kubernetes/vendor/github.com/bazelbuild/buildtools/build/parse.y
2019-11-06 17:42:34 -05:00

1218 lines
26 KiB
Plaintext

// BUILD file parser.
// This is a yacc grammar. Its lexer is in lex.go.
//
// For a good introduction to writing yacc grammars, see
// Kernighan and Pike's book The Unix Programming Environment.
//
// The definitive yacc manual is
// Stephen C. Johnson and Ravi Sethi, "Yacc: A Parser Generator",
// online at http://plan9.bell-labs.com/sys/doc/yacc.pdf.
%{
package build
%}
// The generated parser puts these fields in a struct named yySymType.
// (The name %union is historical, but it is inaccurate for Go.)
%union {
// input tokens
tok string // raw input syntax
str string // decoding of quoted string
pos Position // position of token
triple bool // was string triple quoted?
// partial syntax trees
expr Expr
exprs []Expr
string *StringExpr
strings []*StringExpr
ifstmt *IfStmt
loadarg *struct{from Ident; to Ident}
loadargs []*struct{from Ident; to Ident}
// supporting information
comma Position // position of trailing comma in list, if present
lastStmt Expr // most recent rule, to attach line comments to
}
// These declarations set the type for a $ reference ($$, $1, $2, ...)
// based on the kind of symbol it refers to. Other fields can be referred
// to explicitly, as in $<tok>1.
//
// %token is for input tokens generated by the lexer.
// %type is for higher-level grammar rules defined here.
//
// It is possible to put multiple tokens per line, but it is easier to
// keep ordered using a sparser one-per-line list.
%token <pos> '%'
%token <pos> '('
%token <pos> ')'
%token <pos> '*'
%token <pos> '+'
%token <pos> ','
%token <pos> '-'
%token <pos> '.'
%token <pos> '/'
%token <pos> ':'
%token <pos> '<'
%token <pos> '='
%token <pos> '>'
%token <pos> '['
%token <pos> ']'
%token <pos> '{'
%token <pos> '}'
%token <pos> '|'
%token <pos> '&'
%token <pos> '^'
%token <pos> '~'
// By convention, yacc token names are all caps.
// However, we do not want to export them from the Go package
// we are creating, so prefix them all with underscores.
%token <pos> _AUGM // augmented assignment
%token <pos> _AND // keyword and
%token <pos> _COMMENT // top-level # comment
%token <pos> _EOF // end of file
%token <pos> _EQ // operator ==
%token <pos> _FOR // keyword for
%token <pos> _GE // operator >=
%token <pos> _IDENT // non-keyword identifier
%token <pos> _NUMBER // number
%token <pos> _IF // keyword if
%token <pos> _ELSE // keyword else
%token <pos> _ELIF // keyword elif
%token <pos> _IN // keyword in
%token <pos> _IS // keyword is
%token <pos> _LAMBDA // keyword lambda
%token <pos> _LOAD // keyword load
%token <pos> _LE // operator <=
%token <pos> _NE // operator !=
%token <pos> _STAR_STAR // operator **
%token <pos> _INT_DIV // operator //
%token <pos> _BIT_LSH // bitwise operator <<
%token <pos> _BIT_RSH // bitwise operator >>
%token <pos> _NOT // keyword not
%token <pos> _OR // keyword or
%token <pos> _STRING // quoted string
%token <pos> _DEF // keyword def
%token <pos> _RETURN // keyword return
%token <pos> _PASS // keyword pass
%token <pos> _BREAK // keyword break
%token <pos> _CONTINUE // keyword continue
%token <pos> _INDENT // indentation
%token <pos> _UNINDENT // unindentation
%type <pos> comma_opt
%type <expr> argument
%type <exprs> arguments
%type <exprs> arguments_opt
%type <expr> parameter
%type <exprs> parameters
%type <exprs> parameters_opt
%type <expr> test
%type <expr> test_opt
%type <exprs> tests_opt
%type <expr> primary_expr
%type <expr> expr
%type <expr> expr_opt
%type <exprs> tests
%type <exprs> exprs
%type <exprs> exprs_opt
%type <expr> loop_vars
%type <expr> for_clause
%type <exprs> for_clause_with_if_clauses_opt
%type <exprs> for_clauses_with_if_clauses_opt
%type <expr> ident
%type <expr> number
%type <exprs> stmts
%type <exprs> stmt // a simple_stmt or a for/if/def block
%type <expr> block_stmt // a single for/if/def statement
%type <ifstmt> if_else_block // a complete if-elif-else block
%type <ifstmt> if_chain // an elif-elif-else chain
%type <pos> elif // `elif` or `else if` token(s)
%type <exprs> simple_stmt // One or many small_stmts on one line, e.g. 'a = f(x); return str(a)'
%type <expr> small_stmt // A single statement, e.g. 'a = f(x)'
%type <exprs> small_stmts_continuation // A sequence of `';' small_stmt`
%type <expr> keyvalue
%type <exprs> keyvalues
%type <exprs> keyvalues_no_comma
%type <string> string
%type <strings> strings
%type <exprs> suite
%type <exprs> comments
%type <loadarg> load_argument
%type <loadargs> load_arguments
// Operator precedence.
