Event: framework.ClusterEvent{Resource: framework.Node, ActionType: framework.Add | framework.UpdateNodeLabel}},
|
|
// A pod might be waiting for a class to get created or modified.
|
|
{Event: framework.ClusterEvent{Resource: framework.ResourceClass, ActionType: framework.Add | framework.Update}},
|
|
}
|
|
return events
|
|
}
|
|
|
|
// PreEnqueue checks if there are known reasons why a pod currently cannot be
|
|
// scheduled. When this fails, one of the registered events can trigger another
|
|
// attempt.
|
|
func (pl *dynamicResources) PreEnqueue(ctx context.Context, pod *v1.Pod) (status *framework.Status) {
|
|
if err := pl.foreachPodResourceClaim(pod, nil); err != nil {
|
|
return statusUnschedulable(klog.FromContext(ctx), err.Error())
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// isSchedulableAfterClaimChange is invoked for add and update claim events reported by
|
|
// an informer. It checks whether that change made a previously unschedulable
|
|
// pod schedulable. It errs on the side of letting a pod scheduling attempt
|
|
// happen. The delete claim event will not invoke it, so newObj will never be nil.
|
|
func (pl *dynamicResources) isSchedulableAfterClaimChange(logger klog.Logger, pod *v1.Pod, oldObj, newObj interface{}) (framework.QueueingHint, error) {
|
|
originalClaim, modifiedClaim, err := schedutil.As[*resourcev1alpha2.ResourceClaim](oldObj, newObj)
|
|
if err != nil {
|
|
// Shouldn't happen.
|
|
return framework.Queue, fmt.Errorf("unexpected object in isSchedulableAfterClaimChange: %w", err)
|
|
}
|
|
|
|
usesClaim := false
|
|
if err := pl.foreachPodResourceClaim(pod, func(_ string, claim *resourcev1alpha2.ResourceClaim) {
|
|
if claim.UID == modifiedClaim.UID {
|
|
usesClaim = true
|
|
}
|
|
}); err != nil {
|
|
// This is not an unexpected error: we know that
|
|
// foreachPodResourceClaim only returns errors for "not
|
|
// schedulable".
|
|
logger.V(4).Info("pod is not schedulable", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim), "reason", err.Error())
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
if !usesClaim {
|
|
// This was not the claim the pod was waiting for.
|
|
logger.V(6).Info("unrelated claim got modified", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim))
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
if originalClaim == nil {
|
|
logger.V(4).Info("claim for pod got created", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim))
|
|
return framework.Queue, nil
|
|
}
|
|
|
|
// Modifications may or may not be relevant. If the entire
|
|
// status is as before, then something else must have changed
|
|
// and we don't care. What happens in practice is that the
|
|
// resource driver adds the finalizer.
|
|
if apiequality.Semantic.DeepEqual(&originalClaim.Status, &modifiedClaim.Status) {
|
|
if loggerV := logger.V(7); loggerV.Enabled() {
|
|
// Log more information.
|
|
loggerV.Info("claim for pod got modified where the pod doesn't care", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim), "diff", cmp.Diff(originalClaim, modifiedClaim))
|
|
} else {
|
|
logger.V(6).Info("claim for pod got modified where the pod doesn't care", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim))
|
|
}
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
logger.V(4).Info("status of claim for pod got updated", "pod", klog.KObj(pod), "claim", klog.KObj(modifiedClaim))
|
|
return framework.Queue, nil
|
|
}
|
|
|
|
// isSchedulableAfterPodSchedulingContextChange is invoked for all
|
|
// PodSchedulingContext events reported by an informer. It checks whether that
|
|
// change made a previously unschedulable pod schedulable (updated) or a new
|
|
// attempt is needed to re-create the object (deleted). It errs on the side of
|
|
// letting a pod scheduling attempt happen.
|
|
func (pl *dynamicResources) isSchedulableAfterPodSchedulingContextChange(logger klog.Logger, pod *v1.Pod, oldObj, newObj interface{}) (framework.QueueingHint, error) {
|
|
// Deleted? That can happen because we ourselves delete the PodSchedulingContext while
|
|
// working on the pod. This can be ignored.
|
|
if oldObj != nil && newObj == nil {
|
|
logger.V(4).Info("PodSchedulingContext got deleted")
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
oldPodScheduling, newPodScheduling, err := schedutil.As[*resourcev1alpha2.PodSchedulingContext](oldObj, newObj)
|
|
if err != nil {
|
|
// Shouldn't happen.
|
|
return framework.Queue, fmt.Errorf("unexpected object in isSchedulableAfterPodSchedulingContextChange: %w", err)
|
|
}
|
|
podScheduling := newPodScheduling // Never nil because deletes are handled above.
|
|
|
|
if podScheduling.Name != pod.Name || podScheduling.Namespace != pod.Namespace {
|
|
logger.V(7).Info("PodSchedulingContext for unrelated pod got modified", "pod", klog.KObj(pod), "podScheduling", klog.KObj(podScheduling))
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
// If the drivers have provided information about all
|
|
// unallocated claims with delayed allocation, then the next
|
|
// scheduling attempt is able to pick a node, so we let it run
|
|
// immediately if this occurred for the first time, otherwise
|
|
// we allow backoff.
