
perfdash expects all data items to have the same set of labels. It then renders drop-down buttons for each label with all values found for each label. Previously, data items that didn't have a label didn't match any label filter in perfdash and couldn't get selected because perfdash doesn't have "unset" in it's drop-down menus. To avoid that, scheduler-perf now collects all labels and then adds missing labels with "not applicable" as value: { "data": { "Average": 939.7071223010004, "Perc50": 927.7987421383649, "Perc90": 2166.153846153846, "Perc95": 2363.076923076923, "Perc99": 2520.6153846153848 }, "unit": "ms", "labels": { "Metric": "scheduler_pod_scheduling_duration_seconds", "Name": "SchedulingBasic/5000Nodes/namespace-2", "extension_point": "not applicable", "result": "not applicable" } }, ... { "data": { "Average": 1.1172570650000004, "Perc50": 1.1418367346938776, "Perc90": 1.5500000000000003, "Perc95": 1.6410256410256412, "Perc99": 3.7333333333333334 }, "unit": "ms", "labels": { "Metric": "scheduler_framework_extension_point_duration_seconds", "Name": "SchedulingBasic/5000Nodes/namespace-2", "extension_point": "Score", "result": "not applicable" } },
454 lines
15 KiB
Go
454 lines
15 KiB
Go
/*
|
|
Copyright 2015 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package benchmark
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"flag"
|
|
"fmt"
|
|
"math"
|
|
"os"
|
|
"path"
|
|
"sort"
|
|
"testing"
|
|
"time"
|
|
|
|
v1 "k8s.io/api/core/v1"
|
|
resourcev1alpha2 "k8s.io/api/resource/v1alpha2"
|
|
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
|
|
"k8s.io/apimachinery/pkg/labels"
|
|
"k8s.io/apimachinery/pkg/util/sets"
|
|
"k8s.io/client-go/dynamic"
|
|
"k8s.io/client-go/informers"
|
|
coreinformers "k8s.io/client-go/informers/core/v1"
|
|
clientset "k8s.io/client-go/kubernetes"
|
|
restclient "k8s.io/client-go/rest"
|
|
cliflag "k8s.io/component-base/cli/flag"
|
|
"k8s.io/component-base/featuregate"
|
|
"k8s.io/component-base/metrics/legacyregistry"
|
|
"k8s.io/component-base/metrics/testutil"
|
|
"k8s.io/klog/v2"
|
|
kubeschedulerconfigv1 "k8s.io/kube-scheduler/config/v1"
|
|
"k8s.io/kubernetes/cmd/kube-apiserver/app/options"
|
|
"k8s.io/kubernetes/pkg/features"
|
|
"k8s.io/kubernetes/pkg/scheduler/apis/config"
|
|
kubeschedulerscheme "k8s.io/kubernetes/pkg/scheduler/apis/config/scheme"
|
|
"k8s.io/kubernetes/test/integration/framework"
|
|
"k8s.io/kubernetes/test/integration/util"
|
|
testutils "k8s.io/kubernetes/test/utils"
|
|
)
|
|
|
|
const (
|
|
dateFormat = "2006-01-02T15:04:05Z"
|
|
testNamespace = "sched-test"
|
|
setupNamespace = "sched-setup"
|
|
throughputSampleInterval = time.Second
|
|
)
|
|
|
|
var dataItemsDir = flag.String("data-items-dir", "", "destination directory for storing generated data items for perf dashboard")
|
|
|
|
func newDefaultComponentConfig() (*config.KubeSchedulerConfiguration, error) {
|
|
gvk := kubeschedulerconfigv1.SchemeGroupVersion.WithKind("KubeSchedulerConfiguration")
|
|
cfg := config.KubeSchedulerConfiguration{}
|
|
_, _, err := kubeschedulerscheme.Codecs.UniversalDecoder().Decode(nil, &gvk, &cfg)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &cfg, nil
|
|
}
|
|
|
|
// mustSetupCluster starts the following components:
|
|
// - k8s api server
|
|
// - scheduler
|
|
// - some of the kube-controller-manager controllers
|
|
//
|
|
// It returns regular and dynamic clients, and destroyFunc which should be used to
|
|
// remove resources after finished.
