kubernetes/vendor/github.com/bazelbuild/buildtools/build/lex.go
2018-03-29 17:01:30 -07:00

773 lines
19 KiB
Go

/*
Copyright 2016 Google Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Lexical scanning for BUILD file parser.
package build
import (
"bytes"
"fmt"
"strings"
"unicode/utf8"
)
// Parse parses the input data and returns the corresponding parse tree.
//
// The filename is used only for generating error messages.
func Parse(filename string, data []byte) (*File, error) {
in := newInput(filename, data)
return in.parse()
}
// An input represents a single input file being parsed.
type input struct {
// Lexing state.
filename string // name of input file, for errors
complete []byte // entire input
remaining []byte // remaining input
token []byte // token being scanned
lastToken string // most recently returned token, for error messages
pos Position // current input position
comments []Comment // accumulated comments
endRule int // position of end of current rule
depth int // nesting of [ ] { } ( )
// Parser state.
file *File // returned top-level syntax tree
parseError error // error encountered during parsing
// Comment assignment state.
pre []Expr // all expressions, in preorder traversal
post []Expr // all expressions, in postorder traversal
}
func newInput(filename string, data []byte) *input {
return &input{
filename: filename,
complete: data,
remaining: data,
pos: Position{Line: 1, LineRune: 1, Byte: 0},
}
}
// parse parses the input file.
func (in *input) parse() (f *File, err error) {
// The parser panics for both routine errors like syntax errors
// and for programmer bugs like array index errors.
// Turn both into error returns. Catching bug panics is
// especially important when processing many files.
defer func() {
if e := recover(); e != nil {
if e == in.parseError {
err = in.parseError
} else {
err = fmt.Errorf("%s:%d:%d: internal error: %v", in.filename, in.pos.Line, in.pos.LineRune, e)
}
}
}()
// Invoke the parser generated from parse.y.
yyParse(in)
if in.parseError != nil {
return nil, in.parseError
}
in.file.Path = in.filename
// Assign comments to nearby syntax.
in.assignComments()
return in.file, nil
}
// Error is called to report an error.
// When called by the generated code s is always "syntax error".
// Error does not return: it panics.
func (in *input) Error(s string) {
if s == "syntax error" && in.lastToken != "" {
s += " near " + in.lastToken
}
in.parseError = fmt.Errorf("%s:%d:%d: %v", in.filename, in.pos.Line, in.pos.LineRune, s)
panic(in.parseError)
}
// eof reports whether the input has reached end of file.
func (in *input) eof() bool {
return len(in.remaining) == 0
}
// peekRune returns the next rune in the input without consuming it.
func (in *input) peekRune() int {
if len(in.remaining) == 0 {
return 0
}
r, _ := utf8.DecodeRune(in.remaining)
return int(r)
}
// readRune consumes and returns the next rune in the input.
func (in *input) readRune() int {
if len(in.remaining) == 0 {
in.Error("internal lexer error: readRune at EOF")
}
r, size := utf8.DecodeRune(in.remaining)
in.remaining = in.remaining[size:]
if r == '\n' {
in.pos.Line++
in.pos.LineRune = 1
} else {
in.pos.LineRune++
}
in.pos.Byte += size
return int(r)
}
// startToken marks the beginning of the next input token.
// It must be followed by a call to endToken, once the token has
// been consumed using readRune.
func (in *input) startToken(val *yySymType) {
in.token = in.remaining
val.tok = ""
val.pos = in.pos
}
// yySymType (used in the next few functions) is defined by the
// generated parser. It is a struct containing all the fields listed
// in parse.y's %union [sic] section.
// endToken marks the end of an input token.
// It records the actual token string in val.tok if the caller
// has not done that already.
func (in *input) endToken(val *yySymType) {
if val.tok == "" {
tok := string(in.token[:len(in.token)-len(in.remaining)])
val.tok = tok
in.lastToken = val.tok
}
}
// Lex is called from the generated parser to obtain the next input token.
// It returns the token value (either a rune like '+' or a symbolic token _FOR)
// and sets val to the data associated with the token.
//
// For all our input tokens, the associated data is
// val.Pos (the position where the token begins)
// and val.Token (the input string corresponding to the token).
func (in *input) Lex(val *yySymType) int {
// Skip past spaces, stopping at non-space or EOF.
countNL := 0 // number of newlines we've skipped past
for !in.eof() {
// The parser does not track indentation, because for the most part
// BUILD expressions don't care about how they are indented.