|
|
pendingDelayedClaims := 0
|
|
if err := pl.foreachPodResourceClaim(pod, func(podResourceName string, claim *resourcev1alpha2.ResourceClaim) {
|
|
if claim.Spec.AllocationMode == resourcev1alpha2.AllocationModeWaitForFirstConsumer &&
|
|
claim.Status.Allocation == nil &&
|
|
!podSchedulingHasClaimInfo(podScheduling, podResourceName) {
|
|
pendingDelayedClaims++
|
|
}
|
|
}); err != nil {
|
|
// This is not an unexpected error: we know that
|
|
// foreachPodResourceClaim only returns errors for "not
|
|
// schedulable".
|
|
logger.V(4).Info("pod is not schedulable, keep waiting", "pod", klog.KObj(pod), "reason", err.Error())
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
// Some driver responses missing?
|
|
if pendingDelayedClaims > 0 {
|
|
// We could start a pod scheduling attempt to refresh the
|
|
// potential nodes list. But pod scheduling attempts are
|
|
// expensive and doing them too often causes the pod to enter
|
|
// backoff. Let's wait instead for all drivers to reply.
|
|
if loggerV := logger.V(6); loggerV.Enabled() {
|
|
loggerV.Info("PodSchedulingContext with missing resource claim information, keep waiting", "pod", klog.KObj(pod), "podSchedulingDiff", cmp.Diff(oldPodScheduling, podScheduling))
|
|
} else {
|
|
logger.V(5).Info("PodSchedulingContext with missing resource claim information, keep waiting", "pod", klog.KObj(pod))
|
|
}
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
if oldPodScheduling == nil /* create */ ||
|
|
len(oldPodScheduling.Status.ResourceClaims) < len(podScheduling.Status.ResourceClaims) /* new information and not incomplete (checked above) */ {
|
|
// This definitely is new information for the scheduler. Try again immediately.
|
|
logger.V(4).Info("PodSchedulingContext for pod has all required information, schedule immediately", "pod", klog.KObj(pod))
|
|
return framework.Queue, nil
|
|
}
|
|
|
|
// The other situation where the scheduler needs to do
|
|
// something immediately is when the selected node doesn't
|
|
// work: waiting in the backoff queue only helps eventually
|
|
// resources on the selected node become available again. It's
|
|
// much more likely, in particular when trying to fill up the
|
|
// cluster, that the choice simply didn't work out. The risk
|
|
// here is that in a situation where the cluster really is
|
|
// full, backoff won't be used because the scheduler keeps
|
|
// trying different nodes. This should not happen when it has
|
|
// full knowledge about resource availability (=
|
|
// PodSchedulingContext.*.UnsuitableNodes is complete) but may happen
|
|
// when it doesn't (= PodSchedulingContext.*.UnsuitableNodes had to be
|
|
// truncated).
|
|
//
|
|
// Truncation only happens for very large clusters and then may slow
|
|
// down scheduling, but should not break it completely. This is
|
|
// acceptable while DRA is alpha and will be investigated further
|
|
// before moving DRA to beta.
|
|
if podScheduling.Spec.SelectedNode != "" {
|
|
for _, claimStatus := range podScheduling.Status.ResourceClaims {
|
|
if sliceContains(claimStatus.UnsuitableNodes, podScheduling.Spec.SelectedNode) {
|
|
logger.V(5).Info("PodSchedulingContext has unsuitable selected node, schedule immediately", "pod", klog.KObj(pod), "selectedNode", podScheduling.Spec.SelectedNode, "podResourceName", claimStatus.Name)
|
|
return framework.Queue, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update with only the spec modified?
|
|
if oldPodScheduling != nil &&
|
|
!apiequality.Semantic.DeepEqual(&oldPodScheduling.Spec, &podScheduling.Spec) &&
|
|
apiequality.Semantic.DeepEqual(&oldPodScheduling.Status, &podScheduling.Status) {
|
|
logger.V(5).Info("PodSchedulingContext has only the scheduler spec changes, ignore the update", "pod", klog.KObj(pod))
|
|
return framework.QueueSkip, nil
|
|
}
|
|
|
|
// Once we get here, all changes which are known to require special responses
|
|
// have been checked for. Whatever the change was, we don't know exactly how
|
|
// to handle it and thus return Queue. This will cause the
|
|
// scheduler to treat the event as if no event hint callback had been provided.
|
|
// Developers who want to investigate this can enable a diff at log level 6.
