kubernetes/pkg/kubelet/kuberuntime/kuberuntime_container_linux.go
Kir Kolyshkin 37761a329e
pkg/kubelet: changes to update runc to 1.1.0
The changes (mostly in pkg/kubelet/cm) are there to adopt changed
runc 1.1 API, and simplify things a bit. In particular:

1. simplify cgroup manager instantiation, using a new, easier way of
   libcontainers/cgroups/manager.New;

2. replace libcontainerAdapter with a boolean variable (all it did
   was passing on whether systemd manager should be used);

3. trivial change due to removed cgroupfs.HugePageSizes and added
    cgroups.HugePageSizes();

4. do not calculate cgroup paths in update / destroy, since libcontainer
   cgroup managers now calculate the paths upon creation (previously,
   they were doing that only in Apply, so using e.g. Set or Destroy right
   after creation was impossible without specifying paths).

We currently still calculate cgroup paths in Exists -- this is to be
addressed separately.

Co-Authored-By: Elana Hashman <ehashman@redhat.com>
2022-03-28 16:23:20 -07:00

207 lines
7.9 KiB
Go

//go:build linux
// +build linux
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package kuberuntime
import (
"strconv"
"time"
libcontainercgroups "github.com/opencontainers/runc/libcontainer/cgroups"
v1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
utilfeature "k8s.io/apiserver/pkg/util/feature"
runtimeapi "k8s.io/cri-api/pkg/apis/runtime/v1"
"k8s.io/klog/v2"
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
kubefeatures "k8s.io/kubernetes/pkg/features"
"k8s.io/kubernetes/pkg/kubelet/cm"
kubecontainer "k8s.io/kubernetes/pkg/kubelet/container"
"k8s.io/kubernetes/pkg/kubelet/qos"
kubelettypes "k8s.io/kubernetes/pkg/kubelet/types"
)
// applyPlatformSpecificContainerConfig applies platform specific configurations to runtimeapi.ContainerConfig.
func (m *kubeGenericRuntimeManager) applyPlatformSpecificContainerConfig(config *runtimeapi.ContainerConfig, container *v1.Container, pod *v1.Pod, uid *int64, username string, nsTarget *kubecontainer.ContainerID) error {
enforceMemoryQoS := false
// Set memory.min and memory.high if MemoryQoS enabled with cgroups v2
if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.MemoryQoS) &&
libcontainercgroups.IsCgroup2UnifiedMode() {
enforceMemoryQoS = true
}
config.Linux = m.generateLinuxContainerConfig(container, pod, uid, username, nsTarget, enforceMemoryQoS)
return nil
}
// generateLinuxContainerConfig generates linux container config for kubelet runtime v1.
func (m *kubeGenericRuntimeManager) generateLinuxContainerConfig(container *v1.Container, pod *v1.Pod, uid *int64, username string, nsTarget *kubecontainer.ContainerID, enforceMemoryQoS bool) *runtimeapi.LinuxContainerConfig {
lc := &runtimeapi.LinuxContainerConfig{
Resources: &runtimeapi.LinuxContainerResources{},
SecurityContext: m.determineEffectiveSecurityContext(pod, container, uid, username),
}
if nsTarget != nil && lc.SecurityContext.NamespaceOptions.Pid == runtimeapi.NamespaceMode_CONTAINER {
lc.SecurityContext.NamespaceOptions.Pid = runtimeapi.NamespaceMode_TARGET
lc.SecurityContext.NamespaceOptions.TargetId = nsTarget.ID
}
// set linux container resources
lc.Resources = m.calculateLinuxResources(container.Resources.Requests.Cpu(), container.Resources.Limits.Cpu(), container.Resources.Limits.Memory())
lc.Resources.OomScoreAdj = int64(qos.GetContainerOOMScoreAdjust(pod, container,
int64(m.machineInfo.MemoryCapacity)))
lc.Resources.HugepageLimits = GetHugepageLimitsFromResources(container.Resources)
if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NodeSwap) {
// NOTE(ehashman): Behaviour is defined in the opencontainers runtime spec:
// https://github.com/opencontainers/runtime-spec/blob/1c3f411f041711bbeecf35ff7e93461ea6789220/config-linux.md#memory
switch m.memorySwapBehavior {
case kubelettypes.UnlimitedSwap:
// -1 = unlimited swap
lc.Resources.MemorySwapLimitInBytes = -1
case kubelettypes.LimitedSwap:
fallthrough
default:
// memorySwapLimit = total permitted memory+swap; if equal to memory limit, => 0 swap above memory limit
// Some swapping is still possible.
// Note that if memory limit is 0, memory swap limit is ignored.