|
|
// Notes on rate limiter:
|
|
// - client rate limit is set to 5000.
|
|
func mustSetupCluster(ctx context.Context, tb testing.TB, config *config.KubeSchedulerConfiguration, enabledFeatures map[featuregate.Feature]bool) (informers.SharedInformerFactory, clientset.Interface, dynamic.Interface) {
|
|
// Run API server with minimimal logging by default. Can be raised with -v.
|
|
framework.MinVerbosity = 0
|
|
|
|
_, kubeConfig, tearDownFn := framework.StartTestServer(ctx, tb, framework.TestServerSetup{
|
|
ModifyServerRunOptions: func(opts *options.ServerRunOptions) {
|
|
// Disable ServiceAccount admission plugin as we don't have serviceaccount controller running.
|
|
opts.Admission.GenericAdmission.DisablePlugins = []string{"ServiceAccount", "TaintNodesByCondition", "Priority"}
|
|
|
|
// Enable DRA API group.
|
|
if enabledFeatures[features.DynamicResourceAllocation] {
|
|
opts.APIEnablement.RuntimeConfig = cliflag.ConfigurationMap{
|
|
resourcev1alpha2.SchemeGroupVersion.String(): "true",
|
|
}
|
|
}
|
|
},
|
|
})
|
|
tb.Cleanup(tearDownFn)
|
|
|
|
// Cleanup will be in reverse order: first the clients get cancelled,
|
|
// then the apiserver is torn down.
|
|
ctx, cancel := context.WithCancel(ctx)
|
|
tb.Cleanup(cancel)
|
|
|
|
// TODO: client connection configuration, such as QPS or Burst is configurable in theory, this could be derived from the `config`, need to
|
|
// support this when there is any testcase that depends on such configuration.
|
|
cfg := restclient.CopyConfig(kubeConfig)
|
|
cfg.QPS = 5000.0
|
|
cfg.Burst = 5000
|
|
|
|
// use default component config if config here is nil
|
|
if config == nil {
|
|
var err error
|
|
config, err = newDefaultComponentConfig()
|
|
if err != nil {
|
|
tb.Fatalf("Error creating default component config: %v", err)
|
|
}
|
|
}
|
|
|
|
client := clientset.NewForConfigOrDie(cfg)
|
|
dynClient := dynamic.NewForConfigOrDie(cfg)
|
|
|
|
// Not all config options will be effective but only those mostly related with scheduler performance will
|
|
// be applied to start a scheduler, most of them are defined in `scheduler.schedulerOptions`.
|
|
_, informerFactory := util.StartScheduler(ctx, client, cfg, config)
|
|
util.StartFakePVController(ctx, client, informerFactory)
|
|
runGC := util.CreateGCController(ctx, tb, *cfg, informerFactory)
|
|
runNS := util.CreateNamespaceController(ctx, tb, *cfg, informerFactory)
|
|
|
|
runResourceClaimController := func() {}
|
|
if enabledFeatures[features.DynamicResourceAllocation] {
|
|
// Testing of DRA with inline resource claims depends on this
|
|
// controller for creating and removing ResourceClaims.
|
|
runResourceClaimController = util.CreateResourceClaimController(ctx, tb, client, informerFactory)
|
|
}
|
|
|
|
informerFactory.Start(ctx.Done())
|
|
informerFactory.WaitForCacheSync(ctx.Done())
|
|
go runGC()
|
|
go runNS()
|
|
go runResourceClaimController()
|
|
|
|
return informerFactory, client, dynClient
|
|
}
|
|
|
|
// Returns the list of scheduled pods in the specified namespaces.
|
|
// Note that no namespaces specified matches all namespaces.
|
|
func getScheduledPods(podInformer coreinformers.PodInformer, namespaces ...string) ([]*v1.Pod, error) {
|
|
pods, err := podInformer.Lister().List(labels.Everything())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
s := sets.New(namespaces...)
