
This makes the Kubelet config key in the ConfigMap an explicit part of the API, so we can stop using magic key names. As part of this change, we are retiring ConfigMapRef for ConfigMap.
370 lines
12 KiB
Go
370 lines
12 KiB
Go
/*
|
|
Copyright 2017 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package node
|
|
|
|
import (
|
|
"sync"
|
|
|
|
pvutil "k8s.io/kubernetes/pkg/api/persistentvolume"
|
|
podutil "k8s.io/kubernetes/pkg/api/pod"
|
|
api "k8s.io/kubernetes/pkg/apis/core"
|
|
"k8s.io/kubernetes/third_party/forked/gonum/graph"
|
|
"k8s.io/kubernetes/third_party/forked/gonum/graph/simple"
|
|
)
|
|
|
|
// namedVertex implements graph.Node and remembers the type, namespace, and name of its related API object
|
|
type namedVertex struct {
|
|
name string
|
|
namespace string
|
|
id int
|
|
vertexType vertexType
|
|
}
|
|
|
|
func newNamedVertex(vertexType vertexType, namespace, name string, id int) *namedVertex {
|
|
return &namedVertex{
|
|
vertexType: vertexType,
|
|
name: name,
|
|
namespace: namespace,
|
|
id: id,
|
|
}
|
|
}
|
|
func (n *namedVertex) ID() int {
|
|
return n.id
|
|
}
|
|
func (n *namedVertex) String() string {
|
|
if len(n.namespace) == 0 {
|
|
return vertexTypes[n.vertexType] + ":" + n.name
|
|
}
|
|
return vertexTypes[n.vertexType] + ":" + n.namespace + "/" + n.name
|
|
}
|
|
|
|
// destinationEdge is a graph edge that includes a denormalized reference to the final destination vertex.
|
|
// This should only be used when there is a single leaf vertex reachable from T.
|
|
type destinationEdge struct {
|
|
F graph.Node
|
|
T graph.Node
|
|
Destination graph.Node
|
|
}
|
|
|
|
func newDestinationEdge(from, to, destination graph.Node) graph.Edge {
|
|
return &destinationEdge{F: from, T: to, Destination: destination}
|
|
}
|
|
func (e *destinationEdge) From() graph.Node { return e.F }
|
|
func (e *destinationEdge) To() graph.Node { return e.T }
|
|
func (e *destinationEdge) Weight() float64 { return 0 }
|
|
func (e *destinationEdge) DestinationID() int { return e.Destination.ID() }
|
|
|
|
// Graph holds graph vertices and a way to look up a vertex for a particular API type/namespace/name.
|
|
// All edges point toward the vertices representing Kubernetes nodes:
|
|
//
|
|
// node <- pod
|
|
// pod <- secret,configmap,pvc
|
|
// pvc <- pv
|
|
// pv <- secret
|
|
type Graph struct {
|
|
lock sync.RWMutex
|
|
graph *simple.DirectedAcyclicGraph
|
|
// vertices is a map of type -> namespace -> name -> vertex
|
|
vertices map[vertexType]namespaceVertexMapping
|
|
}
|
|
|
|
// namespaceVertexMapping is a map of namespace -> name -> vertex
|
|
type namespaceVertexMapping map[string]nameVertexMapping
|
|
|
|
// nameVertexMapping is a map of name -> vertex
|
|
type nameVertexMapping map[string]*namedVertex
|
|
|
|
func NewGraph() *Graph {
|
|
return &Graph{
|
|
vertices: map[vertexType]namespaceVertexMapping{},
|
|
graph: simple.NewDirectedAcyclicGraph(0, 0),
|
|
}
|
|
}
|
|
|
|
// vertexType indicates the type of the API object the vertex represents.
|
|
// represented as a byte to minimize space used in the vertices.
