kubernetes/pkg/proxy/nftables/proxier.go
Dan Winship 93860a5217 Distinguish iptables-based and nftables-based backends, do startup cleanup
When switching from iptables or ipvs to nftables, clean up old
iptables/ipvs rules. When switching the other way, clean up old
nftables rules.
2023-10-31 17:38:32 -04:00

1358 lines
52 KiB
Go

/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package nftables
//
// NOTE: this needs to be tested in e2e since it uses nftables for everything.
//
import (
"bytes"
"context"
"crypto/sha256"
"encoding/base32"
"fmt"
"net"
"reflect"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/danwinship/knftables"
v1 "k8s.io/api/core/v1"
discovery "k8s.io/api/discovery/v1"
"k8s.io/apimachinery/pkg/types"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/tools/events"
utilsysctl "k8s.io/component-helpers/node/util/sysctl"
"k8s.io/klog/v2"
"k8s.io/kubernetes/pkg/proxy"
"k8s.io/kubernetes/pkg/proxy/conntrack"
"k8s.io/kubernetes/pkg/proxy/healthcheck"
"k8s.io/kubernetes/pkg/proxy/metaproxier"
"k8s.io/kubernetes/pkg/proxy/metrics"
proxyutil "k8s.io/kubernetes/pkg/proxy/util"
proxyutiliptables "k8s.io/kubernetes/pkg/proxy/util/iptables"
"k8s.io/kubernetes/pkg/util/async"
utiliptables "k8s.io/kubernetes/pkg/util/iptables"
utiliptablestesting "k8s.io/kubernetes/pkg/util/iptables/testing"
utilexec "k8s.io/utils/exec"
netutils "k8s.io/utils/net"
)
const (
// the nftables table
kubeProxyTable = "kube-proxy"
// the services chain in the filter table
kubeServicesFilterChain = "KUBE-SERVICES"
// the services chain in the NAT table
kubeServicesChain = "KUBE-SERVICES"
// the external services chain
kubeExternalServicesChain = "KUBE-EXTERNAL-SERVICES"
// the nodeports chain
kubeNodePortsChain = "KUBE-NODEPORTS"
// the kubernetes postrouting chain
kubePostroutingChain = "KUBE-POSTROUTING"
// kubeMarkMasqChain is the mark-for-masquerade chain
kubeMarkMasqChain = "KUBE-MARK-MASQ"
// the kubernetes forward chain
kubeForwardChain = "KUBE-FORWARD"
// kubeProxyFirewallChain is the kube-proxy firewall chain
kubeProxyFirewallChain = "KUBE-PROXY-FIREWALL"
)
const sysctlNFConntrackTCPBeLiberal = "net/netfilter/nf_conntrack_tcp_be_liberal"
// internal struct for string service information
type servicePortInfo struct {
*proxy.BaseServicePortInfo
// The following fields are computed and stored for performance reasons.
nameString string
clusterPolicyChainName string
localPolicyChainName string
firewallChainName string
externalChainName string
}
// returns a new proxy.ServicePort which abstracts a serviceInfo
func newServiceInfo(port *v1.ServicePort, service *v1.Service, bsvcPortInfo *proxy.BaseServicePortInfo) proxy.ServicePort {
svcPort := &servicePortInfo{BaseServicePortInfo: bsvcPortInfo}
// Store the following for performance reasons.
svcName := types.NamespacedName{Namespace: service.Namespace, Name: service.Name}
svcPortName := proxy.ServicePortName{NamespacedName: svcName, Port: port.Name}
protocol := strings.ToLower(string(svcPort.Protocol()))
svcPort.nameString = svcPortName.String()
svcPort.clusterPolicyChainName = servicePortPolicyClusterChain(svcPort.nameString, protocol)
svcPort.localPolicyChainName = servicePortPolicyLocalChainName(svcPort.nameString, protocol)
svcPort.firewallChainName = serviceFirewallChainName(svcPort.nameString, protocol)
svcPort.externalChainName = serviceExternalChainName(svcPort.nameString, protocol)
return svcPort
}
// internal struct for endpoints information
type endpointInfo struct {
*proxy.BaseEndpointInfo
chainName string
}
// returns a new proxy.Endpoint which abstracts a endpointInfo
func newEndpointInfo(baseInfo *proxy.BaseEndpointInfo, svcPortName *proxy.ServicePortName) proxy.Endpoint {
return &endpointInfo{
BaseEndpointInfo: baseInfo,
chainName: servicePortEndpointChainName(svcPortName.String(), strings.ToLower(string(svcPortName.Protocol)), baseInfo.String()),
}
}
// Proxier is an nftables based proxy
type Proxier struct {
// ipFamily defines the IP family which this proxier is tracking.
ipFamily v1.IPFamily
// endpointsChanges and serviceChanges contains all changes to endpoints and
// services that happened since nftables was synced. For a single object,
// changes are accumulated, i.e. previous is state from before all of them,
// current is state after applying all of those.
endpointsChanges *proxy.EndpointsChangeTracker
serviceChanges *proxy.ServiceChangeTracker
mu sync.Mutex // protects the following fields
svcPortMap proxy.ServicePortMap
endpointsMap proxy.EndpointsMap
nodeLabels map[string]string
// endpointSlicesSynced, and servicesSynced are set to true
// when corresponding objects are synced after startup. This is used to avoid
// updating nftables with some partial data after kube-proxy restart.
endpointSlicesSynced bool
servicesSynced bool
initialized int32
syncRunner *async.BoundedFrequencyRunner // governs calls to syncProxyRules
syncPeriod time.Duration
// These are effectively const and do not need the mutex to be held.
iptables utiliptables.Interface
nftables knftables.Interface
masqueradeAll bool
masqueradeMark string
exec utilexec.Interface
localDetector proxyutiliptables.LocalTrafficDetector
hostname string
nodeIP net.IP
recorder events.EventRecorder
serviceHealthServer healthcheck.ServiceHealthServer
healthzServer *healthcheck.ProxierHealthServer
// Since converting probabilities (floats) to strings is expensive
// and we are using only probabilities in the format of 1/n, we are
// precomputing some number of those and cache for future reuse.
precomputedProbabilities []string
// The following buffers are used to reuse memory and avoid allocations
// that are significantly impacting performance.
iptablesData *bytes.Buffer
existingFilterChainsData *bytes.Buffer
filterChains proxyutil.LineBuffer
filterRules proxyutil.LineBuffer
natChains proxyutil.LineBuffer
natRules proxyutil.LineBuffer
// conntrackTCPLiberal indicates whether the system sets the kernel nf_conntrack_tcp_be_liberal
conntrackTCPLiberal bool
// nodePortAddresses selects the interfaces where nodePort works.
nodePortAddresses *proxyutil.NodePortAddresses
// networkInterfacer defines an interface for several net library functions.