// Operators listed lower in the table bind tighter.
// We tag rules with this fake, low precedence to indicate
// that when the rule is involved in a shift/reduce
// conflict, we prefer that the parser shift (try for a longer parse).
// Shifting is the default resolution anyway, but stating it explicitly
// silences yacc's warning for that specific case.
%left ShiftInstead
%left '\n'
%left _ASSERT
// '=' and augmented assignments have the lowest precedence
// e.g. "x = a if c > 0 else 'bar'"
// followed by
// 'if' and 'else' which have lower precedence than all other operators.
// e.g. "a, b if c > 0 else 'foo'" is either a tuple of (a,b) or 'foo'
// and not a tuple of "(a, (b if ... ))"
%left '=' _AUGM
%left _IF _ELSE _ELIF
%left ','
%left ':'
%left _IS
%left _OR
%left _AND
%left '<' '>' _EQ _NE _LE _GE _NOT _IN
%left '|'
%left '^'
%left '&'
%left _BIT_LSH _BIT_RSH
%left '+' '-'
%left '*' '/' '%' _INT_DIV
%left '.' '[' '('
%right _UNARY
%left _STRING
%%
// Grammar rules.
//
// A note on names: if foo is a rule, then foos is a sequence of foos
// (with interleaved commas or other syntax as appropriate)
// and foo_opt is an optional foo.
file:
stmts _EOF
{
yylex.(*input).file = &File{Stmt: $1}
return 0
}
suite:
'\n' comments _INDENT stmts _UNINDENT
{
statements := $4
if $2 != nil {
// $2 can only contain *CommentBlock objects, each of them contains a non-empty After slice
cb := $2[len($2)-1].(*CommentBlock)
// $4 can't be empty and can't start with a comment
stmt := $4[0]
start, _ := stmt.Span()
if start.Line - cb.After[len(cb.After)-1].Start.Line == 1 {
// The first statement of $4 starts on the next line after the last comment of $2.
// Attach the last comment to the first statement
stmt.Comment().Before = cb.After
$2 = $2[:len($2)-1]
}
statements = append($2, $4...)
}
$$ = statements
$<lastStmt>$ = $<lastStmt>4
}
| simple_stmt linebreaks_opt
{
$$ = $1
}
linebreaks_opt:
| linebreaks_opt '\n'
comments:
{
$$ = nil
$<lastStmt>$ = nil
}
| comments _COMMENT '\n'
{
$$ = $1
$<lastStmt>$ = $<lastStmt>1
if $<lastStmt>$ == nil {
cb := &CommentBlock{Start: $2}
$$ = append($$, cb)
$<lastStmt>$ = cb
}
com := $<lastStmt>$.Comment()
com.After = append(com.After, Comment{Start: $2, Token: $<tok>2})
}
| comments '\n'
{
$$ = $1
$<lastStmt>$ = nil
}
stmts:
{
$$ = nil
$<lastStmt>$ = nil
}
| stmts stmt
{
// If this statement follows a comment block,
// attach the comments to the statement.
if cb, ok := $<lastStmt>1.(*CommentBlock); ok {
$$ = append($1[:len($1)-1], $2...)
$2[0].Comment().Before = cb.After
$<lastStmt>$ = $<lastStmt>2
break
}
// Otherwise add to list.
$$ = append($1, $2...)