// However, we do need to be able to distinguish
//
// x = y[0]
//
// from the occasional
//
// x = y
// [0]
//
// To handle this one case, when we reach the beginning of a
// top-level BUILD expression, we scan forward to see where
// it should end and record the number of input bytes remaining
// at that endpoint. When we reach that point in the input, we
// insert an implicit semicolon to force the two expressions
// to stay separate.
//
if in.endRule != 0 && len(in.remaining) == in.endRule {
in.endRule = 0
in.lastToken = "implicit ;"
val.tok = ";"
return ';'
}
// Skip over spaces. Count newlines so we can give the parser
// information about where top-level blank lines are,
// for top-level comment assignment.
c := in.peekRune()
if c == ' ' || c == '\t' || c == '\r' || c == '\n' {
if c == '\n' && in.endRule == 0 {
// Not in a rule. Tell parser about top-level blank line.
in.startToken(val)
in.readRune()
in.endToken(val)
return '\n'
}
if c == '\n' {
countNL++
}
in.readRune()
continue
}
// Comment runs to end of line.
if c == '#' {
// Is this comment the only thing on its line?
// Find the last \n before this # and see if it's all
// spaces from there to here.
// If it's a suffix comment but the last non-space symbol before
// it is one of (, [, or {, treat it as a line comment that should be
// put inside the corresponding block.
i := bytes.LastIndex(in.complete[:in.pos.Byte], []byte("\n"))
prefix := bytes.TrimSpace(in.complete[i+1 : in.pos.Byte])
isSuffix := true
if len(prefix) == 0 ||
prefix[len(prefix)-1] == '[' ||
prefix[len(prefix)-1] == '(' ||
prefix[len(prefix)-1] == '{' {
isSuffix = false
}
// Consume comment.
in.startToken(val)
for len(in.remaining) > 0 && in.readRune() != '\n' {
}
in.endToken(val)
val.tok = strings.TrimRight(val.tok, "\n")
in.lastToken = "comment"
// If we are at top level (not in a rule), hand the comment to
// the parser as a _COMMENT token. The grammar is written
// to handle top-level comments itself.
if in.endRule == 0 {
// Not in a rule. Tell parser about top-level comment.
return _COMMENT
}
// Otherwise, save comment for later attachment to syntax tree.
if countNL > 1 {
in.comments = append(in.comments, Comment{val.pos, "", false})
}
in.comments = append(in.comments, Comment{val.pos, val.tok, isSuffix})
countNL = 1
continue
}
if c == '\\' && len(in.remaining) >= 2 && in.remaining[1] == '\n' {
// We can ignore a trailing \ at end of line.
in.readRune()
continue
}
// Found non-space non-comment.
break
}
// Found the beginning of the next token.
in.startToken(val)
defer in.endToken(val)
// End of file.
if in.eof() {
in.lastToken = "EOF"
return _EOF
}
// If endRule is 0, we need to recompute where the end
// of the next rule (Python expression) is, so that we can
// generate a virtual end-of-rule semicolon (see above).
if in.endRule == 0 {
in.endRule = len(in.skipPython(in.remaining))
if in.endRule == 0 {
// skipPython got confused.
// No more virtual semicolons.
in.endRule = -1
}
}
// Punctuation tokens.
switch c := in.peekRune(); c {
case '[', '(', '{':
in.depth++
in.readRune()
return c
case ']', ')', '}':
in.depth--
in.readRune()
return c
case '.', '-', '%', ':', ';', ',', '/', '*': // single-char tokens
in.readRune()
return c
case '<', '>', '=', '!', '+': // possibly followed by =
in.readRune()
if in.peekRune() == '=' {
in.readRune()
switch c {
case '<':
return _LE
case '>':
return _GE
case '=':
return _EQ
case '!':
return _NE
case '+':
return _ADDEQ
}
}
return c
case 'r': // possible beginning of raw quoted string
if len(in.remaining) < 2 || in.remaining[1] != '"' && in.remaining[1] != '\'' {
break
}
in.readRune()
c = in.peekRune()
fallthrough
case '"', '\'': // quoted string
quote := c
if len(in.remaining) >= 3 && in.remaining[0] == byte(quote) && in.remaining[1] == byte(quote) && in.remaining[2] == byte(quote) {
// Triple-quoted string.