// Inject for test purpose.
networkInterfacer proxyutil.NetworkInterfacer
}
// Proxier implements proxy.Provider
var _ proxy.Provider = &Proxier{}
// NewProxier returns a new nftables Proxier. Once a proxier is created, it will keep
// nftables up to date in the background and will not terminate if a particular nftables
// call fails.
func NewProxier(ipFamily v1.IPFamily,
sysctl utilsysctl.Interface,
syncPeriod time.Duration,
minSyncPeriod time.Duration,
masqueradeAll bool,
masqueradeBit int,
localDetector proxyutiliptables.LocalTrafficDetector,
hostname string,
nodeIP net.IP,
recorder events.EventRecorder,
healthzServer *healthcheck.ProxierHealthServer,
nodePortAddressStrings []string,
initOnly bool,
) (*Proxier, error) {
nodePortAddresses := proxyutil.NewNodePortAddresses(ipFamily, nodePortAddressStrings)
// Be conservative in what you do, be liberal in what you accept from others.
// If it's non-zero, we mark only out of window RST segments as INVALID.
// Ref: https://docs.kernel.org/networking/nf_conntrack-sysctl.html
conntrackTCPLiberal := false
if val, err := sysctl.GetSysctl(sysctlNFConntrackTCPBeLiberal); err == nil && val != 0 {
conntrackTCPLiberal = true
klog.InfoS("nf_conntrack_tcp_be_liberal set, not installing DROP rules for INVALID packets")
}
if initOnly {
klog.InfoS("System initialized and --init-only specified")
return nil, nil
}
// Generate the masquerade mark to use for SNAT rules.
masqueradeValue := 1 << uint(masqueradeBit)
masqueradeMark := fmt.Sprintf("%#08x", masqueradeValue)
klog.V(2).InfoS("Using nftables mark for masquerade", "ipFamily", ipFamily, "mark", masqueradeMark)
serviceHealthServer := healthcheck.NewServiceHealthServer(hostname, recorder, nodePortAddresses, healthzServer)
var nftablesFamily knftables.Family
if ipFamily == v1.IPv4Protocol {
nftablesFamily = knftables.IPv4Family
} else {
nftablesFamily = knftables.IPv6Family
}
nft, err := knftables.New(nftablesFamily, kubeProxyTable)
if err != nil {
return nil, err
}
proxier := &Proxier{
ipFamily: ipFamily,
svcPortMap: make(proxy.ServicePortMap),
serviceChanges: proxy.NewServiceChangeTracker(newServiceInfo, ipFamily, recorder, nil),
endpointsMap: make(proxy.EndpointsMap),
endpointsChanges: proxy.NewEndpointsChangeTracker(hostname, newEndpointInfo, ipFamily, recorder, nil),
syncPeriod: syncPeriod,
iptables: utiliptablestesting.NewFake(),
nftables: nft,
masqueradeAll: masqueradeAll,
masqueradeMark: masqueradeMark,
exec: utilexec.New(),
localDetector: localDetector,
hostname: hostname,
nodeIP: nodeIP,
recorder: recorder,
serviceHealthServer: serviceHealthServer,
healthzServer: healthzServer,
precomputedProbabilities: make([]string, 0, 1001),
iptablesData: bytes.NewBuffer(nil),
existingFilterChainsData: bytes.NewBuffer(nil),
filterChains: proxyutil.NewLineBuffer(),
filterRules: proxyutil.NewLineBuffer(),
natChains: proxyutil.NewLineBuffer(),
natRules: proxyutil.NewLineBuffer(),
nodePortAddresses: nodePortAddresses,
networkInterfacer: proxyutil.RealNetwork{},
conntrackTCPLiberal: conntrackTCPLiberal,
}
burstSyncs := 2
klog.V(2).InfoS("NFTables sync params", "ipFamily", ipFamily, "minSyncPeriod", minSyncPeriod, "syncPeriod", syncPeriod, "burstSyncs", burstSyncs)
proxier.syncRunner = async.NewBoundedFrequencyRunner("sync-runner", proxier.syncProxyRules, minSyncPeriod, syncPeriod, burstSyncs)
return proxier, nil
}
// NewDualStackProxier creates a MetaProxier instance, with IPv4 and IPv6 proxies.
func NewDualStackProxier(
sysctl utilsysctl.Interface,
syncPeriod time.Duration,
minSyncPeriod time.Duration,
masqueradeAll bool,
masqueradeBit int,
localDetectors [2]proxyutiliptables.LocalTrafficDetector,
hostname string,
nodeIPs map[v1.IPFamily]net.IP,
recorder events.EventRecorder,
healthzServer *healthcheck.ProxierHealthServer,
nodePortAddresses []string,
initOnly bool,
) (proxy.Provider, error) {
// Create an ipv4 instance of the single-stack proxier
ipv4Proxier, err := NewProxier(v1.IPv4Protocol, sysctl,
syncPeriod, minSyncPeriod, masqueradeAll, masqueradeBit, localDetectors[0], hostname,
nodeIPs[v1.IPv4Protocol], recorder, healthzServer, nodePortAddresses, initOnly)
if err != nil {
return nil, fmt.Errorf("unable to create ipv4 proxier: %v", err)
}
ipv6Proxier, err := NewProxier(v1.IPv6Protocol, sysctl,
syncPeriod, minSyncPeriod, masqueradeAll, masqueradeBit, localDetectors[1], hostname,
nodeIPs[v1.IPv6Protocol], recorder, healthzServer, nodePortAddresses, initOnly)
if err != nil {
return nil, fmt.Errorf("unable to create ipv6 proxier: %v", err)
}
if initOnly {
return nil, nil
}
return metaproxier.NewMetaProxier(ipv4Proxier, ipv6Proxier), nil
}
type iptablesJumpChain struct {
table utiliptables.Table
dstChain utiliptables.Chain
srcChain utiliptables.Chain
comment string
extraArgs []string
}
var iptablesJumpChains = []iptablesJumpChain{
{utiliptables.TableFilter, kubeExternalServicesChain, utiliptables.ChainInput, "kubernetes externally-visible service portals", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeExternalServicesChain, utiliptables.ChainForward, "kubernetes externally-visible service portals", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeServicesFilterChain, utiliptables.ChainForward, "kubernetes service portals", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeServicesFilterChain, utiliptables.ChainOutput, "kubernetes service portals", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeForwardChain, utiliptables.ChainForward, "kubernetes forwarding rules", nil},
{utiliptables.TableFilter, kubeProxyFirewallChain, utiliptables.ChainInput, "kubernetes load balancer firewall", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeProxyFirewallChain, utiliptables.ChainOutput, "kubernetes load balancer firewall", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableFilter, kubeProxyFirewallChain, utiliptables.ChainForward, "kubernetes load balancer firewall", []string{"-m", "conntrack", "--ctstate", "NEW"}},
{utiliptables.TableNAT, kubeServicesChain, utiliptables.ChainOutput, "kubernetes service portals", nil},
{utiliptables.TableNAT, kubeServicesChain, utiliptables.ChainPrerouting, "kubernetes service portals", nil},
{utiliptables.TableNAT, kubePostroutingChain, utiliptables.ChainPostrouting, "kubernetes postrouting rules", nil},
}
// CleanupLeftovers removes all nftables rules and chains created by the Proxier
// It returns true if an error was encountered. Errors are logged.