$<lastStmt>$ = $<lastStmt>2
// Consider this input:
//
// foo()
// # bar
// baz()
//
// If we've just parsed baz(), the # bar is attached to
// foo() as an After comment. Make it a Before comment
// for baz() instead.
if x := $<lastStmt>1; x != nil {
com := x.Comment()
// stmt is never empty
$2[0].Comment().Before = com.After
com.After = nil
}
}
| stmts '\n'
{
// Blank line; sever last rule from future comments.
$$ = $1
$<lastStmt>$ = nil
}
| stmts _COMMENT '\n'
{
$$ = $1
$<lastStmt>$ = $<lastStmt>1
if $<lastStmt>$ == nil {
cb := &CommentBlock{Start: $2}
$$ = append($$, cb)
$<lastStmt>$ = cb
}
com := $<lastStmt>$.Comment()
com.After = append(com.After, Comment{Start: $2, Token: $<tok>2})
}
stmt:
simple_stmt
{
$$ = $1
$<lastStmt>$ = $1[len($1)-1]
}
| block_stmt
{
$$ = []Expr{$1}
$<lastStmt>$ = $1
if cbs := extractTrailingComments($1); len(cbs) > 0 {
$$ = append($$, cbs...)
$<lastStmt>$ = cbs[len(cbs)-1]
if $<lastStmt>1 == nil {
$<lastStmt>$ = nil
}
}
}
block_stmt:
_DEF _IDENT '(' parameters_opt ')' ':' suite
{
$$ = &DefStmt{
Function: Function{
StartPos: $1,
Params: $4,
Body: $7,
},
Name: $<tok>2,
ColonPos: $6,
ForceCompact: forceCompact($3, $4, $5),
ForceMultiLine: forceMultiLine($3, $4, $5),
}
$<lastStmt>$ = $<lastStmt>7
}
| _FOR loop_vars _IN expr ':' suite
{
$$ = &ForStmt{
For: $1,
Vars: $2,
X: $4,
Body: $6,
}
$<lastStmt>$ = $<lastStmt>6
}
| if_else_block
{
$$ = $1
$<lastStmt>$ = $<lastStmt>1
}
// One or several if-elif-elif statements
if_chain:
_IF expr ':' suite
{
$$ = &IfStmt{
If: $1,
Cond: $2,
True: $4,
}
$<lastStmt>$ = $<lastStmt>4
}
| if_chain elif expr ':' suite
{
$$ = $1
inner := $1
for len(inner.False) == 1 {
inner = inner.False[0].(*IfStmt)
}
inner.ElsePos = End{Pos: $2}
inner.False = []Expr{
&IfStmt{
If: $2,
Cond: $3,
True: $5,
},
}
$<lastStmt>$ = $<lastStmt>5
}
// A complete if-elif-elif-else chain
if_else_block:
if_chain
| if_chain _ELSE ':' suite
{
$$ = $1
inner := $1
for len(inner.False) == 1 {
inner = inner.False[0].(*IfStmt)
}
inner.ElsePos = End{Pos: $2}
inner.False = $4
$<lastStmt>$ = $<lastStmt>4
}
elif:
_ELSE _IF
| _ELIF
simple_stmt:
small_stmt small_stmts_continuation semi_opt '\n'
{
$$ = append([]Expr{$1}, $2...)
$<lastStmt>$ = $$[len($$)-1]
}
small_stmts_continuation:
{
$$ = []Expr{}
}
| small_stmts_continuation ';' small_stmt
{
$$ = append($1, $3)
}
small_stmt:
expr %prec ShiftInstead
| _RETURN expr
{
$$ = &ReturnStmt{
Return: $1,
Result: $2,
}
}
| _RETURN
{
$$ = &ReturnStmt{
Return: $1,
}
}
| expr '=' expr { $$ = binary($1, $2, $<tok>2, $3) }
| expr _AUGM expr { $$ = binary($1, $2, $<tok>2, $3) }
| _PASS
{
$$ = &BranchStmt{
Token: $<tok>1,
TokenPos: $1,
}
}
| _BREAK
{
$$ = &BranchStmt{
Token: $<tok>1,
TokenPos: $1,
}
}
| _CONTINUE
{
$$ = &BranchStmt{
Token: $<tok>1,
TokenPos: $1,
}
}
semi_opt:
| ';'
primary_expr:
ident
| number
| primary_expr '.' _IDENT
{
$$ = &DotExpr{
X: $1,
Dot: $2,
NamePos: $3,
Name: $<tok>3,
}
}
| _LOAD '(' string ',' load_arguments comma_opt ')'
{
load := &LoadStmt{
Load: $1,
Module: $3,