lc.Resources.MemorySwapLimitInBytes = lc.Resources.MemoryLimitInBytes
}
}
// Set memory.min and memory.high to enforce MemoryQoS
if enforceMemoryQoS {
unified := map[string]string{}
memoryRequest := container.Resources.Requests.Memory().Value()
memoryLimit := container.Resources.Limits.Memory().Value()
if memoryRequest != 0 {
unified[cm.MemoryMin] = strconv.FormatInt(memoryRequest, 10)
}
// If container sets limits.memory, we set memory.high=pod.spec.containers[i].resources.limits[memory] * memory_throttling_factor
// for container level cgroup if memory.high>memory.min.
// If container doesn't set limits.memory, we set memory.high=node_allocatable_memory * memory_throttling_factor
// for container level cgroup.
memoryHigh := int64(0)
if memoryLimit != 0 {
memoryHigh = int64(float64(memoryLimit) * m.memoryThrottlingFactor)
} else {
allocatable := m.getNodeAllocatable()
allocatableMemory, ok := allocatable[v1.ResourceMemory]
if ok && allocatableMemory.Value() > 0 {
memoryHigh = int64(float64(allocatableMemory.Value()) * m.memoryThrottlingFactor)
}
}
if memoryHigh > memoryRequest {
unified[cm.MemoryHigh] = strconv.FormatInt(memoryHigh, 10)
}
if len(unified) > 0 {
if lc.Resources.Unified == nil {
lc.Resources.Unified = unified
} else {
for k, v := range unified {
lc.Resources.Unified[k] = v
}
}
klog.V(4).InfoS("MemoryQoS config for container", "pod", klog.KObj(pod), "containerName", container.Name, "unified", unified)
}
}
return lc
}
// calculateLinuxResources will create the linuxContainerResources type based on the provided CPU and memory resource requests, limits
func (m *kubeGenericRuntimeManager) calculateLinuxResources(cpuRequest, cpuLimit, memoryLimit *resource.Quantity) *runtimeapi.LinuxContainerResources {
resources := runtimeapi.LinuxContainerResources{}
var cpuShares int64
memLimit := memoryLimit.Value()
// If request is not specified, but limit is, we want request to default to limit.
// API server does this for new containers, but we repeat this logic in Kubelet
// for containers running on existing Kubernetes clusters.
if cpuRequest.IsZero() && !cpuLimit.IsZero() {
cpuShares = int64(cm.MilliCPUToShares(cpuLimit.MilliValue()))
} else {
// if cpuRequest.Amount is nil, then MilliCPUToShares will return the minimal number
// of CPU shares.
cpuShares = int64(cm.MilliCPUToShares(cpuRequest.MilliValue()))
}
resources.CpuShares = cpuShares
if memLimit != 0 {
resources.MemoryLimitInBytes = memLimit
}
if m.cpuCFSQuota {
// if cpuLimit.Amount is nil, then the appropriate default value is returned
// to allow full usage of cpu resource.
cpuPeriod := int64(quotaPeriod)
if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.CPUCFSQuotaPeriod) {
cpuPeriod = int64(m.cpuCFSQuotaPeriod.Duration / time.Microsecond)
}
cpuQuota := milliCPUToQuota(cpuLimit.MilliValue(), cpuPeriod)
resources.CpuQuota = cpuQuota
resources.CpuPeriod = cpuPeriod
}
return &resources
}
// GetHugepageLimitsFromResources returns limits of each hugepages from resources.
func GetHugepageLimitsFromResources(resources v1.ResourceRequirements) []*runtimeapi.HugepageLimit {
var hugepageLimits []*runtimeapi.HugepageLimit
// For each page size, limit to 0.
for _, pageSize := range libcontainercgroups.HugePageSizes() {
hugepageLimits = append(hugepageLimits, &runtimeapi.HugepageLimit{
PageSize: pageSize,
Limit: uint64(0),
})
}
requiredHugepageLimits := map[string]uint64{}
for resourceObj, amountObj := range resources.Limits {
if !v1helper.IsHugePageResourceName(resourceObj) {
continue
}
pageSize, err := v1helper.HugePageSizeFromResourceName(resourceObj)
if err != nil {
klog.InfoS("Failed to get hugepage size from resource", "object", resourceObj, "err", err)
continue
}
sizeString, err := v1helper.HugePageUnitSizeFromByteSize(pageSize.Value())
if err != nil {
klog.InfoS("Size is invalid", "object", resourceObj, "err", err)
continue
}
requiredHugepageLimits[sizeString] = uint64(amountObj.Value())
}
for _, hugepageLimit := range hugepageLimits {
if limit, exists := requiredHugepageLimits[hugepageLimit.PageSize]; exists {
hugepageLimit.Limit = limit
}
}
return hugepageLimits
}