|
|
type vertexType byte
|
|
|
|
const (
|
|
configMapVertexType vertexType = iota
|
|
nodeVertexType
|
|
podVertexType
|
|
pvcVertexType
|
|
pvVertexType
|
|
secretVertexType
|
|
vaVertexType
|
|
serviceAccountVertexType
|
|
)
|
|
|
|
var vertexTypes = map[vertexType]string{
|
|
configMapVertexType: "configmap",
|
|
nodeVertexType: "node",
|
|
podVertexType: "pod",
|
|
pvcVertexType: "pvc",
|
|
pvVertexType: "pv",
|
|
secretVertexType: "secret",
|
|
vaVertexType: "volumeattachment",
|
|
serviceAccountVertexType: "serviceAccount",
|
|
}
|
|
|
|
// must be called under a write lock
|
|
func (g *Graph) getOrCreateVertex_locked(vertexType vertexType, namespace, name string) *namedVertex {
|
|
if vertex, exists := g.getVertex_rlocked(vertexType, namespace, name); exists {
|
|
return vertex
|
|
}
|
|
return g.createVertex_locked(vertexType, namespace, name)
|
|
}
|
|
|
|
// must be called under a read lock
|
|
func (g *Graph) getVertex_rlocked(vertexType vertexType, namespace, name string) (*namedVertex, bool) {
|
|
vertex, exists := g.vertices[vertexType][namespace][name]
|
|
return vertex, exists
|
|
}
|
|
|
|
// must be called under a write lock
|
|
func (g *Graph) createVertex_locked(vertexType vertexType, namespace, name string) *namedVertex {
|
|
typedVertices, exists := g.vertices[vertexType]
|
|
if !exists {
|
|
typedVertices = namespaceVertexMapping{}
|
|
g.vertices[vertexType] = typedVertices
|
|
}
|
|
|
|
namespacedVertices, exists := typedVertices[namespace]
|
|
if !exists {
|
|
namespacedVertices = map[string]*namedVertex{}
|
|
typedVertices[namespace] = namespacedVertices
|
|
}
|
|
|
|
vertex := newNamedVertex(vertexType, namespace, name, g.graph.NewNodeID())
|
|
namespacedVertices[name] = vertex
|
|
g.graph.AddNode(vertex)
|
|
|
|
return vertex
|
|
}
|
|
|
|
// must be called under write lock
|
|
func (g *Graph) deleteVertex_locked(vertexType vertexType, namespace, name string) {
|
|
vertex, exists := g.getVertex_rlocked(vertexType, namespace, name)
|
|
if !exists {
|
|
return
|
|
}
|
|
|
|
// find existing neighbors with a single edge (meaning we are their only neighbor)
|
|
neighborsToRemove := []graph.Node{}
|
|
g.graph.VisitFrom(vertex, func(neighbor graph.Node) bool {
|
|
// this downstream neighbor has only one edge (which must be from us), so remove them as well
|
|
if g.graph.Degree(neighbor) == 1 {
|
|
neighborsToRemove = append(neighborsToRemove, neighbor)
|
|
}
|
|
return true
|
|
})
|
|
g.graph.VisitTo(vertex, func(neighbor graph.Node) bool {
|
|
// this upstream neighbor has only one edge (which must be to us), so remove them as well
|
|
if g.graph.Degree(neighbor) == 1 {
|
|
neighborsToRemove = append(neighborsToRemove, neighbor)
|
|
}
|
|
return true
|
|
})
|
|
|
|
// remove the vertex
|
|
g.graph.RemoveNode(vertex)
|
|