Rparen: End{Pos: $7},
ForceCompact: $1.Line == $7.Line,
}
for _, arg := range $5 {
load.From = append(load.From, &arg.from)
load.To = append(load.To, &arg.to)
}
$$ = load
}
| primary_expr '(' arguments_opt ')'
{
$$ = &CallExpr{
X: $1,
ListStart: $2,
List: $3,
End: End{Pos: $4},
ForceCompact: forceCompact($2, $3, $4),
ForceMultiLine: forceMultiLine($2, $3, $4),
}
}
| primary_expr '[' expr ']'
{
$$ = &IndexExpr{
X: $1,
IndexStart: $2,
Y: $3,
End: $4,
}
}
| primary_expr '[' expr_opt ':' test_opt ']'
{
$$ = &SliceExpr{
X: $1,
SliceStart: $2,
From: $3,
FirstColon: $4,
To: $5,
End: $6,
}
}
| primary_expr '[' expr_opt ':' test_opt ':' test_opt ']'
{
$$ = &SliceExpr{
X: $1,
SliceStart: $2,
From: $3,
FirstColon: $4,
To: $5,
SecondColon: $6,
Step: $7,
End: $8,
}
}
| strings %prec ShiftInstead
{
if len($1) == 1 {
$$ = $1[0]
break
}
$$ = $1[0]
for _, x := range $1[1:] {
_, end := $$.Span()
$$ = binary($$, end, "+", x)
}
}
| '[' tests_opt ']'
{
$$ = &ListExpr{
Start: $1,
List: $2,
End: End{Pos: $3},
ForceMultiLine: forceMultiLine($1, $2, $3),
}
}
| '[' test for_clauses_with_if_clauses_opt ']'
{
$$ = &Comprehension{
Curly: false,
Lbrack: $1,
Body: $2,
Clauses: $3,
End: End{Pos: $4},
ForceMultiLine: forceMultiLineComprehension($1, $2, $3, $4),
}
}
| '{' keyvalue for_clauses_with_if_clauses_opt '}'
{
$$ = &Comprehension{
Curly: true,
Lbrack: $1,
Body: $2,
Clauses: $3,
End: End{Pos: $4},
ForceMultiLine: forceMultiLineComprehension($1, $2, $3, $4),
}
}
| '{' keyvalues '}'
{
$$ = &DictExpr{
Start: $1,
List: $2,
End: End{Pos: $3},
ForceMultiLine: forceMultiLine($1, $2, $3),
}
}
| '{' tests comma_opt '}' // TODO: remove, not supported
{
$$ = &SetExpr{
Start: $1,
List: $2,
End: End{Pos: $4},
ForceMultiLine: forceMultiLine($1, $2, $4),
}
}
| '(' tests_opt ')'
{
if len($2) == 1 && $<comma>2.Line == 0 {
// Just a parenthesized expression, not a tuple.
$$ = &ParenExpr{
Start: $1,
X: $2[0],
End: End{Pos: $3},
ForceMultiLine: forceMultiLine($1, $2, $3),
}
} else {
$$ = &TupleExpr{
Start: $1,
List: $2,
End: End{Pos: $3},
ForceCompact: forceCompact($1, $2, $3),
ForceMultiLine: forceMultiLine($1, $2, $3),
}
}
}
arguments_opt:
{
$$ = nil
}
| arguments comma_opt
{
$$ = $1
}
arguments:
argument
{
$$ = []Expr{$1}
}
| arguments ',' argument
{
$$ = append($1, $3)
}
argument:
test
| ident '=' test
{
$$ = binary($1, $2, $<tok>2, $3)
}
| '*' test
{
$$ = unary($1, $<tok>1, $2)
}
| _STAR_STAR test
{
$$ = unary($1, $<tok>1, $2)
}
load_arguments:
load_argument {
$$ = []*struct{from Ident; to Ident}{$1}
}
| load_arguments ',' load_argument
{
$1 = append($1, $3)
$$ = $1
}
load_argument:
string {
start := $1.Start.add("'")
if $1.TripleQuote {
start = start.add("''")
}
$$ = &struct{from Ident; to Ident}{
from: Ident{
Name: $1.Value,
NamePos: start,
},
to: Ident{
Name: $1.Value,
NamePos: start,
},
}
}
| ident '=' string
{
start := $3.Start.add("'")
if $3.TripleQuote {
start = start.add("''")
}
$$ = &struct{from Ident; to Ident}{
from: Ident{
Name: $3.Value,
NamePos: start,
},
