kubernetes/pkg/kubelet/cm/cpumanager/topology/topology.go
Alexey Perevalov a047e8aa1b move to cadvisor.MachineInfo
This patch removes GetNUMANodeInfo, cadvisor.MachineInfo will be used
instead of it. GetNUMANodeInfo was introduced due to difference of meaning of
MachineInfo.Topology. On the arm it was NUMA nodes, but on the x86 it
represents sockets (since reading from /proc/cpuinfo). Now it unified
and MachineInfo.Topology represents NUMA node.

Signed-off-by: Alexey Perevalov <alexey.perevalov@huawei.com>
2020-07-24 09:29:41 -04:00

275 lines
6.7 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package topology
import (
"fmt"
cadvisorapi "github.com/google/cadvisor/info/v1"
"k8s.io/klog/v2"
"k8s.io/kubernetes/pkg/kubelet/cm/cpuset"
)
// NUMANodeInfo is a map from NUMANode ID to a list of CPU IDs associated with
// that NUMANode.
type NUMANodeInfo map[int]cpuset.CPUSet
// CPUDetails is a map from CPU ID to Core ID, Socket ID, and NUMA ID.
type CPUDetails map[int]CPUInfo
// CPUTopology contains details of node cpu, where :
// CPU - logical CPU, cadvisor - thread
// Core - physical CPU, cadvisor - Core
// Socket - socket, cadvisor - Node
type CPUTopology struct {
NumCPUs int
NumCores int
NumSockets int
CPUDetails CPUDetails
}
// CPUsPerCore returns the number of logical CPUs are associated with
// each core.
func (topo *CPUTopology) CPUsPerCore() int {
if topo.NumCores == 0 {
return 0
}
return topo.NumCPUs / topo.NumCores
}
// CPUsPerSocket returns the number of logical CPUs are associated with
// each socket.
func (topo *CPUTopology) CPUsPerSocket() int {
if topo.NumSockets == 0 {
return 0
}
return topo.NumCPUs / topo.NumSockets
}
// CPUInfo contains the NUMA, socket, and core IDs associated with a CPU.
type CPUInfo struct {
NUMANodeID int
SocketID int
CoreID int
}
// KeepOnly returns a new CPUDetails object with only the supplied cpus.
func (d CPUDetails) KeepOnly(cpus cpuset.CPUSet) CPUDetails {
result := CPUDetails{}
for cpu, info := range d {
if cpus.Contains(cpu) {
result[cpu] = info
}
}
return result
}
// NUMANodes returns all of the NUMANode IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) NUMANodes() cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, info := range d {
b.Add(info.NUMANodeID)
}
return b.Result()
}
// NUMANodesInSockets returns all of the logical NUMANode IDs associated with
// the given socket IDs in this CPUDetails.
func (d CPUDetails) NUMANodesInSockets(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for _, info := range d {
if info.SocketID == id {
b.Add(info.NUMANodeID)
}
}
}
return b.Result()
}
// Sockets returns all of the socket IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) Sockets() cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, info := range d {
b.Add(info.SocketID)
}
return b.Result()
}
// CPUsInSockets returns all of the logical CPU IDs associated with the given
// socket IDs in this CPUDetails.
func (d CPUDetails) CPUsInSockets(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for cpu, info := range d {
if info.SocketID == id {
b.Add(cpu)
}
}
}
return b.Result()
}
// SocketsInNUMANodes returns all of the logical Socket IDs associated with the
// given NUMANode IDs in this CPUDetails.
func (d CPUDetails) SocketsInNUMANodes(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for _, info := range d {
if info.NUMANodeID == id {
b.Add(info.SocketID)
}
}
}
return b.Result()
}
// Cores returns all of the core IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) Cores() cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, info := range d {
b.Add(info.CoreID)
}
return b.Result()
}
// CoresInNUMANodes returns all of the core IDs associated with the given
// NUMANode IDs in this CPUDetails.
func (d CPUDetails) CoresInNUMANodes(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for _, info := range d {
if info.NUMANodeID == id {
b.Add(info.CoreID)
}
}
}
return b.Result()
}
// CoresInSockets returns all of the core IDs associated with the given socket
// IDs in this CPUDetails.
func (d CPUDetails) CoresInSockets(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for _, info := range d {
if info.SocketID == id {
b.Add(info.CoreID)
}
}
}
return b.Result()
}
// CPUs returns all of the logical CPU IDs in this CPUDetails.
func (d CPUDetails) CPUs() cpuset.CPUSet {
b := cpuset.NewBuilder()
for cpuID := range d {
b.Add(cpuID)
}
return b.Result()
}
// CPUsInNUMANodes returns all of the logical CPU IDs associated with the given
// NUMANode IDs in this CPUDetails.
func (d CPUDetails) CPUsInNUMANodes(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for cpu, info := range d {
if info.NUMANodeID == id {
b.Add(cpu)
}
}
}
return b.Result()
}
// CPUsInCores returns all of the logical CPU IDs associated with the given
// core IDs in this CPUDetails.
func (d CPUDetails) CPUsInCores(ids ...int) cpuset.CPUSet {
b := cpuset.NewBuilder()
for _, id := range ids {
for cpu, info := range d {
if info.CoreID == id {
b.Add(cpu)
}
}
}
return b.Result()
}
// Discover returns CPUTopology based on cadvisor node info
func Discover(machineInfo *cadvisorapi.MachineInfo) (*CPUTopology, error) {
if machineInfo.NumCores == 0 {
return nil, fmt.Errorf("could not detect number of cpus")
}
CPUDetails := CPUDetails{}
numPhysicalCores := 0
for _, node := range machineInfo.Topology {
numPhysicalCores += len(node.Cores)
for _, core := range node.Cores {
if coreID, err := getUniqueCoreID(core.Threads); err == nil {
for _, cpu := range core.Threads {
CPUDetails[cpu] = CPUInfo{
CoreID: coreID,
SocketID: core.SocketID,
NUMANodeID: node.Id,
}
}
} else {
klog.Errorf("could not get unique coreID for socket: %d core %d threads: %v",
core.SocketID, core.Id, core.Threads)
return nil, err
}
}
}
return &CPUTopology{
NumCPUs: machineInfo.NumCores,
NumSockets: len(machineInfo.Topology),
NumCores: numPhysicalCores,
CPUDetails: CPUDetails,
}, nil
}
// getUniqueCoreID computes coreId as the lowest cpuID
// for a given Threads []int slice. This will assure that coreID's are
// platform unique (opposite to what cAdvisor reports - socket unique)
func getUniqueCoreID(threads []int) (coreID int, err error) {
if len(threads) == 0 {
return 0, fmt.Errorf("no cpus provided")
}
if len(threads) != cpuset.NewCPUSet(threads...).Size() {
return 0, fmt.Errorf("cpus provided are not unique")
}
min := threads[0]
for _, thread := range threads[1:] {
if thread < min {
min = thread
}
}
return min, nil
}