delete(g.vertices[vertexType][namespace], name)
|
|
if len(g.vertices[vertexType][namespace]) == 0 {
|
|
delete(g.vertices[vertexType], namespace)
|
|
}
|
|
|
|
// remove neighbors that are now edgeless
|
|
for _, neighbor := range neighborsToRemove {
|
|
g.graph.RemoveNode(neighbor)
|
|
n := neighbor.(*namedVertex)
|
|
delete(g.vertices[n.vertexType][n.namespace], n.name)
|
|
if len(g.vertices[n.vertexType][n.namespace]) == 0 {
|
|
delete(g.vertices[n.vertexType], n.namespace)
|
|
}
|
|
}
|
|
}
|
|
|
|
// must be called under write lock
|
|
// deletes edges from a given vertex type to a specific vertex
|
|
// will delete each orphaned "from" vertex, but will never delete the "to" vertex
|
|
func (g *Graph) deleteEdges_locked(fromType, toType vertexType, toNamespace, toName string) {
|
|
// get the "to" side
|
|
toVert, exists := g.getVertex_rlocked(toType, toNamespace, toName)
|
|
if !exists {
|
|
return
|
|
}
|
|
|
|
// get potential "from" verts that match fromType
|
|
namespaces, exists := g.vertices[fromType]
|
|
if !exists {
|
|
return
|
|
}
|
|
|
|
// delete all edges between vertices of fromType and toVert
|
|
removeVerts := []*namedVertex{}
|
|
for _, vertexMapping := range namespaces {
|
|
for _, fromVert := range vertexMapping {
|
|
if g.graph.HasEdgeBetween(fromVert, toVert) {
|
|
// remove the edge (no-op if edge doesn't exist)
|
|
g.graph.RemoveEdge(newDestinationEdge(fromVert, toVert, nil))
|
|
// remember to clean up the fromVert if we orphaned it
|
|
if g.graph.Degree(fromVert) == 0 {
|
|
removeVerts = append(removeVerts, fromVert)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// clean up orphaned verts
|
|
for _, v := range removeVerts {
|
|
g.graph.RemoveNode(v)
|
|
delete(g.vertices[v.vertexType][v.namespace], v.name)
|
|
if len(g.vertices[v.vertexType][v.namespace]) == 0 {
|
|
delete(g.vertices[v.vertexType], v.namespace)
|
|
}
|
|
if len(g.vertices[v.vertexType]) == 0 {
|
|
delete(g.vertices, v.vertexType)
|
|
}
|
|
}
|
|
}
|
|
|
|
// AddPod should only be called once spec.NodeName is populated.
|
|
// It sets up edges for the following relationships (which are immutable for a pod once bound to a node):
|
|
//
|
|
// pod -> node
|
|
//
|
|
// secret -> pod
|
|
// configmap -> pod
|
|
// pvc -> pod
|
|
// svcacct -> pod
|
|
func (g *Graph) AddPod(pod *api.Pod) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
|
|
g.deleteVertex_locked(podVertexType, pod.Namespace, pod.Name)
|
|
podVertex := g.getOrCreateVertex_locked(podVertexType, pod.Namespace, pod.Name)
|
|
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", pod.Spec.NodeName)
|
|
g.graph.SetEdge(newDestinationEdge(podVertex, nodeVertex, nodeVertex))
|
|
|
|
// TODO(mikedanese): If the pod doesn't mount the service account secrets,
|
|
// should the node still get access to the service account?