func CleanupLeftovers() bool {
var encounteredError bool
for _, family := range []knftables.Family{knftables.IPv4Family, knftables.IPv6Family} {
nft, err := knftables.New(family, kubeProxyTable)
if err == nil {
tx := nft.NewTransaction()
tx.Delete(&knftables.Table{})
err = nft.Run(context.TODO(), tx)
}
if err != nil && !knftables.IsNotFound(err) {
klog.ErrorS(err, "Error cleaning up nftables rules")
encounteredError = true
}
}
return encounteredError
}
func computeProbability(n int) string {
return fmt.Sprintf("%0.10f", 1.0/float64(n))
}
// This assumes proxier.mu is held
func (proxier *Proxier) precomputeProbabilities(numberOfPrecomputed int) {
if len(proxier.precomputedProbabilities) == 0 {
proxier.precomputedProbabilities = append(proxier.precomputedProbabilities, "<bad value>")
}
for i := len(proxier.precomputedProbabilities); i <= numberOfPrecomputed; i++ {
proxier.precomputedProbabilities = append(proxier.precomputedProbabilities, computeProbability(i))
}
}
// This assumes proxier.mu is held
func (proxier *Proxier) probability(n int) string {
if n >= len(proxier.precomputedProbabilities) {
proxier.precomputeProbabilities(n)
}
return proxier.precomputedProbabilities[n]
}
// Sync is called to synchronize the proxier state to nftables as soon as possible.
func (proxier *Proxier) Sync() {
if proxier.healthzServer != nil {
proxier.healthzServer.QueuedUpdate(proxier.ipFamily)
}
metrics.SyncProxyRulesLastQueuedTimestamp.SetToCurrentTime()
proxier.syncRunner.Run()
}
// SyncLoop runs periodic work. This is expected to run as a goroutine or as the main loop of the app. It does not return.
func (proxier *Proxier) SyncLoop() {
// Update healthz timestamp at beginning in case Sync() never succeeds.
if proxier.healthzServer != nil {
proxier.healthzServer.Updated(proxier.ipFamily)
}
// synthesize "last change queued" time as the informers are syncing.
metrics.SyncProxyRulesLastQueuedTimestamp.SetToCurrentTime()
proxier.syncRunner.Loop(wait.NeverStop)
}
func (proxier *Proxier) setInitialized(value bool) {
var initialized int32
if value {
initialized = 1
}
atomic.StoreInt32(&proxier.initialized, initialized)
}
func (proxier *Proxier) isInitialized() bool {
return atomic.LoadInt32(&proxier.initialized) > 0
}
// OnServiceAdd is called whenever creation of new service object
// is observed.
func (proxier *Proxier) OnServiceAdd(service *v1.Service) {
proxier.OnServiceUpdate(nil, service)
}
// OnServiceUpdate is called whenever modification of an existing
// service object is observed.
func (proxier *Proxier) OnServiceUpdate(oldService, service *v1.Service) {
if proxier.serviceChanges.Update(oldService, service) && proxier.isInitialized() {
proxier.Sync()
}
}
// OnServiceDelete is called whenever deletion of an existing service
// object is observed.
func (proxier *Proxier) OnServiceDelete(service *v1.Service) {
proxier.OnServiceUpdate(service, nil)
}
// OnServiceSynced is called once all the initial event handlers were
// called and the state is fully propagated to local cache.
func (proxier *Proxier) OnServiceSynced() {
proxier.mu.Lock()
proxier.servicesSynced = true
proxier.setInitialized(proxier.endpointSlicesSynced)
proxier.mu.Unlock()
// Sync unconditionally - this is called once per lifetime.
proxier.syncProxyRules()
}
// OnEndpointSliceAdd is called whenever creation of a new endpoint slice object
// is observed.
func (proxier *Proxier) OnEndpointSliceAdd(endpointSlice *discovery.EndpointSlice) {
if proxier.endpointsChanges.EndpointSliceUpdate(endpointSlice, false) && proxier.isInitialized() {
proxier.Sync()
}
}
// OnEndpointSliceUpdate is called whenever modification of an existing endpoint
// slice object is observed.
func (proxier *Proxier) OnEndpointSliceUpdate(_, endpointSlice *discovery.EndpointSlice) {
if proxier.endpointsChanges.EndpointSliceUpdate(endpointSlice, false) && proxier.isInitialized() {
proxier.Sync()
}
}
// OnEndpointSliceDelete is called whenever deletion of an existing endpoint slice
// object is observed.
func (proxier *Proxier) OnEndpointSliceDelete(endpointSlice *discovery.EndpointSlice) {
if proxier.endpointsChanges.EndpointSliceUpdate(endpointSlice, true) && proxier.isInitialized() {
proxier.Sync()
}
}
// OnEndpointSlicesSynced is called once all the initial event handlers were
// called and the state is fully propagated to local cache.
func (proxier *Proxier) OnEndpointSlicesSynced() {
proxier.mu.Lock()
proxier.endpointSlicesSynced = true
proxier.setInitialized(proxier.servicesSynced)
proxier.mu.Unlock()
// Sync unconditionally - this is called once per lifetime.
proxier.syncProxyRules()
}
// OnNodeAdd is called whenever creation of new node object
// is observed.
func (proxier *Proxier) OnNodeAdd(node *v1.Node) {
if node.Name != proxier.hostname {
klog.ErrorS(nil, "Received a watch event for a node that doesn't match the current node",
"eventNode", node.Name, "currentNode", proxier.hostname)
return
}
if reflect.DeepEqual(proxier.nodeLabels, node.Labels) {
return
}
proxier.mu.Lock()
proxier.nodeLabels = map[string]string{}
for k, v := range node.Labels {
proxier.nodeLabels[k] = v
}
proxier.mu.Unlock()
klog.V(4).InfoS("Updated proxier node labels", "labels", node.Labels)
proxier.Sync()
}
// OnNodeUpdate is called whenever modification of an existing
// node object is observed.
