Files
kubernetes/pkg/kubelet/cm/cpumanager/topology/topology.go
Francesco Romani 0e9b92090c node: cpumgr: stricter precheck for full-pcpus-only
In order to implement the `full-pcpus-only` cpumanager policy option,
we leverage the implementation of the algorithm which picks CPUs.
By design, CPUs are taken from the biggest chunk available (socket
or NUMA zone) to physical cores, down to single cores.

Leveraging this, if the requested CPU count is a multiple of the SMT
level (commonly 2), we're guaranteed that only full physical cores
will be taken.

The hidden assumption here is this holds true by construction iff
the user reserved CPUs (if any) considering full physical CPUs.
IOW, if the user did intentionally or mistakely reserve single threads
which are no core siblings[1], then the simple check we implemented
is not sufficient.

A easy example can probably outline this better. With this setup:

cores: [(0, 4), (1, 5), (2, 6), (3, 8)] (in parens: thread siblings).
SMT level: 2 (each tuple is 2 elements)
Reserved CPUs: 0,1 (explicit pick using `--reserved-cpus`)

A container then requests 6 cpus. full-pcpus-only check: 6 % 2 == 0. Passed.
The CPU allocator will take first full cores, (2,6) and (3,8), and will
then pick the remaining single CPUs. The allocation will succeed, but
it's incorrect.

We can fix this case with a stricter precheck.
We need to additionally consider all the core siblings of the reserved
CPUs as unavailable when computing the free cpus, before to start the
actual allocation. Doing so, we fall back in the intended behavior, and
by construction all possible CPUs allocation whose number is multiple
of the SMT level are now correct again.

+++

[1] or thread siblings in the linux parlance, in any case:
hyperthread siblings of the same physical core