|
|
scheduled := make([]*v1.Pod, 0, len(pods))
|
|
for i := range pods {
|
|
pod := pods[i]
|
|
if len(pod.Spec.NodeName) > 0 && (len(s) == 0 || s.Has(pod.Namespace)) {
|
|
scheduled = append(scheduled, pod)
|
|
}
|
|
}
|
|
return scheduled, nil
|
|
}
|
|
|
|
// DataItem is the data point.
|
|
type DataItem struct {
|
|
// Data is a map from bucket to real data point (e.g. "Perc90" -> 23.5). Notice
|
|
// that all data items with the same label combination should have the same buckets.
|
|
Data map[string]float64 `json:"data"`
|
|
// Unit is the data unit. Notice that all data items with the same label combination
|
|
// should have the same unit.
|
|
Unit string `json:"unit"`
|
|
// Labels is the labels of the data item.
|
|
Labels map[string]string `json:"labels,omitempty"`
|
|
}
|
|
|
|
// DataItems is the data point set. It is the struct that perf dashboard expects.
|
|
type DataItems struct {
|
|
Version string `json:"version"`
|
|
DataItems []DataItem `json:"dataItems"`
|
|
}
|
|
|
|
// makeBasePod creates a Pod object to be used as a template.
|
|
func makeBasePod() *v1.Pod {
|
|
basePod := &v1.Pod{
|
|
ObjectMeta: metav1.ObjectMeta{
|
|
GenerateName: "pod-",
|
|
},
|
|
Spec: testutils.MakePodSpec(),
|
|
}
|
|
return basePod
|
|
}
|
|
|
|
func dataItems2JSONFile(dataItems DataItems, namePrefix string) error {
|
|
// perfdash expects all data items to have the same set of labels. It
|
|
// then renders drop-down buttons for each label with all values found
|
|
// for each label. If we were to store data items that don't have a
|
|
// certain label, then perfdash will never show those data items
|
|
// because it will only show data items that have the currently
|
|
// selected label value. To avoid that, we collect all labels used
|
|
// anywhere and then add missing labels with "not applicable" as value.
|
|
labels := sets.New[string]()
|
|
for _, item := range dataItems.DataItems {
|
|
for label := range item.Labels {
|
|
labels.Insert(label)
|
|
}
|
|
}
|
|
for _, item := range dataItems.DataItems {
|
|
for label := range labels {
|
|
if _, ok := item.Labels[label]; !ok {
|
|
item.Labels[label] = "not applicable"
|
|
}
|
|
}
|
|
}
|
|
|
|
b, err := json.Marshal(dataItems)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
destFile := fmt.Sprintf("%v_%v.json", namePrefix, time.Now().Format(dateFormat))
|
|
if *dataItemsDir != "" {
|
|
// Ensure the "dataItemsDir" path to be valid.
|
|
if err := os.MkdirAll(*dataItemsDir, 0750); err != nil {
|
|
return fmt.Errorf("dataItemsDir path %v does not exist and cannot be created: %v", *dataItemsDir, err)
|
|
}
|
|
destFile = path.Join(*dataItemsDir, destFile)
|
|
}
|
|
formatted := &bytes.Buffer{}
|
|
if err := json.Indent(formatted, b, "", " "); err != nil {
|
|
return fmt.Errorf("indenting error: %v", err)
|
|
}
|
|
return os.WriteFile(destFile, formatted.Bytes(), 0644)
|
|
}
|
|
|
|
type labelValues struct {
|
|
label string
|
|
values []string
|
|
}
|
|
|
|
// metricsCollectorConfig is the config to be marshalled to YAML config file.
|
|
// NOTE: The mapping here means only one filter is supported, either value in the list of `values` is able to be collected.
|
|
type metricsCollectorConfig struct {
|
|
Metrics map[string]*labelValues
|
|
}
|
|
|
|
// metricsCollector collects metrics from legacyregistry.DefaultGatherer.Gather() endpoint.
|
|
// Currently only Histogram metrics are supported.