func (proxier *Proxier) OnNodeUpdate(oldNode, node *v1.Node) {
if node.Name != proxier.hostname {
klog.ErrorS(nil, "Received a watch event for a node that doesn't match the current node",
"eventNode", node.Name, "currentNode", proxier.hostname)
return
}
if reflect.DeepEqual(proxier.nodeLabels, node.Labels) {
return
}
proxier.mu.Lock()
proxier.nodeLabels = map[string]string{}
for k, v := range node.Labels {
proxier.nodeLabels[k] = v
}
proxier.mu.Unlock()
klog.V(4).InfoS("Updated proxier node labels", "labels", node.Labels)
proxier.Sync()
}
// OnNodeDelete is called whenever deletion of an existing node
// object is observed.
func (proxier *Proxier) OnNodeDelete(node *v1.Node) {
if node.Name != proxier.hostname {
klog.ErrorS(nil, "Received a watch event for a node that doesn't match the current node",
"eventNode", node.Name, "currentNode", proxier.hostname)
return
}
proxier.mu.Lock()
proxier.nodeLabels = nil
proxier.mu.Unlock()
proxier.Sync()
}
// OnNodeSynced is called once all the initial event handlers were
// called and the state is fully propagated to local cache.
func (proxier *Proxier) OnNodeSynced() {
}
// portProtoHash takes the ServicePortName and protocol for a service
// returns the associated 16 character hash. This is computed by hashing (sha256)
// then encoding to base32 and truncating to 16 chars. We do this because IPTables
// Chain Names must be <= 28 chars long, and the longer they are the harder they are to read.
func portProtoHash(servicePortName string, protocol string) string {
hash := sha256.Sum256([]byte(servicePortName + protocol))
encoded := base32.StdEncoding.EncodeToString(hash[:])
return encoded[:16]
}
const (
servicePortPolicyClusterChainNamePrefix = "KUBE-SVC-"
servicePortPolicyLocalChainNamePrefix = "KUBE-SVL-"
serviceFirewallChainNamePrefix = "KUBE-FW-"
serviceExternalChainNamePrefix = "KUBE-EXT-"
servicePortEndpointChainNamePrefix = "KUBE-SEP-"
)
// servicePortPolicyClusterChain returns the name of the KUBE-SVC-XXXX chain for a service, which is the
// main iptables chain for that service, used for dispatching to endpoints when using `Cluster`
// traffic policy.
func servicePortPolicyClusterChain(servicePortName string, protocol string) string {
return servicePortPolicyClusterChainNamePrefix + portProtoHash(servicePortName, protocol)
}
// servicePortPolicyLocalChainName returns the name of the KUBE-SVL-XXXX chain for a service, which
// handles dispatching to local endpoints when using `Local` traffic policy. This chain only
// exists if the service has `Local` internal or external traffic policy.
func servicePortPolicyLocalChainName(servicePortName string, protocol string) string {
return servicePortPolicyLocalChainNamePrefix + portProtoHash(servicePortName, protocol)
}
// serviceFirewallChainName returns the name of the KUBE-FW-XXXX chain for a service, which
// is used to implement the filtering for the LoadBalancerSourceRanges feature.
func serviceFirewallChainName(servicePortName string, protocol string) string {
return serviceFirewallChainNamePrefix + portProtoHash(servicePortName, protocol)
}
// serviceExternalChainName returns the name of the KUBE-EXT-XXXX chain for a service, which
// implements "short-circuiting" for internally-originated external-destination traffic when using
// `Local` external traffic policy. It forwards traffic from local sources to the KUBE-SVC-XXXX
// chain and traffic from external sources to the KUBE-SVL-XXXX chain.
func serviceExternalChainName(servicePortName string, protocol string) string {
return serviceExternalChainNamePrefix + portProtoHash(servicePortName, protocol)
}
// servicePortEndpointChainName returns the name of the KUBE-SEP-XXXX chain for a particular
// service endpoint.
func servicePortEndpointChainName(servicePortName string, protocol string, endpoint string) string {
hash := sha256.Sum256([]byte(servicePortName + protocol + endpoint))
encoded := base32.StdEncoding.EncodeToString(hash[:])
return servicePortEndpointChainNamePrefix + encoded[:16]
}
func isServiceChainName(chainString string) bool {
prefixes := []string{
servicePortPolicyClusterChainNamePrefix,
servicePortPolicyLocalChainNamePrefix,
servicePortEndpointChainNamePrefix,
serviceFirewallChainNamePrefix,
serviceExternalChainNamePrefix,
}
for _, p := range prefixes {
if strings.HasPrefix(chainString, p) {
return true
}
}
return false
}
// This is where all of the nftables calls happen.
// This assumes proxier.mu is NOT held
func (proxier *Proxier) syncProxyRules() {
proxier.mu.Lock()
defer proxier.mu.Unlock()
// don't sync rules till we've received services and endpoints
if !proxier.isInitialized() {
klog.V(2).InfoS("Not syncing nftables until Services and Endpoints have been received from master")
return
}
// Keep track of how long syncs take.
start := time.Now()
defer func() {
metrics.SyncProxyRulesLatency.Observe(metrics.SinceInSeconds(start))
klog.V(2).InfoS("SyncProxyRules complete", "elapsed", time.Since(start))
}()
serviceUpdateResult := proxier.svcPortMap.Update(proxier.serviceChanges)
endpointUpdateResult := proxier.endpointsMap.Update(proxier.endpointsChanges)
klog.V(2).InfoS("Syncing nftables rules")
success := false
defer func() {
if !success {
klog.InfoS("Sync failed", "retryingTime", proxier.syncPeriod)
proxier.syncRunner.RetryAfter(proxier.syncPeriod)
}
}()
// Ensure that our jump rules (eg from PREROUTING to KUBE-SERVICES) exist.
// We can't do this as part of the iptables-restore because we don't want
// to specify/replace *all* of the rules in PREROUTING, etc.
for _, jump := range iptablesJumpChains {
if _, err := proxier.iptables.EnsureChain(jump.table, jump.dstChain); err != nil {
klog.ErrorS(err, "Failed to ensure chain exists", "table", jump.table, "chain", jump.dstChain)
return
}
args := jump.extraArgs
if jump.comment != "" {
args = append(args, "-m", "comment", "--comment", jump.comment)
}
args = append(args, "-j", string(jump.dstChain))
if _, err := proxier.iptables.EnsureRule(utiliptables.Prepend, jump.table, jump.srcChain, args...); err != nil {
klog.ErrorS(err, "Failed to ensure chain jumps", "table", jump.table, "srcChain", jump.srcChain, "dstChain", jump.dstChain)
return
}
}
//
// Below this point we will not return until we try to write the nftables rules.
//
// Reset all buffers used later.