in.readRune()
in.readRune()
in.readRune()
var c1, c2, c3 int
for {
if in.eof() {
in.pos = val.pos
in.Error("unexpected EOF in string")
}
c1, c2, c3 = c2, c3, in.readRune()
if c1 == quote && c2 == quote && c3 == quote {
break
}
if c3 == '\\' {
if in.eof() {
in.pos = val.pos
in.Error("unexpected EOF in string")
}
in.readRune()
}
}
} else {
in.readRune()
for {
if in.eof() {
in.pos = val.pos
in.Error("unexpected EOF in string")
}
if in.peekRune() == '\n' {
in.Error("unexpected newline in string")
}
c := in.readRune()
if c == quote {
break
}
if c == '\\' {
if in.eof() {
in.pos = val.pos
in.Error("unexpected EOF in string")
}
in.readRune()
}
}
}
in.endToken(val)
s, triple, err := unquote(val.tok)
if err != nil {
in.Error(fmt.Sprint(err))
}
val.str = s
val.triple = triple
return _STRING
}
// Checked all punctuation. Must be identifier token.
if c := in.peekRune(); !isIdent(c) {
in.Error(fmt.Sprintf("unexpected input character %#q", c))
}
// Look for raw Python block (class, def, if, etc at beginning of line) and pass through.
if in.depth == 0 && in.pos.LineRune == 1 && hasPythonPrefix(in.remaining) {
// Find end of Python block and advance input beyond it.
// Have to loop calling readRune in order to maintain line number info.
rest := in.skipPython(in.remaining)
for len(in.remaining) > len(rest) {
in.readRune()
}
return _PYTHON
}
// Scan over alphanumeric identifier.
for {
c := in.peekRune()
if !isIdent(c) {
break
}
in.readRune()
}
// Call endToken to set val.tok to identifier we just scanned,
// so we can look to see if val.tok is a keyword.
in.endToken(val)
if k := keywordToken[val.tok]; k != 0 {
return k
}
return _IDENT
}
// isIdent reports whether c is an identifier rune.
// We treat all non-ASCII runes as identifier runes.
func isIdent(c int) bool {
return '0' <= c && c <= '9' ||
'A' <= c && c <= 'Z' ||
'a' <= c && c <= 'z' ||
c == '_' ||
c >= 0x80
}
// keywordToken records the special tokens for
// strings that should not be treated as ordinary identifiers.
var keywordToken = map[string]int{
"and": _AND,
"for": _FOR,
"if": _IF,
"else": _ELSE,
"in": _IN,
"is": _IS,
"lambda": _LAMBDA,
"not": _NOT,
"or": _OR,
}
// Python scanning.
// About 1% of BUILD files embed arbitrary Python into the file.
// We do not attempt to parse it. Instead, we lex just enough to scan
// beyond it, treating the Python block as an unintepreted blob.
// hasPythonPrefix reports whether p begins with a keyword that would
// introduce an uninterpreted Python block.
func hasPythonPrefix(p []byte) bool {
for _, pre := range prefixes {
if hasPrefixSpace(p, pre) {
return true
}
}
return false
}
// These keywords introduce uninterpreted Python blocks.
var prefixes = []string{
"assert",
"class",
"def",
"del",
"for",
"if",
"try",
}
// hasPrefixSpace reports whether p begins with pre followed by a space or colon.
func hasPrefixSpace(p []byte, pre string) bool {
if len(p) <= len(pre) || p[len(pre)] != ' ' && p[len(pre)] != '\t' && p[len(pre)] != ':' {
return false
}
for i := range pre {
if p[i] != pre[i] {
return false
}
}
return true
}
func isBlankOrComment(b []byte) bool {
for _, c := range b {
if c == '#' || c == '\n' {
return true
}
if c != ' ' && c != '\t' && c != '\r' {
return false
}
}
return true
}
// hasPythonContinuation reports whether p begins with a keyword that
// continues an uninterpreted Python block.
func hasPythonContinuation(p []byte) bool {
for _, pre := range continuations {
if hasPrefixSpace(p, pre) {
return true
}
}
return false
}
// These keywords continue uninterpreted Python blocks.
var continuations = []string{
"except",
"else",
}
// skipPython returns the data remaining after the uninterpreted
// Python block beginning at p. It does not advance the input position.