|
|
if loggerV := logger.V(6); loggerV.Enabled() {
|
|
loggerV.Info("PodSchedulingContext for pod with unknown changes, maybe schedule", "pod", klog.KObj(pod), "podSchedulingDiff", cmp.Diff(oldPodScheduling, podScheduling))
|
|
} else {
|
|
logger.V(5).Info("PodSchedulingContext for pod with unknown changes, maybe schedule", "pod", klog.KObj(pod))
|
|
}
|
|
return framework.Queue, nil
|
|
|
|
}
|
|
|
|
func podSchedulingHasClaimInfo(podScheduling *resourcev1alpha2.PodSchedulingContext, podResourceName string) bool {
|
|
for _, claimStatus := range podScheduling.Status.ResourceClaims {
|
|
if claimStatus.Name == podResourceName {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func sliceContains(hay []string, needle string) bool {
|
|
for _, item := range hay {
|
|
if item == needle {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// podResourceClaims returns the ResourceClaims for all pod.Spec.PodResourceClaims.
|
|
func (pl *dynamicResources) podResourceClaims(pod *v1.Pod) ([]*resourcev1alpha2.ResourceClaim, error) {
|
|
claims := make([]*resourcev1alpha2.ResourceClaim, 0, len(pod.Spec.ResourceClaims))
|
|
if err := pl.foreachPodResourceClaim(pod, func(_ string, claim *resourcev1alpha2.ResourceClaim) {
|
|
// We store the pointer as returned by the lister. The
|
|
// assumption is that if a claim gets modified while our code
|
|
// runs, the cache will store a new pointer, not mutate the
|
|
// existing object that we point to here.
|
|
claims = append(claims, claim)
|
|
}); err != nil {
|
|
return nil, err
|
|
}
|
|
return claims, nil
|
|
}
|
|
|
|
// foreachPodResourceClaim checks that each ResourceClaim for the pod exists.
|
|
// It calls an optional handler for those claims that it finds.
|
|
func (pl *dynamicResources) foreachPodResourceClaim(pod *v1.Pod, cb func(podResourceName string, claim *resourcev1alpha2.ResourceClaim)) error {
|
|
for _, resource := range pod.Spec.ResourceClaims {
|
|
claimName, mustCheckOwner, err := resourceclaim.Name(pod, &resource)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
// The claim name might be nil if no underlying resource claim
|
|
// was generated for the referenced claim. There are valid use
|
|
// cases when this might happen, so we simply skip it.
|
|
if claimName == nil {
|
|
continue
|
|
}
|
|
claim, err := pl.claimLister.ResourceClaims(pod.Namespace).Get(*claimName)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if claim.DeletionTimestamp != nil {
|
|
return fmt.Errorf("resourceclaim %q is being deleted", claim.Name)
|
|
}
|
|
|
|
if mustCheckOwner {
|
|
if err := resourceclaim.IsForPod(pod, claim); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if cb != nil {
|
|
cb(resource.Name, claim)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// PreFilter invoked at the prefilter extension point to check if pod has all
|
|
// immediate claims bound. UnschedulableAndUnresolvable is returned if
|
|
// the pod cannot be scheduled at the moment on any node.
|
|
func (pl *dynamicResources) PreFilter(ctx context.Context, state *framework.CycleState, pod *v1.Pod) (*framework.PreFilterResult, *framework.Status) {
|
|
if !pl.enabled {
|
|
return nil, framework.NewStatus(framework.Skip)
|
|
}
|
|
logger := klog.FromContext(ctx)
|
|
|
|
// If the pod does not reference any claim, we don't need to do
|
|
// anything for it. We just initialize an empty state to record that
|
|
// observation for the other functions. This gets updated below
|
|
// if we get that far.
|
|
s := &stateData{}
|
|
state.Write(stateKey, s)
|
|
|
|
claims, err := pl.podResourceClaims(pod)
|
|
if err != nil {
|
|
return nil, statusUnschedulable(logger, err.Error())
|
|
}
|
|
logger.V(5).Info("pod resource claims", "pod", klog.KObj(pod), "resourceclaims", klog.KObjSlice(claims))
|
|
// If the pod does not reference any claim,
|
|
// DynamicResources Filter has nothing to do with the Pod.
|
|
if len(claims) == 0 {
|
|
return nil, framework.NewStatus(framework.Skip)
|
|
}
|
|
|
|
// Fetch s.podSchedulingState.schedulingCtx, it's going to be needed when checking claims.
|
|
if err := s.podSchedulingState.init(ctx, pod, pl.podSchedulingContextLister); err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
|
|
s.informationsForClaim = make([]informationForClaim, len(claims))
|
|
for index, claim := range claims {
|
|
if claim.Spec.AllocationMode == resourcev1alpha2.AllocationModeImmediate &&
|
|
claim.Status.Allocation == nil {
|
|
// This will get resolved by the resource driver.
|
|
return nil, statusUnschedulable(logger, "unallocated immediate resourceclaim", "pod", klog.KObj(pod), "resourceclaim", klog.KObj(claim))
|
|
}
|
|
if claim.Status.DeallocationRequested {
|
|
// This will get resolved by the resource driver.
|
|
return nil, statusUnschedulable(logger, "resourceclaim must be reallocated", "pod", klog.KObj(pod), "resourceclaim", klog.KObj(claim))
|
|
}
|
|
if claim.Status.Allocation != nil &&
|
|
!resourceclaim.CanBeReserved(claim) &&
|
|
!resourceclaim.IsReservedForPod(pod, claim) {
|
|
// Resource is in use. The pod has to wait.