to: *$1.(*Ident),
}
}
parameters_opt:
{
$$ = nil
}
| parameters comma_opt
{
$$ = $1
}
parameters:
parameter
{
$$ = []Expr{$1}
}
| parameters ',' parameter
{
$$ = append($1, $3)
}
parameter:
ident
| ident '=' test
{
$$ = binary($1, $2, $<tok>2, $3)
}
| '*' ident
{
$$ = unary($1, $<tok>1, $2)
}
| '*'
{
$$ = unary($1, $<tok>1, nil)
}
| _STAR_STAR ident
{
$$ = unary($1, $<tok>1, $2)
}
expr:
test
| expr ',' test
{
tuple, ok := $1.(*TupleExpr)
if !ok || !tuple.NoBrackets {
tuple = &TupleExpr{
List: []Expr{$1},
NoBrackets: true,
ForceCompact: true,
ForceMultiLine: false,
}
}
tuple.List = append(tuple.List, $3)
$$ = tuple
}
expr_opt:
{
$$ = nil
}
| expr
exprs:
expr
{
$$ = []Expr{$1}
}
| exprs ',' expr
{
$$ = append($1, $3)
}
exprs_opt:
{
$$ = nil
}
| exprs comma_opt
{
$$ = $1
}
test:
primary_expr
| _LAMBDA exprs_opt ':' expr // TODO: remove, not supported
{
$$ = &LambdaExpr{
Function: Function{
StartPos: $1,
Params: $2,
Body: []Expr{$4},
},
}
}
| _NOT test %prec _UNARY { $$ = unary($1, $<tok>1, $2) }
| '-' test %prec _UNARY { $$ = unary($1, $<tok>1, $2) }
| '+' test %prec _UNARY { $$ = unary($1, $<tok>1, $2) }
| '~' test %prec _UNARY { $$ = unary($1, $<tok>1, $2) }
| test '*' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '%' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '/' test { $$ = binary($1, $2, $<tok>2, $3) }
| test _INT_DIV test { $$ = binary($1, $2, $<tok>2, $3) }
| test '+' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '-' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '<' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '>' test { $$ = binary($1, $2, $<tok>2, $3) }
| test _EQ test { $$ = binary($1, $2, $<tok>2, $3) }
| test _LE test { $$ = binary($1, $2, $<tok>2, $3) }
| test _NE test { $$ = binary($1, $2, $<tok>2, $3) }
| test _GE test { $$ = binary($1, $2, $<tok>2, $3) }
| test _IN test { $$ = binary($1, $2, $<tok>2, $3) }
| test _NOT _IN test { $$ = binary($1, $2, "not in", $4) }
| test _OR test { $$ = binary($1, $2, $<tok>2, $3) }
| test _AND test { $$ = binary($1, $2, $<tok>2, $3) }
| test '|' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '&' test { $$ = binary($1, $2, $<tok>2, $3) }
| test '^' test { $$ = binary($1, $2, $<tok>2, $3) }
| test _BIT_LSH test { $$ = binary($1, $2, $<tok>2, $3) }
| test _BIT_RSH test { $$ = binary($1, $2, $<tok>2, $3) }
| test _IS test
{
if b, ok := $3.(*UnaryExpr); ok && b.Op == "not" {
$$ = binary($1, $2, "is not", b.X)
} else {
$$ = binary($1, $2, $<tok>2, $3)
}
}
| test _IF test _ELSE test
{
$$ = &ConditionalExpr{
Then: $1,
IfStart: $2,
Test: $3,
ElseStart: $4,
Else: $5,
}
}
tests:
test
{
$$ = []Expr{$1}
}
| tests ',' test
{
$$ = append($1, $3)
}
test_opt:
{
$$ = nil
}
| test
tests_opt:
{
$$, $<comma>$ = nil, Position{}
}
| tests comma_opt
{
$$, $<comma>$ = $1, $2
}
// comma_opt is an optional comma. If the comma is present,
// the rule's value is the position of the comma. Otherwise
// the rule's value is the zero position. Tracking this
// lets us distinguish (x) and (x,).