// This is to avoid memory reallocations and thus improve performance.
proxier.filterChains.Reset()
proxier.filterRules.Reset()
proxier.natChains.Reset()
proxier.natRules.Reset()
// Write chain lines for all the "top-level" chains we'll be filling in
for _, chainName := range []utiliptables.Chain{kubeServicesFilterChain, kubeExternalServicesChain, kubeForwardChain, kubeProxyFirewallChain} {
proxier.filterChains.Write(utiliptables.MakeChainLine(chainName))
}
for _, chainName := range []utiliptables.Chain{kubeServicesChain, kubeNodePortsChain, kubePostroutingChain, kubeMarkMasqChain} {
proxier.natChains.Write(utiliptables.MakeChainLine(chainName))
}
// Install the kubernetes-specific postrouting rules. We use a whole chain for
// this so that it is easier to flush and change, for example if the mark
// value should ever change.
proxier.natRules.Write(
"-A", string(kubePostroutingChain),
"-m", "mark", "!", "--mark", fmt.Sprintf("%s/%s", proxier.masqueradeMark, proxier.masqueradeMark),
"-j", "RETURN",
)
// Clear the mark to avoid re-masquerading if the packet re-traverses the network stack.
proxier.natRules.Write(
"-A", string(kubePostroutingChain),
"-j", "MARK", "--xor-mark", proxier.masqueradeMark,
)
proxier.natRules.Write(
"-A", string(kubePostroutingChain),
"-m", "comment", "--comment", `"kubernetes service traffic requiring SNAT"`,
"-j", "MASQUERADE", "--random-fully",
)
// Install the kubernetes-specific masquerade mark rule. We use a whole chain for
// this so that it is easier to flush and change, for example if the mark
// value should ever change.
proxier.natRules.Write(
"-A", string(kubeMarkMasqChain),
"-j", "MARK", "--or-mark", proxier.masqueradeMark,
)
// Accumulate NAT chains to keep.
activeNATChains := sets.New[string]()
// Compute total number of endpoint chains across all services
// to get a sense of how big the cluster is.
totalEndpoints := 0
for svcName := range proxier.svcPortMap {
totalEndpoints += len(proxier.endpointsMap[svcName])
}
// These two variables are used to publish the sync_proxy_rules_no_endpoints_total
// metric.
serviceNoLocalEndpointsTotalInternal := 0
serviceNoLocalEndpointsTotalExternal := 0
// Build rules for each service-port.
for svcName, svc := range proxier.svcPortMap {
svcInfo, ok := svc.(*servicePortInfo)
if !ok {
klog.ErrorS(nil, "Failed to cast serviceInfo", "serviceName", svcName)
continue
}
protocol := strings.ToLower(string(svcInfo.Protocol()))
svcPortNameString := svcInfo.nameString
// Figure out the endpoints for Cluster and Local traffic policy.
// allLocallyReachableEndpoints is the set of all endpoints that can be routed to
// from this node, given the service's traffic policies. hasEndpoints is true
// if the service has any usable endpoints on any node, not just this one.
allEndpoints := proxier.endpointsMap[svcName]
clusterEndpoints, localEndpoints, allLocallyReachableEndpoints, hasEndpoints := proxy.CategorizeEndpoints(allEndpoints, svcInfo, proxier.nodeLabels)
// Note the endpoint chains that will be used
for _, ep := range allLocallyReachableEndpoints {
if epInfo, ok := ep.(*endpointInfo); ok {
activeNATChains.Insert(epInfo.chainName)
}
}
// clusterPolicyChain contains the endpoints used with "Cluster" traffic policy
clusterPolicyChain := svcInfo.clusterPolicyChainName
usesClusterPolicyChain := len(clusterEndpoints) > 0 && svcInfo.UsesClusterEndpoints()
if usesClusterPolicyChain {
activeNATChains.Insert(clusterPolicyChain)
}
// localPolicyChain contains the endpoints used with "Local" traffic policy
localPolicyChain := svcInfo.localPolicyChainName
usesLocalPolicyChain := len(localEndpoints) > 0 && svcInfo.UsesLocalEndpoints()
if usesLocalPolicyChain {
activeNATChains.Insert(localPolicyChain)
}
// internalPolicyChain is the chain containing the endpoints for
// "internal" (ClusterIP) traffic. internalTrafficChain is the chain that
// internal traffic is routed to (which is always the same as
// internalPolicyChain). hasInternalEndpoints is true if we should
// generate rules pointing to internalTrafficChain, or false if there are
// no available internal endpoints.
internalPolicyChain := clusterPolicyChain
hasInternalEndpoints := hasEndpoints
if svcInfo.InternalPolicyLocal() {
internalPolicyChain = localPolicyChain
if len(localEndpoints) == 0 {
hasInternalEndpoints = false
}
}
internalTrafficChain := internalPolicyChain
// Similarly, externalPolicyChain is the chain containing the endpoints
// for "external" (NodePort, LoadBalancer, and ExternalIP) traffic.
// externalTrafficChain is the chain that external traffic is routed to
// (which is always the service's "EXT" chain). hasExternalEndpoints is
// true if there are endpoints that will be reached by external traffic.
// (But we may still have to generate externalTrafficChain even if there
// are no external endpoints, to ensure that the short-circuit rules for
// local traffic are set up.)
externalPolicyChain := clusterPolicyChain
hasExternalEndpoints := hasEndpoints
if svcInfo.ExternalPolicyLocal() {
externalPolicyChain = localPolicyChain
if len(localEndpoints) == 0 {
hasExternalEndpoints = false
}
}
externalTrafficChain := svcInfo.externalChainName // eventually jumps to externalPolicyChain
// usesExternalTrafficChain is based on hasEndpoints, not hasExternalEndpoints,
// because we need the local-traffic-short-circuiting rules even when there
// are no externally-usable endpoints.
usesExternalTrafficChain := hasEndpoints && svcInfo.ExternallyAccessible()
if usesExternalTrafficChain {
activeNATChains.Insert(externalTrafficChain)
}
// Traffic to LoadBalancer IPs can go directly to externalTrafficChain
// unless LoadBalancerSourceRanges is in use in which case we will
// create a firewall chain.
loadBalancerTrafficChain := externalTrafficChain
fwChain := svcInfo.firewallChainName
usesFWChain := hasEndpoints && len(svcInfo.LoadBalancerVIPStrings()) > 0 && len(svcInfo.LoadBalancerSourceRanges()) > 0
if usesFWChain {
activeNATChains.Insert(fwChain)
loadBalancerTrafficChain = fwChain
}
var internalTrafficFilterTarget, internalTrafficFilterComment string
var externalTrafficFilterTarget, externalTrafficFilterComment string
if !hasEndpoints {
// The service has no endpoints at all; hasInternalEndpoints and
// hasExternalEndpoints will also be false, and we will not
// generate any chains in the "nat" table for the service; only
// rules in the "filter" table rejecting incoming packets for
// the service's IPs.