|
|
return nil, statusUnschedulable(logger, "resourceclaim in use", "pod", klog.KObj(pod), "resourceclaim", klog.KObj(claim))
|
|
}
|
|
if claim.Status.Allocation != nil &&
|
|
claim.Status.Allocation.AvailableOnNodes != nil {
|
|
nodeSelector, err := nodeaffinity.NewNodeSelector(claim.Status.Allocation.AvailableOnNodes)
|
|
if err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
s.informationsForClaim[index].availableOnNode = nodeSelector
|
|
}
|
|
if claim.Status.Allocation == nil &&
|
|
claim.Spec.AllocationMode == resourcev1alpha2.AllocationModeWaitForFirstConsumer {
|
|
// The ResourceClass might have a node filter. This is
|
|
// useful for trimming the initial set of potential
|
|
// nodes before we ask the driver(s) for information
|
|
// about the specific pod.
|
|
class, err := pl.classLister.Get(claim.Spec.ResourceClassName)
|
|
if err != nil {
|
|
// If the class cannot be retrieved, allocation cannot proceed.
|
|
if apierrors.IsNotFound(err) {
|
|
// Here we mark the pod as "unschedulable", so it'll sleep in
|
|
// the unscheduleable queue until a ResourceClass event occurs.
|
|
return nil, statusUnschedulable(logger, fmt.Sprintf("resource class %s does not exist", claim.Spec.ResourceClassName))
|
|
}
|
|
// Other error, retry with backoff.
|
|
return nil, statusError(logger, fmt.Errorf("look up resource class: %v", err))
|
|
}
|
|
if class.SuitableNodes != nil {
|
|
selector, err := nodeaffinity.NewNodeSelector(class.SuitableNodes)
|
|
if err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
s.informationsForClaim[index].availableOnNode = selector
|
|
}
|
|
// Now we need information from drivers.
|
|
s.informationsForClaim[index].status = statusForClaim(s.podSchedulingState.schedulingCtx, pod.Spec.ResourceClaims[index].Name)
|
|
}
|
|
}
|
|
|
|
s.claims = claims
|
|
state.Write(stateKey, s)
|
|
return nil, nil
|
|
}
|
|
|
|
// PreFilterExtensions returns prefilter extensions, pod add and remove.
|
|
func (pl *dynamicResources) PreFilterExtensions() framework.PreFilterExtensions {
|
|
return nil
|
|
}
|
|
|
|
func getStateData(cs *framework.CycleState) (*stateData, error) {
|
|
state, err := cs.Read(stateKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
s, ok := state.(*stateData)
|
|
if !ok {
|
|
return nil, errors.New("unable to convert state into stateData")
|
|
}
|
|
return s, nil
|
|
}
|
|
|
|
// Filter invoked at the filter extension point.
|
|
// It evaluates if a pod can fit due to the resources it requests,
|
|
// for both allocated and unallocated claims.
|
|
//
|
|
// For claims that are bound, then it checks that the node affinity is
|
|
// satisfied by the given node.
|
|
//
|
|
// For claims that are unbound, it checks whether the claim might get allocated
|
|
// for the node.
|
|
func (pl *dynamicResources) Filter(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {
|
|
if !pl.enabled {
|
|
return nil
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return statusError(klog.FromContext(ctx), err)
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return nil
|
|
}
|
|
|
|
logger := klog.FromContext(ctx)
|
|
node := nodeInfo.Node()
|
|
|
|
var unavailableClaims []int
|
|
for index, claim := range state.claims {
|
|
logger.V(10).Info("filtering based on resource claims of the pod", "pod", klog.KObj(pod), "node", klog.KObj(node), "resourceclaim", klog.KObj(claim))
|
|
switch {
|
|
case claim.Status.Allocation != nil:
|
|
if nodeSelector := state.informationsForClaim[index].availableOnNode; nodeSelector != nil {
|
|
if !nodeSelector.Match(node) {
|
|
logger.V(5).Info("AvailableOnNodes does not match", "pod", klog.KObj(pod), "node", klog.KObj(node), "resourceclaim", klog.KObj(claim))
|
|
unavailableClaims = append(unavailableClaims, index)
|
|
}
|
|
}
|
|
case claim.Status.DeallocationRequested:
|
|
// We shouldn't get here. PreFilter already checked this.