comma_opt:
{
$$ = Position{}
}
| ','
keyvalue:
test ':' test {
$$ = &KeyValueExpr{
Key: $1,
Colon: $2,
Value: $3,
}
}
keyvalues_no_comma:
keyvalue
{
$$ = []Expr{$1}
}
| keyvalues_no_comma ',' keyvalue
{
$$ = append($1, $3)
}
keyvalues:
{
$$ = nil
}
| keyvalues_no_comma
{
$$ = $1
}
| keyvalues_no_comma ','
{
$$ = $1
}
loop_vars:
primary_expr
| loop_vars ',' primary_expr
{
tuple, ok := $1.(*TupleExpr)
if !ok || !tuple.NoBrackets {
tuple = &TupleExpr{
List: []Expr{$1},
NoBrackets: true,
ForceCompact: true,
ForceMultiLine: false,
}
}
tuple.List = append(tuple.List, $3)
$$ = tuple
}
string:
_STRING
{
$$ = &StringExpr{
Start: $1,
Value: $<str>1,
TripleQuote: $<triple>1,
End: $1.add($<tok>1),
Token: $<tok>1,
}
}
strings:
string
{
$$ = []*StringExpr{$1}
}
| strings string
{
$$ = append($1, $2)
}
ident:
_IDENT
{
$$ = &Ident{NamePos: $1, Name: $<tok>1}
}
number:
_NUMBER
{
$$ = &LiteralExpr{Start: $1, Token: $<tok>1}
}
for_clause:
_FOR loop_vars _IN test
{
$$ = &ForClause{
For: $1,
Vars: $2,
In: $3,
X: $4,
}
}
for_clause_with_if_clauses_opt:
for_clause {
$$ = []Expr{$1}
}
| for_clause_with_if_clauses_opt _IF test {
$$ = append($1, &IfClause{
If: $2,
Cond: $3,
})
}
for_clauses_with_if_clauses_opt:
for_clause_with_if_clauses_opt
{
$$ = $1
}
| for_clauses_with_if_clauses_opt for_clause_with_if_clauses_opt {
$$ = append($1, $2...)
}
%%
// Go helper code.
// unary returns a unary expression with the given
// position, operator, and subexpression.
func unary(pos Position, op string, x Expr) Expr {
return &UnaryExpr{
OpStart: pos,
Op: op,
X: x,
}
}
// binary returns a binary expression with the given
// operands, position, and operator.
func binary(x Expr, pos Position, op string, y Expr) Expr {
_, xend := x.Span()
ystart, _ := y.Span()
switch op {
case "=", "+=", "-=", "*=", "/=", "//=", "%=", "|=":
return &AssignExpr{
LHS: x,
OpPos: pos,
Op: op,
LineBreak: xend.Line < ystart.Line,
RHS: y,
}
}
return &BinaryExpr{
X: x,
OpStart: pos,
Op: op,
LineBreak: xend.Line < ystart.Line,
Y: y,
}
}
// isSimpleExpression returns whether an expression is simple and allowed to exist in
// compact forms of sequences.
// The formal criteria are the following: an expression is considered simple if it's
// a literal (variable, string or a number), a literal with a unary operator or an empty sequence.
func isSimpleExpression(expr *Expr) bool {
switch x := (*expr).(type) {
case *LiteralExpr, *StringExpr, *Ident:
return true
case *UnaryExpr:
_, literal := x.X.(*LiteralExpr)
_, ident := x.X.(*Ident)
return literal || ident
case *ListExpr:
return len(x.List) == 0
case *TupleExpr:
return len(x.List) == 0
case *DictExpr:
return len(x.List) == 0
case *SetExpr:
return len(x.List) == 0
default:
return false
}
}
// forceCompact returns the setting for the ForceCompact field for a call or tuple.
//
// NOTE 1: The field is called ForceCompact, not ForceSingleLine,
// because it only affects the formatting associated with the call or tuple syntax,
// not the formatting of the arguments. For example:
//
// call([
// 1,
// 2,
// 3,
// ])
//
// is still a compact call even though it runs on multiple lines.
//
// In contrast the multiline form puts a linebreak after the (.