internalTrafficFilterTarget = "REJECT"
internalTrafficFilterComment = fmt.Sprintf(`"%s has no endpoints"`, svcPortNameString)
externalTrafficFilterTarget = "REJECT"
externalTrafficFilterComment = internalTrafficFilterComment
} else {
if !hasInternalEndpoints {
// The internalTrafficPolicy is "Local" but there are no local
// endpoints. Traffic to the clusterIP will be dropped, but
// external traffic may still be accepted.
internalTrafficFilterTarget = "DROP"
internalTrafficFilterComment = fmt.Sprintf(`"%s has no local endpoints"`, svcPortNameString)
serviceNoLocalEndpointsTotalInternal++
}
if !hasExternalEndpoints {
// The externalTrafficPolicy is "Local" but there are no
// local endpoints. Traffic to "external" IPs from outside
// the cluster will be dropped, but traffic from inside
// the cluster may still be accepted.
externalTrafficFilterTarget = "DROP"
externalTrafficFilterComment = fmt.Sprintf(`"%s has no local endpoints"`, svcPortNameString)
serviceNoLocalEndpointsTotalExternal++
}
}
// Capture the clusterIP.
if hasInternalEndpoints {
proxier.natRules.Write(
"-A", string(kubeServicesChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s cluster IP"`, svcPortNameString),
"-m", protocol, "-p", protocol,
"-d", svcInfo.ClusterIP().String(),
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", string(internalTrafficChain))
} else {
// No endpoints.
proxier.filterRules.Write(
"-A", string(kubeServicesFilterChain),
"-m", "comment", "--comment", internalTrafficFilterComment,
"-m", protocol, "-p", protocol,
"-d", svcInfo.ClusterIP().String(),
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", internalTrafficFilterTarget,
)
}
// Capture externalIPs.
for _, externalIP := range svcInfo.ExternalIPStrings() {
if hasEndpoints {
// Send traffic bound for external IPs to the "external
// destinations" chain.
proxier.natRules.Write(
"-A", string(kubeServicesChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s external IP"`, svcPortNameString),
"-m", protocol, "-p", protocol,
"-d", externalIP,
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", string(externalTrafficChain))
}
if !hasExternalEndpoints {
// Either no endpoints at all (REJECT) or no endpoints for
// external traffic (DROP anything that didn't get
// short-circuited by the EXT chain.)
proxier.filterRules.Write(
"-A", string(kubeExternalServicesChain),
"-m", "comment", "--comment", externalTrafficFilterComment,
"-m", protocol, "-p", protocol,
"-d", externalIP,
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", externalTrafficFilterTarget,
)
}
}
// Capture load-balancer ingress.
for _, lbip := range svcInfo.LoadBalancerVIPStrings() {
if hasEndpoints {
proxier.natRules.Write(
"-A", string(kubeServicesChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s loadbalancer IP"`, svcPortNameString),
"-m", protocol, "-p", protocol,
"-d", lbip,
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", string(loadBalancerTrafficChain))
}
if usesFWChain {
proxier.filterRules.Write(
"-A", string(kubeProxyFirewallChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s traffic not accepted by %s"`, svcPortNameString, svcInfo.firewallChainName),
"-m", protocol, "-p", protocol,
"-d", lbip,
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", "DROP")
}
}
if !hasExternalEndpoints {
// Either no endpoints at all (REJECT) or no endpoints for
// external traffic (DROP anything that didn't get short-circuited
// by the EXT chain.)
for _, lbip := range svcInfo.LoadBalancerVIPStrings() {
proxier.filterRules.Write(
"-A", string(kubeExternalServicesChain),
"-m", "comment", "--comment", externalTrafficFilterComment,
"-m", protocol, "-p", protocol,
"-d", lbip,
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", externalTrafficFilterTarget,
)
}
}
// Capture nodeports.
if svcInfo.NodePort() != 0 {
if hasEndpoints {
// Jump to the external destination chain. For better or for
// worse, nodeports are not subect to loadBalancerSourceRanges,
// and we can't change that.
proxier.natRules.Write(
"-A", string(kubeNodePortsChain),
"-m", "comment", "--comment", svcPortNameString,
"-m", protocol, "-p", protocol,
"--dport", strconv.Itoa(svcInfo.NodePort()),
"-j", string(externalTrafficChain))
}
if !hasExternalEndpoints {
// Either no endpoints at all (REJECT) or no endpoints for
// external traffic (DROP anything that didn't get
// short-circuited by the EXT chain.)
proxier.filterRules.Write(
"-A", string(kubeExternalServicesChain),
"-m", "comment", "--comment", externalTrafficFilterComment,
"-m", "addrtype", "--dst-type", "LOCAL",
"-m", protocol, "-p", protocol,
"--dport", strconv.Itoa(svcInfo.NodePort()),
"-j", externalTrafficFilterTarget,
)
}
}
// Set up internal traffic handling.
if hasInternalEndpoints {
if proxier.masqueradeAll {
proxier.natRules.Write(
"-A", string(internalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s cluster IP"`, svcPortNameString),
"-m", protocol, "-p", protocol,
"-d", svcInfo.ClusterIP().String(),
"--dport", strconv.Itoa(svcInfo.Port()),
"-j", string(kubeMarkMasqChain))
} else if proxier.localDetector.IsImplemented() {
// This masquerades off-cluster traffic to a service VIP. The
// idea is that you can establish a static route for your
// Service range, routing to any node, and that node will
// bridge into the Service for you. Since that might bounce
// off-node, we masquerade here.
proxier.natRules.Write(
"-A", string(internalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s cluster IP"`, svcPortNameString),
"-m", protocol, "-p", protocol,
"-d", svcInfo.ClusterIP().String(),
"--dport", strconv.Itoa(svcInfo.Port()),
proxier.localDetector.IfNotLocal(),
"-j", string(kubeMarkMasqChain))
}
}
// Set up external traffic handling (if any "external" destinations are
// enabled). All captured traffic for all external destinations should
// jump to externalTrafficChain, which will handle some special cases and
// then jump to externalPolicyChain.
if usesExternalTrafficChain {
proxier.natChains.Write(utiliptables.MakeChainLine(utiliptables.Chain(externalTrafficChain)))
if !svcInfo.ExternalPolicyLocal() {
// If we are using non-local endpoints we need to masquerade,
// in case we cross nodes.
proxier.natRules.Write(
"-A", string(externalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"masquerade traffic for %s external destinations"`, svcPortNameString),
"-j", string(kubeMarkMasqChain))
} else {
// If we are only using same-node endpoints, we can retain the
// source IP in most cases.
if proxier.localDetector.IsImplemented() {
// Treat all locally-originated pod -> external destination
// traffic as a special-case. It is subject to neither
// form of traffic policy, which simulates going up-and-out
// to an external load-balancer and coming back in.