|
|
return statusUnschedulable(logger, "resourceclaim must be reallocated", "pod", klog.KObj(pod), "node", klog.KObj(node), "resourceclaim", klog.KObj(claim))
|
|
case claim.Spec.AllocationMode == resourcev1alpha2.AllocationModeWaitForFirstConsumer:
|
|
if selector := state.informationsForClaim[index].availableOnNode; selector != nil {
|
|
if matches := selector.Match(node); !matches {
|
|
return statusUnschedulable(logger, "excluded by resource class node filter", "pod", klog.KObj(pod), "node", klog.KObj(node), "resourceclassName", claim.Spec.ResourceClassName)
|
|
}
|
|
}
|
|
if status := state.informationsForClaim[index].status; status != nil {
|
|
for _, unsuitableNode := range status.UnsuitableNodes {
|
|
if node.Name == unsuitableNode {
|
|
return statusUnschedulable(logger, "resourceclaim cannot be allocated for the node (unsuitable)", "pod", klog.KObj(pod), "node", klog.KObj(node), "resourceclaim", klog.KObj(claim), "unsuitablenodes", status.UnsuitableNodes)
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
// This should have been delayed allocation. Immediate
|
|
// allocation was already checked for in PreFilter.
|
|
return statusError(logger, fmt.Errorf("internal error, unexpected allocation mode %v", claim.Spec.AllocationMode))
|
|
}
|
|
}
|
|
|
|
if len(unavailableClaims) > 0 {
|
|
state.mutex.Lock()
|
|
defer state.mutex.Unlock()
|
|
if state.unavailableClaims == nil {
|
|
state.unavailableClaims = sets.New[int]()
|
|
}
|
|
|
|
for _, index := range unavailableClaims {
|
|
claim := state.claims[index]
|
|
// Deallocation makes more sense for claims with
|
|
// delayed allocation. Claims with immediate allocation
|
|
// would just get allocated again for a random node,
|
|
// which is unlikely to help the pod.
|
|
if claim.Spec.AllocationMode == resourcev1alpha2.AllocationModeWaitForFirstConsumer {
|
|
state.unavailableClaims.Insert(index)
|
|
}
|
|
}
|
|
return statusUnschedulable(logger, "resourceclaim not available on the node", "pod", klog.KObj(pod))
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// PostFilter checks whether there are allocated claims that could get
|
|
// deallocated to help get the Pod schedulable. If yes, it picks one and
|
|
// requests its deallocation. This only gets called when filtering found no
|
|
// suitable node.
|
|
func (pl *dynamicResources) PostFilter(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, filteredNodeStatusMap framework.NodeToStatusMap) (*framework.PostFilterResult, *framework.Status) {
|
|
if !pl.enabled {
|
|
return nil, framework.NewStatus(framework.Unschedulable, "plugin disabled")
|
|
}
|
|
logger := klog.FromContext(ctx)
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return nil, framework.NewStatus(framework.Unschedulable, "no new claims to deallocate")
|
|
}
|
|
|
|
// Iterating over a map is random. This is intentional here, we want to
|
|
// pick one claim randomly because there is no better heuristic.
|
|
for index := range state.unavailableClaims {
|
|
claim := state.claims[index]
|
|
if len(claim.Status.ReservedFor) == 0 ||
|
|
len(claim.Status.ReservedFor) == 1 && claim.Status.ReservedFor[0].UID == pod.UID {
|
|
// Before we tell a driver to deallocate a claim, we
|
|
// have to stop telling it to allocate. Otherwise,
|
|
// depending on timing, it will deallocate the claim,
|
|
// see a PodSchedulingContext with selected node, and
|
|
// allocate again for that same node.
|
|
if state.podSchedulingState.schedulingCtx != nil &&
|
|
state.podSchedulingState.schedulingCtx.Spec.SelectedNode != "" {
|
|
state.podSchedulingState.selectedNode = ptr.To("")
|
|
if err := state.podSchedulingState.publish(ctx, pod, pl.clientset); err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
}
|
|
|
|
claim := state.claims[index].DeepCopy()
|
|
claim.Status.DeallocationRequested = true
|
|
claim.Status.ReservedFor = nil
|
|
logger.V(5).Info("Requesting deallocation of ResourceClaim", "pod", klog.KObj(pod), "resourceclaim", klog.KObj(claim))
|
|
if _, err := pl.clientset.ResourceV1alpha2().ResourceClaims(claim.Namespace).UpdateStatus(ctx, claim, metav1.UpdateOptions{}); err != nil {
|
|
return nil, statusError(logger, err)
|
|
}
|
|
return nil, nil
|
|
}
|
|
}
|
|
return nil, framework.NewStatus(framework.Unschedulable, "still not schedulable")
|
|
}
|
|
|
|
// PreScore is passed a list of all nodes that would fit the pod. Not all
|
|
// claims are necessarily allocated yet, so here we can set the SuitableNodes
|
|
// field for those which are pending.