|
|
//
|
|
// ref https://github.com/kubernetes/kubernetes/issues/58790
|
|
if len(pod.Spec.ServiceAccountName) > 0 {
|
|
g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(serviceAccountVertexType, pod.Namespace, pod.Spec.ServiceAccountName), podVertex, nodeVertex))
|
|
}
|
|
|
|
podutil.VisitPodSecretNames(pod, func(secret string) bool {
|
|
g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(secretVertexType, pod.Namespace, secret), podVertex, nodeVertex))
|
|
return true
|
|
})
|
|
|
|
podutil.VisitPodConfigmapNames(pod, func(configmap string) bool {
|
|
g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(configMapVertexType, pod.Namespace, configmap), podVertex, nodeVertex))
|
|
return true
|
|
})
|
|
|
|
for _, v := range pod.Spec.Volumes {
|
|
if v.PersistentVolumeClaim != nil {
|
|
g.graph.SetEdge(newDestinationEdge(g.getOrCreateVertex_locked(pvcVertexType, pod.Namespace, v.PersistentVolumeClaim.ClaimName), podVertex, nodeVertex))
|
|
}
|
|
}
|
|
}
|
|
func (g *Graph) DeletePod(name, namespace string) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
g.deleteVertex_locked(podVertexType, namespace, name)
|
|
}
|
|
|
|
// AddPV sets up edges for the following relationships:
|
|
//
|
|
// secret -> pv
|
|
//
|
|
// pv -> pvc
|
|
func (g *Graph) AddPV(pv *api.PersistentVolume) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
|
|
// clear existing edges
|
|
g.deleteVertex_locked(pvVertexType, "", pv.Name)
|
|
|
|
// if we have a pvc, establish new edges
|
|
if pv.Spec.ClaimRef != nil {
|
|
pvVertex := g.getOrCreateVertex_locked(pvVertexType, "", pv.Name)
|
|
|
|
// since we don't know the other end of the pvc -> pod -> node chain (or it may not even exist yet), we can't decorate these edges with kubernetes node info
|
|
g.graph.SetEdge(simple.Edge{F: pvVertex, T: g.getOrCreateVertex_locked(pvcVertexType, pv.Spec.ClaimRef.Namespace, pv.Spec.ClaimRef.Name)})
|
|
pvutil.VisitPVSecretNames(pv, func(namespace, secret string, kubeletVisible bool) bool {
|
|
// This grants access to the named secret in the same namespace as the bound PVC
|
|
if kubeletVisible {
|
|
g.graph.SetEdge(simple.Edge{F: g.getOrCreateVertex_locked(secretVertexType, namespace, secret), T: pvVertex})
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
}
|
|
func (g *Graph) DeletePV(name string) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
g.deleteVertex_locked(pvVertexType, "", name)
|
|
}
|
|
|
|
// AddVolumeAttachment sets up edges for the following relationships:
|
|
//
|
|
// volume attachment -> node
|
|
func (g *Graph) AddVolumeAttachment(attachmentName, nodeName string) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
|
|
// clear existing edges
|
|
g.deleteVertex_locked(vaVertexType, "", attachmentName)
|
|
|
|
// if we have a node, establish new edges
|
|
if len(nodeName) > 0 {
|
|
vaVertex := g.getOrCreateVertex_locked(vaVertexType, "", attachmentName)
|
|
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", nodeName)
|
|
g.graph.SetEdge(newDestinationEdge(vaVertex, nodeVertex, nodeVertex))
|
|
}
|
|
}
|
|
func (g *Graph) DeleteVolumeAttachment(name string) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
g.deleteVertex_locked(vaVertexType, "", name)
|
|
}
|
|
|
|
// SetNodeConfigMap sets up edges for the Node.Spec.ConfigSource.ConfigMap relationship:
|
|
//
|
|
// configmap -> node
|
|
func (g *Graph) SetNodeConfigMap(nodeName, configMapName, configMapNamespace string) {
|
|
g.lock.Lock()
|
|
defer g.lock.Unlock()
|
|
|
|
// TODO(mtaufen): ensure len(nodeName) > 0 in all cases (would sure be nice to have a dependently-typed language here...)
|
|
|
|
// clear edges configmaps -> node where the destination is the current node *only*
|
|
// at present, a node can only have one *direct* configmap reference at a time
|
|
g.deleteEdges_locked(configMapVertexType, nodeVertexType, "", nodeName)
|
|
|
|
// establish new edges if we have a real ConfigMap to reference
|
|
if len(configMapName) > 0 && len(configMapNamespace) > 0 {
|
|
configmapVertex := g.getOrCreateVertex_locked(configMapVertexType, configMapNamespace, configMapName)
|
|
nodeVertex := g.getOrCreateVertex_locked(nodeVertexType, "", nodeName)
|
|
g.graph.SetEdge(newDestinationEdge(configmapVertex, nodeVertex, nodeVertex))
|
|
}
|
|
|
|
}
|