proxier.natRules.Write(
"-A", string(externalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"pod traffic for %s external destinations"`, svcPortNameString),
proxier.localDetector.IfLocal(),
"-j", string(clusterPolicyChain))
}
// Locally originated traffic (not a pod, but the host node)
// still needs masquerade because the LBIP itself is a local
// address, so that will be the chosen source IP.
proxier.natRules.Write(
"-A", string(externalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"masquerade LOCAL traffic for %s external destinations"`, svcPortNameString),
"-m", "addrtype", "--src-type", "LOCAL",
"-j", string(kubeMarkMasqChain))
// Redirect all src-type=LOCAL -> external destination to the
// policy=cluster chain. This allows traffic originating
// from the host to be redirected to the service correctly.
proxier.natRules.Write(
"-A", string(externalTrafficChain),
"-m", "comment", "--comment", fmt.Sprintf(`"route LOCAL traffic for %s external destinations"`, svcPortNameString),
"-m", "addrtype", "--src-type", "LOCAL",
"-j", string(clusterPolicyChain))
}
// Anything else falls thru to the appropriate policy chain.
if hasExternalEndpoints {
proxier.natRules.Write(
"-A", string(externalTrafficChain),
"-j", string(externalPolicyChain))
}
}
// Set up firewall chain, if needed
if usesFWChain {
proxier.natChains.Write(utiliptables.MakeChainLine(utiliptables.Chain(fwChain)))
// The service firewall rules are created based on the
// loadBalancerSourceRanges field. This only works for VIP-like
// loadbalancers that preserve source IPs. For loadbalancers which
// direct traffic to service NodePort, the firewall rules will not
// apply.
// firewall filter based on each source range
allowFromNode := false
for _, src := range svcInfo.LoadBalancerSourceRanges() {
proxier.natRules.Write(
"-A", string(fwChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s loadbalancer IP"`, svcPortNameString),
"-s", src,
"-j", string(externalTrafficChain),
)
_, cidr, err := netutils.ParseCIDRSloppy(src)
if err != nil {
klog.ErrorS(err, "Error parsing CIDR in LoadBalancerSourceRanges, dropping it", "cidr", cidr)
} else if cidr.Contains(proxier.nodeIP) {
allowFromNode = true
}
}
// For VIP-like LBs, the VIP is often added as a local
// address (via an IP route rule). In that case, a request
// from a node to the VIP will not hit the loadbalancer but
// will loop back with the source IP set to the VIP. We
// need the following rules to allow requests from this node.
if allowFromNode {
for _, lbip := range svcInfo.LoadBalancerVIPStrings() {
proxier.natRules.Write(
"-A", string(fwChain),
"-m", "comment", "--comment", fmt.Sprintf(`"%s loadbalancer IP"`, svcPortNameString),
"-s", lbip,
"-j", string(externalTrafficChain),
)
}
}
// If the packet was able to reach the end of firewall chain,
// then it did not get DNATed, so it will match the
// corresponding KUBE-PROXY-FIREWALL rule.
proxier.natRules.Write(
"-A", string(fwChain),
"-m", "comment", "--comment", fmt.Sprintf(`"other traffic to %s will be dropped by KUBE-PROXY-FIREWALL"`, svcPortNameString),
)
}
// If Cluster policy is in use, create the chain and create rules jumping
// from clusterPolicyChain to the clusterEndpoints
if usesClusterPolicyChain {
proxier.natChains.Write(utiliptables.MakeChainLine(utiliptables.Chain(clusterPolicyChain)))
proxier.writeServiceToEndpointRules(svcPortNameString, svcInfo, clusterPolicyChain, clusterEndpoints)
}
// If Local policy is in use, create the chain and create rules jumping
// from localPolicyChain to the localEndpoints
if usesLocalPolicyChain {
proxier.natChains.Write(utiliptables.MakeChainLine(utiliptables.Chain(localPolicyChain)))
proxier.writeServiceToEndpointRules(svcPortNameString, svcInfo, localPolicyChain, localEndpoints)
}
// Generate the per-endpoint chains.
for _, ep := range allLocallyReachableEndpoints {
epInfo, ok := ep.(*endpointInfo)
if !ok {
klog.ErrorS(nil, "Failed to cast endpointInfo", "endpointInfo", ep)
continue
}
endpointChain := epInfo.chainName
// Create the endpoint chain
proxier.natChains.Write(utiliptables.MakeChainLine(utiliptables.Chain(endpointChain)))
activeNATChains.Insert(endpointChain)
// Handle traffic that loops back to the originator with SNAT.
proxier.natRules.Write(
"-A", string(endpointChain),
"-m", "comment", "--comment", svcPortNameString,
"-s", epInfo.IP(),
"-j", string(kubeMarkMasqChain),
)
commentAndAffinityArgs := []string{"-m", "comment", "--comment", svcPortNameString}
if svcInfo.SessionAffinityType() == v1.ServiceAffinityClientIP {
commentAndAffinityArgs = append(commentAndAffinityArgs, "-m", "recent", "--name", string(endpointChain), "--set")
}
// DNAT to final destination.
proxier.natRules.Write(
"-A", string(endpointChain),
commentAndAffinityArgs,
"-m", protocol, "-p", protocol,
"-j", "DNAT", "--to-destination", epInfo.String(),
)
}
}
// Delete chains no longer in use.
deletedChains := 0
var existingNATChains map[utiliptables.Chain]struct{}
proxier.iptablesData.Reset()
if err := proxier.iptables.SaveInto(utiliptables.TableNAT, proxier.iptablesData); err == nil {
existingNATChains = utiliptables.GetChainsFromTable(proxier.iptablesData.Bytes())
for chain := range existingNATChains {
if !activeNATChains.Has(string(chain)) {
chainString := string(chain)
if !isServiceChainName(chainString) {
// Ignore chains that aren't ours.
continue
}
// We must (as per iptables) write a chain-line
// for it, which has the nice effect of flushing
// the chain. Then we can remove the chain.
proxier.natChains.Write(utiliptables.MakeChainLine(chain))
proxier.natRules.Write("-X", chainString)
deletedChains++
}
}
} else {
klog.ErrorS(err, "Failed to execute iptables-save: stale chains will not be deleted")
}
// Finally, tail-call to the nodePorts chain. This needs to be after all
// other service portal rules.
if proxier.nodePortAddresses.MatchAll() {
isIPv6 := proxier.ipFamily == v1.IPv6Protocol
destinations := []string{"-m", "addrtype", "--dst-type", "LOCAL"}
// Block localhost nodePorts
if isIPv6 {
destinations = append(destinations, "!", "-d", "::1/128")
} else {
destinations = append(destinations, "!", "-d", "127.0.0.0/8")
}
proxier.natRules.Write(
"-A", string(kubeServicesChain),
"-m", "comment", "--comment", `"kubernetes service nodeports; NOTE: this must be the last rule in this chain"`,
destinations,
"-j", string(kubeNodePortsChain))
} else {
nodeIPs, err := proxier.nodePortAddresses.GetNodeIPs(proxier.networkInterfacer)
if err != nil {
klog.ErrorS(err, "Failed to get node ip address matching nodeport cidrs, services with nodeport may not work as intended", "CIDRs", proxier.nodePortAddresses)
}
for _, ip := range nodeIPs {
if ip.IsLoopback() {
klog.ErrorS(nil, "--nodeport-addresses includes localhost but localhost NodePorts are not supported", "address", ip.String())
continue
}
// create nodeport rules for each IP one by one
proxier.natRules.Write(
"-A", string(kubeServicesChain),
"-m", "comment", "--comment", `"kubernetes service nodeports; NOTE: this must be the last rule in this chain"`,
"-d", ip.String(),
"-j", string(kubeNodePortsChain))
}
}
// Drop the packets in INVALID state, which would potentially cause
// unexpected connection reset if nf_conntrack_tcp_be_liberal is not set.