|
|
func (pl *dynamicResources) PreScore(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodes []*framework.NodeInfo) *framework.Status {
|
|
if !pl.enabled {
|
|
return nil
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return statusError(klog.FromContext(ctx), err)
|
|
}
|
|
defer func() {
|
|
state.preScored = true
|
|
}()
|
|
if len(state.claims) == 0 {
|
|
return nil
|
|
}
|
|
|
|
logger := klog.FromContext(ctx)
|
|
pending := false
|
|
for _, claim := range state.claims {
|
|
if claim.Status.Allocation == nil {
|
|
pending = true
|
|
break
|
|
}
|
|
}
|
|
if !pending {
|
|
logger.V(5).Info("no pending claims", "pod", klog.KObj(pod))
|
|
return nil
|
|
}
|
|
|
|
if haveAllPotentialNodes(state.podSchedulingState.schedulingCtx, nodes) {
|
|
logger.V(5).Info("all potential nodes already set", "pod", klog.KObj(pod), "potentialnodes", klog.KObjSlice(nodes))
|
|
return nil
|
|
}
|
|
|
|
// Remember the potential nodes. The object will get created or
|
|
// updated in Reserve. This is both an optimization and
|
|
// covers the case that PreScore doesn't get called when there
|
|
// is only a single node.
|
|
logger.V(5).Info("remembering potential nodes", "pod", klog.KObj(pod), "potentialnodes", klog.KObjSlice(nodes))
|
|
numNodes := len(nodes)
|
|
if numNodes > resourcev1alpha2.PodSchedulingNodeListMaxSize {
|
|
numNodes = resourcev1alpha2.PodSchedulingNodeListMaxSize
|
|
}
|
|
potentialNodes := make([]string, 0, numNodes)
|
|
if numNodes == len(nodes) {
|
|
// Copy all node names.
|
|
for _, node := range nodes {
|
|
potentialNodes = append(potentialNodes, node.Node().Name)
|
|
}
|
|
} else {
|
|
// Select a random subset of the nodes to comply with
|
|
// the PotentialNodes length limit. Randomization is
|
|
// done for us by Go which iterates over map entries
|
|
// randomly.
|
|
nodeNames := map[string]struct{}{}
|
|
for _, node := range nodes {
|
|
nodeNames[node.Node().Name] = struct{}{}
|
|
}
|
|
for nodeName := range nodeNames {
|
|
if len(potentialNodes) >= resourcev1alpha2.PodSchedulingNodeListMaxSize {
|
|
break
|
|
}
|
|
potentialNodes = append(potentialNodes, nodeName)
|
|
}
|
|
}
|
|
sort.Strings(potentialNodes)
|
|
state.podSchedulingState.potentialNodes = &potentialNodes
|
|
return nil
|
|
}
|
|
|
|
func haveAllPotentialNodes(schedulingCtx *resourcev1alpha2.PodSchedulingContext, nodes []*framework.NodeInfo) bool {
|
|
if schedulingCtx == nil {
|
|
return false
|
|
}
|
|
for _, node := range nodes {
|
|
if !haveNode(schedulingCtx.Spec.PotentialNodes, node.Node().Name) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func haveNode(nodeNames []string, nodeName string) bool {
|
|
for _, n := range nodeNames {
|
|
if n == nodeName {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Reserve reserves claims for the pod.
|
|
func (pl *dynamicResources) Reserve(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) *framework.Status {
|
|
if !pl.enabled {
|
|
return nil
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return statusError(klog.FromContext(ctx), err)
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return nil
|
|
}
|
|
|
|
numDelayedAllocationPending := 0
|
|
numClaimsWithStatusInfo := 0
|
|
logger := klog.FromContext(ctx)
|
|
for index, claim := range state.claims {
|
|
if claim.Status.Allocation != nil {
|
|
// Allocated, but perhaps not reserved yet. We checked in PreFilter that
|
|
// the pod could reserve the claim. Instead of reserving here by
|
|
// updating the ResourceClaim status, we assume that reserving
|
|
// will work and only do it for real during binding. If it fails at
|
|
// that time, some other pod was faster and we have to try again.
|
|
continue
|
|
}
|
|
|
|
// Must be delayed allocation.
|
|
numDelayedAllocationPending++
|
|
|
|
// Did the driver provide information that steered node
|
|
// selection towards a node that it can support?
|
|
if statusForClaim(state.podSchedulingState.schedulingCtx, pod.Spec.ResourceClaims[index].Name) != nil {
|
|
numClaimsWithStatusInfo++
|
|
}
|
|
}
|
|
|
|
if numDelayedAllocationPending == 0 {
|
|
// Nothing left to do.
|
|
return nil
|
|
}
|
|
|
|
if !state.preScored {
|
|
// There was only one candidate that passed the Filters and
|
|
// therefore PreScore was not called.
|
|
//
|
|
// We need to ask whether that node is suitable, otherwise the
|
|
// scheduler will pick it forever even when it cannot satisfy
|
|
// the claim.
|
|
if state.podSchedulingState.schedulingCtx == nil ||
|
|
!containsNode(state.podSchedulingState.schedulingCtx.Spec.PotentialNodes, nodeName) {
|
|
potentialNodes := []string{nodeName}
|
|
state.podSchedulingState.potentialNodes = &potentialNodes
|
|
logger.V(5).Info("asking for information about single potential node", "pod", klog.KObj(pod), "node", klog.ObjectRef{Name: nodeName})
|
|
}
|
|
}
|
|
|
|
// When there is only one pending resource, we can go ahead with
|
|
// requesting allocation even when we don't have the information from
|
|
// the driver yet. Otherwise we wait for information before blindly
|
|
// making a decision that might have to be reversed later.