Signed-off-by: Francesco Romani <fromani@redhat.com>
2023-03-02 16:00:58 +01:00

305 lines
7.9 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package topology
import (
"fmt"
cadvisorapi "github.com/google/cadvisor/info/v1"
"k8s.io/klog/v2"
"k8s.io/kubernetes/pkg/kubelet/cm/cpuset"
)
// NUMANodeInfo is a map from NUMANode ID to a list of CPU IDs associated with
// that NUMANode.
type NUMANodeInfo map[int]cpuset.CPUSet
// CPUDetails is a map from CPU ID to Core ID, Socket ID, and NUMA ID.
type CPUDetails map[int]CPUInfo
// CPUTopology contains details of node cpu, where :
// CPU - logical CPU, cadvisor - thread
// Core - physical CPU, cadvisor - Core
// Socket - socket, cadvisor - Socket
// NUMA Node - NUMA cell, cadvisor - Node
type CPUTopology struct {
NumCPUs int
NumCores int
NumSockets int
NumNUMANodes int
CPUDetails CPUDetails
}
// CPUsPerCore returns the number of logical CPUs are associated with
// each core.
func (topo *CPUTopology) CPUsPerCore() int {
if topo.NumCores == 0 {
return 0
}
return topo.NumCPUs / topo.NumCores
}
// CPUsPerSocket returns the number of logical CPUs are associated with
// each socket.
func (topo *CPUTopology) CPUsPerSocket() int {
if topo.NumSockets == 0 {
return 0
}
return topo.NumCPUs / topo.NumSockets
}
// CPUCoreID returns the physical core ID which the given logical CPU
// belongs to.
func (topo *CPUTopology) CPUCoreID(cpu int) (int, error) {
info, ok := topo.CPUDetails[cpu]
if !ok {
return -1, fmt.Errorf("unknown CPU ID: %d", cpu)
}
return info.CoreID, nil
}
// CPUCoreID returns the socket ID which the given logical CPU belongs to.
func (topo *CPUTopology) CPUSocketID(cpu int) (int, error) {
info, ok := topo.CPUDetails[cpu]
if !ok {
return -1, fmt.Errorf("unknown CPU ID: %d", cpu)
}
return info.SocketID, nil
}
// CPUCoreID returns the NUMA node ID which the given logical CPU belongs to.
func (topo *CPUTopology) CPUNUMANodeID(cpu int) (int, error) {
info, ok := topo.CPUDetails[cpu]
if !ok {
return -1, fmt.Errorf("unknown CPU ID: %d", cpu)
}
return info.NUMANodeID, nil
}
// CPUInfo contains the NUMA, socket, and core IDs associated with a CPU.
type CPUInfo struct {
NUMANodeID int
SocketID int
CoreID int
}
// KeepOnly returns a new CPUDetails object with only the supplied cpus.
func (d CPUDetails) KeepOnly(cpus cpuset.CPUSet) CPUDetails {
result := CPUDetails{}
for cpu, info := range d {
if cpus.Contains(cpu) {
result[cpu] = info
}
}
return result
}
// NUMANodes returns all of the NUMANode IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) NUMANodes() cpuset.CPUSet {
var numaNodeIDs []int
for _, info := range d {
numaNodeIDs = append(numaNodeIDs, info.NUMANodeID)
}
return cpuset.New(numaNodeIDs...)
}
// NUMANodesInSockets returns all of the logical NUMANode IDs associated with
// the given socket IDs in this CPUDetails.
func (d CPUDetails) NUMANodesInSockets(ids ...int) cpuset.CPUSet {
var numaNodeIDs []int
for _, id := range ids {
for _, info := range d {
if info.SocketID == id {
numaNodeIDs = append(numaNodeIDs, info.NUMANodeID)
}
}
}
return cpuset.New(numaNodeIDs...)
}
// Sockets returns all of the socket IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) Sockets() cpuset.CPUSet {
var socketIDs []int
for _, info := range d {
socketIDs = append(socketIDs, info.SocketID)
}
return cpuset.New(socketIDs...)
}
// CPUsInSockets returns all of the logical CPU IDs associated with the given
// socket IDs in this CPUDetails.
func (d CPUDetails) CPUsInSockets(ids ...int) cpuset.CPUSet {
var cpuIDs []int
for _, id := range ids {
for cpu, info := range d {
if info.SocketID == id {
cpuIDs = append(cpuIDs, cpu)
}
}
}
return cpuset.New(cpuIDs...)
}
// SocketsInNUMANodes returns all of the logical Socket IDs associated with the
// given NUMANode IDs in this CPUDetails.
func (d CPUDetails) SocketsInNUMANodes(ids ...int) cpuset.CPUSet {
var socketIDs []int
for _, id := range ids {
for _, info := range d {
if info.NUMANodeID == id {
socketIDs = append(socketIDs, info.SocketID)
}
}
}
return cpuset.New(socketIDs...)
}
// Cores returns all of the core IDs associated with the CPUs in this
// CPUDetails.
func (d CPUDetails) Cores() cpuset.CPUSet {
var coreIDs []int
for _, info := range d {
coreIDs = append(coreIDs, info.CoreID)
}
return cpuset.New(coreIDs...)
}
// CoresInNUMANodes returns all of the core IDs associated with the given
// NUMANode IDs in this CPUDetails.
func (d CPUDetails) CoresInNUMANodes(ids ...int) cpuset.CPUSet {
var coreIDs []int
for _, id := range ids {
for _, info := range d {
if info.NUMANodeID == id {
coreIDs = append(coreIDs, info.CoreID)
}
}
}
return cpuset.New(coreIDs...)
}
// CoresInSockets returns all of the core IDs associated with the given socket
// IDs in this CPUDetails.
func (d CPUDetails) CoresInSockets(ids ...int) cpuset.CPUSet {
var coreIDs []int
for _, id := range ids {
for _, info := range d {
if info.SocketID == id {
coreIDs = append(coreIDs, info.CoreID)
}
}
}
return cpuset.New(coreIDs...)
}
// CPUs returns all of the logical CPU IDs in this CPUDetails.
func (d CPUDetails) CPUs() cpuset.CPUSet {
var cpuIDs []int
for cpuID := range d {
cpuIDs = append(cpuIDs, cpuID)
}
return cpuset.New(cpuIDs...)
}
// CPUsInNUMANodes returns all of the logical CPU IDs associated with the given
// NUMANode IDs in this CPUDetails.
func (d CPUDetails) CPUsInNUMANodes(ids ...int) cpuset.CPUSet {
var cpuIDs []int
for _, id := range ids {
for cpu, info := range d {
if info.NUMANodeID == id {
cpuIDs = append(cpuIDs, cpu)
}
}
}
return cpuset.New(cpuIDs...)
}
// CPUsInCores returns all of the logical CPU IDs associated with the given
// core IDs in this CPUDetails.
func (d CPUDetails) CPUsInCores(ids ...int) cpuset.CPUSet {
var cpuIDs []int
for _, id := range ids {
for cpu, info := range d {
if info.CoreID == id {
cpuIDs = append(cpuIDs, cpu)
}
}
}
return cpuset.New(cpuIDs...)
}
// Discover returns CPUTopology based on cadvisor node info
func Discover(machineInfo *cadvisorapi.MachineInfo) (*CPUTopology, error) {
if machineInfo.NumCores == 0 {
return nil, fmt.Errorf("could not detect number of cpus")
}
CPUDetails := CPUDetails{}
numPhysicalCores := 0
for _, node := range machineInfo.Topology {
numPhysicalCores += len(node.Cores)
for _, core := range node.Cores {
if coreID, err := getUniqueCoreID(core.Threads); err == nil {
for _, cpu := range core.Threads {
CPUDetails[cpu] = CPUInfo{
CoreID: coreID,
SocketID: core.SocketID,
NUMANodeID: node.Id,
}
}
} else {
klog.ErrorS(nil, "Could not get unique coreID for socket", "socket", core.SocketID, "core", core.Id, "threads", core.Threads)
return nil, err
}
}
}
return &CPUTopology{
NumCPUs: machineInfo.NumCores,
NumSockets: machineInfo.NumSockets,
NumCores: numPhysicalCores,
NumNUMANodes: CPUDetails.NUMANodes().Size(),
CPUDetails: CPUDetails,
}, nil
}
// getUniqueCoreID computes coreId as the lowest cpuID
// for a given Threads []int slice. This will assure that coreID's are
// platform unique (opposite to what cAdvisor reports)
func getUniqueCoreID(threads []int) (coreID int, err error) {
if len(threads) == 0 {
return 0, fmt.Errorf("no cpus provided")
}
if len(threads) != cpuset.New(threads...).Size() {
return 0, fmt.Errorf("cpus provided are not unique")
}
min := threads[0]
for _, thread := range threads[1:] {
if thread < min {
min = thread
}
}
return min, nil
}