// Ref: https://github.com/kubernetes/kubernetes/issues/74839
// Ref: https://github.com/kubernetes/kubernetes/issues/117924
if !proxier.conntrackTCPLiberal {
proxier.filterRules.Write(
"-A", string(kubeForwardChain),
"-m", "conntrack",
"--ctstate", "INVALID",
"-j", "DROP",
)
}
metrics.IptablesRulesTotal.WithLabelValues(string(utiliptables.TableFilter)).Set(float64(proxier.filterRules.Lines()))
metrics.IptablesRulesTotal.WithLabelValues(string(utiliptables.TableNAT)).Set(float64(proxier.natRules.Lines() - deletedChains))
// Sync rules.
proxier.iptablesData.Reset()
proxier.iptablesData.WriteString("*filter\n")
proxier.iptablesData.Write(proxier.filterChains.Bytes())
proxier.iptablesData.Write(proxier.filterRules.Bytes())
proxier.iptablesData.WriteString("COMMIT\n")
proxier.iptablesData.WriteString("*nat\n")
proxier.iptablesData.Write(proxier.natChains.Bytes())
proxier.iptablesData.Write(proxier.natRules.Bytes())
proxier.iptablesData.WriteString("COMMIT\n")
klog.V(2).InfoS("Reloading service nftables data",
"numServices", len(proxier.svcPortMap),
"numEndpoints", totalEndpoints,
"numFilterChains", proxier.filterChains.Lines(),
"numFilterRules", proxier.filterRules.Lines(),
"numNATChains", proxier.natChains.Lines(),
"numNATRules", proxier.natRules.Lines(),
)
klog.V(9).InfoS("Restoring iptables", "rules", proxier.iptablesData.Bytes())
// NOTE: NoFlushTables is used so we don't flush non-kubernetes chains in the table
err := proxier.iptables.RestoreAll(proxier.iptablesData.Bytes(), utiliptables.NoFlushTables, utiliptables.RestoreCounters)
if err != nil {
if pErr, ok := err.(utiliptables.ParseError); ok {
lines := utiliptables.ExtractLines(proxier.iptablesData.Bytes(), pErr.Line(), 3)
klog.ErrorS(pErr, "Failed to execute iptables-restore", "rules", lines)
} else {
klog.ErrorS(err, "Failed to execute iptables-restore")
}
metrics.IptablesRestoreFailuresTotal.Inc()
return
}
success = true
for name, lastChangeTriggerTimes := range endpointUpdateResult.LastChangeTriggerTimes {
for _, lastChangeTriggerTime := range lastChangeTriggerTimes {
latency := metrics.SinceInSeconds(lastChangeTriggerTime)
metrics.NetworkProgrammingLatency.Observe(latency)
klog.V(4).InfoS("Network programming", "endpoint", klog.KRef(name.Namespace, name.Name), "elapsed", latency)
}
}
metrics.SyncProxyRulesNoLocalEndpointsTotal.WithLabelValues("internal").Set(float64(serviceNoLocalEndpointsTotalInternal))
metrics.SyncProxyRulesNoLocalEndpointsTotal.WithLabelValues("external").Set(float64(serviceNoLocalEndpointsTotalExternal))
if proxier.healthzServer != nil {
proxier.healthzServer.Updated(proxier.ipFamily)
}
metrics.SyncProxyRulesLastTimestamp.SetToCurrentTime()
// Update service healthchecks. The endpoints list might include services that are
// not "OnlyLocal", but the services list will not, and the serviceHealthServer
// will just drop those endpoints.
if err := proxier.serviceHealthServer.SyncServices(proxier.svcPortMap.HealthCheckNodePorts()); err != nil {
klog.ErrorS(err, "Error syncing healthcheck services")
}
if err := proxier.serviceHealthServer.SyncEndpoints(proxier.endpointsMap.LocalReadyEndpoints()); err != nil {
klog.ErrorS(err, "Error syncing healthcheck endpoints")
}
// Finish housekeeping, clear stale conntrack entries for UDP Services
conntrack.CleanStaleEntries(proxier.ipFamily == v1.IPv6Protocol, proxier.exec, proxier.svcPortMap, serviceUpdateResult, endpointUpdateResult)
}
func (proxier *Proxier) writeServiceToEndpointRules(svcPortNameString string, svcInfo proxy.ServicePort, svcChain string, endpoints []proxy.Endpoint) {
// First write session affinity rules, if applicable.
if svcInfo.SessionAffinityType() == v1.ServiceAffinityClientIP {
for _, ep := range endpoints {
epInfo, ok := ep.(*endpointInfo)
if !ok {
continue
}
comment := fmt.Sprintf(`"%s -> %s"`, svcPortNameString, epInfo.String())
proxier.natRules.Write(
"-A", string(svcChain),
"-m", "comment", "--comment", comment,
"-m", "recent", "--name", string(epInfo.chainName),
"--rcheck", "--seconds", strconv.Itoa(svcInfo.StickyMaxAgeSeconds()), "--reap",
"-j", string(epInfo.chainName),
)
}
}
// Now write loadbalancing rules.
numEndpoints := len(endpoints)
for i, ep := range endpoints {
epInfo, ok := ep.(*endpointInfo)
if !ok {
continue
}
comment := fmt.Sprintf(`"%s -> %s"`, svcPortNameString, epInfo.String())
if i < (numEndpoints - 1) {
// Each rule is a probabilistic match.
proxier.natRules.Write(
"-A", string(svcChain),
"-m", "comment", "--comment", comment,
"-m", "statistic",
"--mode", "random",
"--probability", proxier.probability(numEndpoints-i),
"-j", string(epInfo.chainName),
)
} else {
// The final (or only if n == 1) rule is a guaranteed match.
proxier.natRules.Write(
"-A", string(svcChain),
"-m", "comment", "--comment", comment,
"-j", string(epInfo.chainName),
)
}
}
}