|
|
if numDelayedAllocationPending == 1 || numClaimsWithStatusInfo == numDelayedAllocationPending {
|
|
// TODO: can we increase the chance that the scheduler picks
|
|
// the same node as before when allocation is on-going,
|
|
// assuming that that node still fits the pod? Picking a
|
|
// different node may lead to some claims being allocated for
|
|
// one node and others for another, which then would have to be
|
|
// resolved with deallocation.
|
|
if state.podSchedulingState.schedulingCtx == nil ||
|
|
state.podSchedulingState.schedulingCtx.Spec.SelectedNode != nodeName {
|
|
state.podSchedulingState.selectedNode = &nodeName
|
|
logger.V(5).Info("start allocation", "pod", klog.KObj(pod), "node", klog.ObjectRef{Name: nodeName})
|
|
// The actual publish happens in PreBind or Unreserve.
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// May have been modified earlier in PreScore or above.
|
|
if state.podSchedulingState.isDirty() {
|
|
// The actual publish happens in PreBind or Unreserve.
|
|
return nil
|
|
}
|
|
|
|
// More than one pending claim and not enough information about all of them.
|
|
//
|
|
// TODO: can or should we ensure that schedulingCtx gets aborted while
|
|
// waiting for resources *before* triggering delayed volume
|
|
// provisioning? On the one hand, volume provisioning is currently
|
|
// irreversible, so it better should come last. On the other hand,
|
|
// triggering both in parallel might be faster.
|
|
return statusPending(logger, "waiting for resource driver to provide information", "pod", klog.KObj(pod))
|
|
}
|
|
|
|
func containsNode(hay []string, needle string) bool {
|
|
for _, node := range hay {
|
|
if node == needle {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Unreserve clears the ReservedFor field for all claims.
|
|
// It's idempotent, and does nothing if no state found for the given pod.
|
|
func (pl *dynamicResources) Unreserve(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) {
|
|
if !pl.enabled {
|
|
return
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return
|
|
}
|
|
|
|
logger := klog.FromContext(ctx)
|
|
|
|
// Was publishing delayed? If yes, do it now.
|
|
//
|
|
// The most common scenario is that a different set of potential nodes
|
|
// was identified. This revised set needs to be published to enable DRA
|
|
// drivers to provide better guidance for future scheduling attempts.
|
|
if state.podSchedulingState.isDirty() {
|
|
if err := state.podSchedulingState.publish(ctx, pod, pl.clientset); err != nil {
|
|
logger.Error(err, "publish PodSchedulingContext")
|
|
}
|
|
}
|
|
|
|
for _, claim := range state.claims {
|
|
if claim.Status.Allocation != nil &&
|
|
resourceclaim.IsReservedForPod(pod, claim) {
|
|
// Remove pod from ReservedFor. A strategic-merge-patch is used
|
|
// because that allows removing an individual entry without having
|
|
// the latest slice.
|
|
patch := fmt.Sprintf(`{"metadata": {"uid": %q}, "status": { "reservedFor": [ {"$patch": "delete", "uid": %q} ] }}`,
|
|
claim.UID,
|
|
pod.UID,
|
|
)
|
|
logger.V(5).Info("unreserve", "resourceclaim", klog.KObj(claim), "pod", klog.KObj(pod))
|
|
claim, err := pl.clientset.ResourceV1alpha2().ResourceClaims(claim.Namespace).Patch(ctx, claim.Name, types.StrategicMergePatchType, []byte(patch), metav1.PatchOptions{}, "status")
|
|
if err != nil {
|
|
// We will get here again when pod scheduling is retried.
|
|
logger.Error(err, "unreserve", "resourceclaim", klog.KObj(claim))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// PreBind gets called in a separate goroutine after it has been determined
|
|
// that the pod should get bound to this node. Because Reserve did not actually
|
|
// reserve claims, we need to do it now. If that fails, we return an error and
|
|
// the pod will have to go into the backoff queue. The scheduler will call
|
|
// Unreserve as part of the error handling.
|
|
func (pl *dynamicResources) PreBind(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) *framework.Status {
|
|
if !pl.enabled {
|
|
return nil
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return statusError(klog.FromContext(ctx), err)
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return nil
|
|
}
|
|
|
|
logger := klog.FromContext(ctx)
|
|
|
|
// Was publishing delayed? If yes, do it now and then cause binding to stop.
|
|
if state.podSchedulingState.isDirty() {
|
|
if err := state.podSchedulingState.publish(ctx, pod, pl.clientset); err != nil {
|
|
return statusError(logger, err)
|
|
}
|
|
return statusPending(logger, "waiting for resource driver", "pod", klog.KObj(pod), "node", klog.ObjectRef{Name: nodeName})
|
|
}
|
|
|
|
for index, claim := range state.claims {
|
|
if !resourceclaim.IsReservedForPod(pod, claim) {
|
|
// The claim might be stale, for example because the claim can get shared and some
|
|
// other goroutine has updated it in the meantime. We therefore cannot use
|
|
// SSA here to add the pod because then we would have to send the entire slice
|
|
// or use different field manager strings for each entry.