|
|
type metricsCollector struct {
|
|
*metricsCollectorConfig
|
|
labels map[string]string
|
|
}
|
|
|
|
func newMetricsCollector(config *metricsCollectorConfig, labels map[string]string) *metricsCollector {
|
|
return &metricsCollector{
|
|
metricsCollectorConfig: config,
|
|
labels: labels,
|
|
}
|
|
}
|
|
|
|
func (*metricsCollector) run(ctx context.Context) {
|
|
// metricCollector doesn't need to start before the tests, so nothing to do here.
|
|
}
|
|
|
|
func (pc *metricsCollector) collect() []DataItem {
|
|
var dataItems []DataItem
|
|
for metric, labelVals := range pc.Metrics {
|
|
// no filter is specified, aggregate all the metrics within the same metricFamily.
|
|
if labelVals == nil {
|
|
dataItem := collectHistogramVec(metric, pc.labels, nil)
|
|
if dataItem != nil {
|
|
dataItems = append(dataItems, *dataItem)
|
|
}
|
|
} else {
|
|
// fetch the metric from metricFamily which match each of the lvMap.
|
|
for _, value := range labelVals.values {
|
|
lvMap := map[string]string{labelVals.label: value}
|
|
dataItem := collectHistogramVec(metric, pc.labels, lvMap)
|
|
if dataItem != nil {
|
|
dataItems = append(dataItems, *dataItem)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return dataItems
|
|
}
|
|
|
|
func collectHistogramVec(metric string, labels map[string]string, lvMap map[string]string) *DataItem {
|
|
vec, err := testutil.GetHistogramVecFromGatherer(legacyregistry.DefaultGatherer, metric, lvMap)
|
|
if err != nil {
|
|
klog.Error(err)
|
|
return nil
|
|
}
|
|
|
|
if err := vec.Validate(); err != nil {
|
|
klog.ErrorS(err, "the validation for HistogramVec is failed. The data for this metric won't be stored in a benchmark result file", "metric", metric, "labels", labels)
|
|
return nil
|
|
}
|
|
|
|
if vec.GetAggregatedSampleCount() == 0 {
|
|
klog.InfoS("It is expected that this metric wasn't recorded. The data for this metric won't be stored in a benchmark result file", "metric", metric, "labels", labels)
|
|
return nil
|
|
}
|
|
|
|
q50 := vec.Quantile(0.50)
|
|
q90 := vec.Quantile(0.90)
|
|
q95 := vec.Quantile(0.95)
|
|
q99 := vec.Quantile(0.99)
|
|
avg := vec.Average()
|
|
|
|
msFactor := float64(time.Second) / float64(time.Millisecond)
|
|
|
|
// Copy labels and add "Metric" label for this metric.
|
|
labelMap := map[string]string{"Metric": metric}
|
|
for k, v := range labels {
|
|
labelMap[k] = v
|
|
}
|
|
for k, v := range lvMap {
|
|
labelMap[k] = v
|
|
}
|
|
return &DataItem{
|
|
Labels: labelMap,
|
|
Data: map[string]float64{
|
|
"Perc50": q50 * msFactor,
|
|
"Perc90": q90 * msFactor,
|
|
"Perc95": q95 * msFactor,
|
|
"Perc99": q99 * msFactor,
|
|
"Average": avg * msFactor,
|
|
},
|
|
Unit: "ms",
|
|
}
|
|
}
|
|
|
|
type throughputCollector struct {
|
|
tb testing.TB
|
|
podInformer coreinformers.PodInformer
|
|
schedulingThroughputs []float64
|
|
labels map[string]string
|
|
namespaces []string
|
|
errorMargin float64
|
|
}
|
|
|
|
func newThroughputCollector(tb testing.TB, podInformer coreinformers.PodInformer, labels map[string]string, namespaces []string, errorMargin float64) *throughputCollector {
|
|
return &throughputCollector{
|
|
tb: tb,
|
|
podInformer: podInformer,
|
|
labels: labels,
|
|
namespaces: namespaces,
|
|
errorMargin: errorMargin,
|
|
}
|
|
}
|
|
|
|
func (tc *throughputCollector) run(ctx context.Context) {
|
|
podsScheduled, err := getScheduledPods(tc.podInformer, tc.namespaces...)