//
// call(
// [
// 1,
// 2,
// 3,
// ],
// )
//
// NOTE 2: Because of NOTE 1, we cannot use start and end on the
// same line as a signal for compact mode: the formatting of an
// embedded list might move the end to a different line, which would
// then look different on rereading and cause buildifier not to be
// idempotent. Instead, we have to look at properties guaranteed
// to be preserved by the reformatting, namely that the opening
// paren and the first expression are on the same line and that
// each subsequent expression begins on the same line as the last
// one ended (no line breaks after comma).
func forceCompact(start Position, list []Expr, end Position) bool {
if len(list) <= 1 {
// The call or tuple will probably be compact anyway; don't force it.
return false
}
// If there are any named arguments or non-string, non-literal
// arguments, cannot force compact mode.
line := start.Line
for _, x := range list {
start, end := x.Span()
if start.Line != line {
return false
}
line = end.Line
if !isSimpleExpression(&x) {
return false
}
}
return end.Line == line
}
// forceMultiLine returns the setting for the ForceMultiLine field.
func forceMultiLine(start Position, list []Expr, end Position) bool {
if len(list) > 1 {
// The call will be multiline anyway, because it has multiple elements. Don't force it.
return false
}
if len(list) == 0 {
// Empty list: use position of brackets.
return start.Line != end.Line
}
// Single-element list.
// Check whether opening bracket is on different line than beginning of
// element, or closing bracket is on different line than end of element.
elemStart, elemEnd := list[0].Span()
return start.Line != elemStart.Line || end.Line != elemEnd.Line
}
// forceMultiLineComprehension returns the setting for the ForceMultiLine field for a comprehension.
func forceMultiLineComprehension(start Position, expr Expr, clauses []Expr, end Position) bool {
// Return true if there's at least one line break between start, expr, each clause, and end
exprStart, exprEnd := expr.Span()
if start.Line != exprStart.Line {
return true
}
previousEnd := exprEnd
for _, clause := range clauses {
clauseStart, clauseEnd := clause.Span()
if previousEnd.Line != clauseStart.Line {
return true
}
previousEnd = clauseEnd
}
return previousEnd.Line != end.Line
}
// extractTrailingComments extracts trailing comments of an indented block starting with the first
// comment line with indentation less than the block indentation.
// The comments can either belong to CommentBlock statements or to the last non-comment statement
// as After-comments.
func extractTrailingComments(stmt Expr) []Expr {
body := getLastBody(stmt)
var comments []Expr
if body != nil && len(*body) > 0 {
// Get the current indentation level
start, _ := (*body)[0].Span()
indentation := start.LineRune
// Find the last non-comment statement
lastNonCommentIndex := -1
for i, stmt := range *body {
if _, ok := stmt.(*CommentBlock); !ok {
lastNonCommentIndex = i
}
}
if lastNonCommentIndex == -1 {
return comments
}
// Iterate over the trailing comments, find the first comment line that's not indented enough,
// dedent it and all the following comments.
for i := lastNonCommentIndex; i < len(*body); i++ {
stmt := (*body)[i]
if comment := extractDedentedComment(stmt, indentation); comment != nil {
// This comment and all the following CommentBlock statements are to be extracted.
comments = append(comments, comment)
comments = append(comments, (*body)[i+1:]...)
*body = (*body)[:i+1]
// If the current statement is a CommentBlock statement without any comment lines
// it should be removed too.
if i > lastNonCommentIndex && len(stmt.Comment().After) == 0 {
*body = (*body)[:i]
}
}
}
}
return comments
}
// extractDedentedComment extract the first comment line from `stmt` which indentation is smaller
// than `indentation`, and all following comment lines, and returns them in a newly created
// CommentBlock statement.
func extractDedentedComment(stmt Expr, indentation int) Expr {
for i, line := range stmt.Comment().After {
// line.Start.LineRune == 0 can't exist in parsed files, it indicates that the comment line
// has been added by an AST modification. Don't take such lines into account.
if line.Start.LineRune > 0 && line.Start.LineRune < indentation {
// This and all the following lines should be dedented
cb := &CommentBlock{
Start: line.Start,
Comments: Comments{After: stmt.Comment().After[i:]},
}
stmt.Comment().After = stmt.Comment().After[:i]
return cb
}
}
return nil
}
// getLastBody returns the last body of a block statement (the only body for For- and DefStmt
// objects, the last in a if-elif-else chain
func getLastBody(stmt Expr) *[]Expr {
switch block := stmt.(type) {
case *DefStmt:
return &block.Body
case *ForStmt:
return &block.Body
case *IfStmt:
if len(block.False) == 0 {
return &block.True
} else if len(block.False) == 1 {
if next, ok := block.False[0].(*IfStmt); ok {
// Recursively find the last block of the chain
return getLastBody(next)
}
}
return &block.False
}
return nil
}