|
|
//
|
|
// With a strategic-merge-patch, we can simply send one new entry. The apiserver
|
|
// validation will catch if two goroutines try to do that at the same time and
|
|
// the claim cannot be shared.
|
|
patch := fmt.Sprintf(`{"metadata": {"uid": %q}, "status": { "reservedFor": [ {"resource": "pods", "name": %q, "uid": %q} ] }}`,
|
|
claim.UID,
|
|
pod.Name,
|
|
pod.UID,
|
|
)
|
|
logger.V(5).Info("reserve", "pod", klog.KObj(pod), "node", klog.ObjectRef{Name: nodeName}, "resourceclaim", klog.KObj(claim))
|
|
claim, err := pl.clientset.ResourceV1alpha2().ResourceClaims(claim.Namespace).Patch(ctx, claim.Name, types.StrategicMergePatchType, []byte(patch), metav1.PatchOptions{}, "status")
|
|
logger.V(5).Info("reserved", "pod", klog.KObj(pod), "node", klog.ObjectRef{Name: nodeName}, "resourceclaim", klog.Format(claim))
|
|
// TODO: metric for update errors.
|
|
if err != nil {
|
|
return statusError(logger, err)
|
|
}
|
|
state.claims[index] = claim
|
|
}
|
|
}
|
|
// If we get here, we know that reserving the claim for
|
|
// the pod worked and we can proceed with binding it.
|
|
return nil
|
|
}
|
|
|
|
// PostBind is called after a pod is successfully bound to a node. Now we are
|
|
// sure that a PodSchedulingContext object, if it exists, is definitely not going to
|
|
// be needed anymore and can delete it. This is a one-shot thing, there won't
|
|
// be any retries. This is okay because it should usually work and in those
|
|
// cases where it doesn't, the garbage collector will eventually clean up.
|
|
func (pl *dynamicResources) PostBind(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) {
|
|
if !pl.enabled {
|
|
return
|
|
}
|
|
state, err := getStateData(cs)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if len(state.claims) == 0 {
|
|
return
|
|
}
|
|
|
|
// We cannot know for sure whether the PodSchedulingContext object exists. We
|
|
// might have created it in the previous pod schedulingCtx cycle and not
|
|
// have it in our informer cache yet. Let's try to delete, just to be
|
|
// on the safe side.
|
|
logger := klog.FromContext(ctx)
|
|
err = pl.clientset.ResourceV1alpha2().PodSchedulingContexts(pod.Namespace).Delete(ctx, pod.Name, metav1.DeleteOptions{})
|
|
switch {
|
|
case apierrors.IsNotFound(err):
|
|
logger.V(5).Info("no PodSchedulingContext object to delete")
|
|
case err != nil:
|
|
logger.Error(err, "delete PodSchedulingContext")
|
|
default:
|
|
logger.V(5).Info("PodSchedulingContext object deleted")
|
|
}
|
|
}
|
|
|
|
// statusUnschedulable ensures that there is a log message associated with the
|
|
// line where the status originated.
|
|
func statusUnschedulable(logger klog.Logger, reason string, kv ...interface{}) *framework.Status {
|
|
if loggerV := logger.V(5); loggerV.Enabled() {
|
|
helper, loggerV := loggerV.WithCallStackHelper()
|
|
helper()
|
|
kv = append(kv, "reason", reason)
|
|
// nolint: logcheck // warns because it cannot check key/values
|
|
loggerV.Info("pod unschedulable", kv...)
|
|
}
|
|
return framework.NewStatus(framework.UnschedulableAndUnresolvable, reason)
|
|
}
|
|
|
|
// statusPending ensures that there is a log message associated with the
|
|
// line where the status originated.
|
|
func statusPending(logger klog.Logger, reason string, kv ...interface{}) *framework.Status {
|
|
if loggerV := logger.V(5); loggerV.Enabled() {
|
|
helper, loggerV := loggerV.WithCallStackHelper()
|
|
helper()
|
|
kv = append(kv, "reason", reason)
|
|
// nolint: logcheck // warns because it cannot check key/values
|
|
loggerV.Info("pod waiting for external component", kv...)
|
|
}
|
|
|
|
// When we return Pending, we want to block the Pod at the same time.
|
|
return framework.NewStatus(framework.Pending, reason)
|
|
}
|
|
|
|
// statusError ensures that there is a log message associated with the
|
|
// line where the error originated.
|
|
func statusError(logger klog.Logger, err error, kv ...interface{}) *framework.Status {
|
|
if loggerV := logger.V(5); loggerV.Enabled() {
|
|
helper, loggerV := loggerV.WithCallStackHelper()
|
|
helper()
|
|
// nolint: logcheck // warns because it cannot check key/values
|
|
loggerV.Error(err, "dynamic resource plugin failed", kv...)
|
|
}
|
|
return framework.AsStatus(err)
|
|
}
|