|
|
if err != nil {
|
|
klog.Fatalf("%v", err)
|
|
}
|
|
lastScheduledCount := len(podsScheduled)
|
|
ticker := time.NewTicker(throughputSampleInterval)
|
|
defer ticker.Stop()
|
|
lastSampleTime := time.Now()
|
|
started := false
|
|
skipped := 0
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
case <-ticker.C:
|
|
now := time.Now()
|
|
podsScheduled, err := getScheduledPods(tc.podInformer, tc.namespaces...)
|
|
if err != nil {
|
|
klog.Fatalf("%v", err)
|
|
}
|
|
|
|
scheduled := len(podsScheduled)
|
|
// Only do sampling if number of scheduled pods is greater than zero.
|
|
if scheduled == 0 {
|
|
continue
|
|
}
|
|
if !started {
|
|
started = true
|
|
// Skip the initial sample. It's likely to be an outlier because
|
|
// sampling and creating pods get started independently.
|
|
lastScheduledCount = scheduled
|
|
lastSampleTime = now
|
|
continue
|
|
}
|
|
|
|
newScheduled := scheduled - lastScheduledCount
|
|
if newScheduled == 0 {
|
|
// Throughput would be zero for the interval.
|
|
// Instead of recording 0 pods/s, keep waiting
|
|
// until we see at least one additional pod
|
|
// being scheduled.
|
|
skipped++
|
|
continue
|
|
}
|
|
|
|
// This should be roughly equal to
|
|
// throughputSampleInterval * (skipped + 1), but we
|
|
// don't count on that because the goroutine might not
|
|
// be scheduled immediately when the timer
|
|
// triggers. Instead we track the actual time stamps.
|
|
duration := now.Sub(lastSampleTime)
|
|
durationInSeconds := duration.Seconds()
|
|
throughput := float64(newScheduled) / durationInSeconds
|
|
expectedDuration := throughputSampleInterval * time.Duration(skipped+1)
|
|
errorMargin := (duration - expectedDuration).Seconds() / expectedDuration.Seconds() * 100
|
|
if tc.errorMargin > 0 && math.Abs(errorMargin) > tc.errorMargin {
|
|
// This might affect the result, report it.
|
|
tc.tb.Errorf("ERROR: Expected throuput collector to sample at regular time intervals. The %d most recent intervals took %s instead of %s, a difference of %0.1f%%.", skipped+1, duration, expectedDuration, errorMargin)
|
|
}
|
|
|
|
// To keep percentiles accurate, we have to record multiple samples with the same
|
|
// throughput value if we skipped some intervals.
|
|
for i := 0; i <= skipped; i++ {
|
|
tc.schedulingThroughputs = append(tc.schedulingThroughputs, throughput)
|
|
}
|
|
lastScheduledCount = scheduled
|
|
klog.Infof("%d pods scheduled", lastScheduledCount)
|
|
skipped = 0
|
|
lastSampleTime = now
|
|
}
|
|
}
|
|
}
|
|
|
|
func (tc *throughputCollector) collect() []DataItem {
|
|
throughputSummary := DataItem{Labels: tc.labels}
|
|
if length := len(tc.schedulingThroughputs); length > 0 {
|
|
sort.Float64s(tc.schedulingThroughputs)
|
|
sum := 0.0
|
|
for i := range tc.schedulingThroughputs {
|
|
sum += tc.schedulingThroughputs[i]
|
|
}
|
|
|
|
throughputSummary.Labels["Metric"] = "SchedulingThroughput"
|
|
throughputSummary.Data = map[string]float64{
|
|
"Average": sum / float64(length),
|
|
"Perc50": tc.schedulingThroughputs[int(math.Ceil(float64(length*50)/100))-1],
|
|
"Perc90": tc.schedulingThroughputs[int(math.Ceil(float64(length*90)/100))-1],
|
|
"Perc95": tc.schedulingThroughputs[int(math.Ceil(float64(length*95)/100))-1],
|
|
"Perc99": tc.schedulingThroughputs[int(math.Ceil(float64(length*99)/100))-1],
|
|
}
|
|
throughputSummary.Unit = "pods/s"
|
|
}
|
|
|
|
return []DataItem{throughputSummary}
|
|
}
|