// (The only reason for the input receiver is to be able to call in.Error.)
func (in *input) skipPython(p []byte) []byte {
quote := byte(0) // if non-zero, the kind of quote we're in
tripleQuote := false // if true, the quote is a triple quote
depth := 0 // nesting depth for ( ) [ ] { }
var rest []byte // data after the Python block
// Scan over input one byte at a time until we find
// an unindented, non-blank, non-comment line
// outside quoted strings and brackets.
for i := 0; i < len(p); i++ {
c := p[i]
if quote != 0 && c == quote && !tripleQuote {
quote = 0
continue
}
if quote != 0 && c == quote && tripleQuote && i+2 < len(p) && p[i+1] == quote && p[i+2] == quote {
i += 2
quote = 0
tripleQuote = false
continue
}
if quote != 0 {
if c == '\\' {
i++ // skip escaped char
}
continue
}
if c == '\'' || c == '"' {
if i+2 < len(p) && p[i+1] == c && p[i+2] == c {
quote = c
tripleQuote = true
i += 2
continue
}
quote = c
continue
}
if depth == 0 && i > 0 && p[i-1] == '\n' && (i < 2 || p[i-2] != '\\') {
// Possible stopping point. Save the earliest one we find.
if rest == nil {
rest = p[i:]
}
if !isBlankOrComment(p[i:]) {
if !hasPythonContinuation(p[i:]) && c != ' ' && c != '\t' {
// Yes, stop here.
break
}
// Not a stopping point after all.
rest = nil
}
}
switch c {
case '#':
// Skip comment.
for i < len(p) && p[i] != '\n' {
i++
}
case '(', '[', '{':
depth++
case ')', ']', '}':
depth--
}
}
if quote != 0 {
in.Error("EOF scanning Python quoted string")
}
return rest
}
// Comment assignment.
// We build two lists of all subexpressions, preorder and postorder.
// The preorder list is ordered by start location, with outer expressions first.
// The postorder list is ordered by end location, with outer expressions last.
// We use the preorder list to assign each whole-line comment to the syntax
// immediately following it, and we use the postorder list to assign each
// end-of-line comment to the syntax immediately preceding it.
// order walks the expression adding it and its subexpressions to the
// preorder and postorder lists.
func (in *input) order(v Expr) {
if v != nil {
in.pre = append(in.pre, v)
}
switch v := v.(type) {
default:
panic(fmt.Errorf("order: unexpected type %T", v))
case nil:
// nothing
case *End:
// nothing
case *File:
for _, stmt := range v.Stmt {
in.order(stmt)
}
case *CommentBlock:
// nothing
case *CallExpr:
in.order(v.X)
for _, x := range v.List {
in.order(x)
}
in.order(&v.End)
case *PythonBlock:
// nothing
case *LiteralExpr:
// nothing
case *StringExpr:
// nothing
case *DotExpr:
in.order(v.X)
case *ListExpr:
for _, x := range v.List {
in.order(x)
}
in.order(&v.End)
case *ListForExpr:
in.order(v.X)
for _, c := range v.For {
in.order(c)
}
in.order(&v.End)
case *SetExpr:
for _, x := range v.List {
in.order(x)
}
in.order(&v.End)
case *ForClauseWithIfClausesOpt:
in.order(v.For)
for _, c := range v.Ifs {
in.order(c)
}
case *ForClause:
for _, name := range v.Var {
in.order(name)
}
in.order(v.Expr)
case *IfClause:
in.order(v.Cond)
case *KeyValueExpr:
in.order(v.Key)
in.order(v.Value)
case *DictExpr:
for _, x := range v.List {
in.order(x)
}
in.order(&v.End)
case *TupleExpr:
for _, x := range v.List {
in.order(x)
}
in.order(&v.End)
case *UnaryExpr:
in.order(v.X)
case *BinaryExpr:
in.order(v.X)
in.order(v.Y)
case *ConditionalExpr:
in.order(v.Then)
in.order(v.Test)
in.order(v.Else)
case *ParenExpr:
in.order(v.X)
in.order(&v.End)
case *SliceExpr:
in.order(v.X)
in.order(v.Y)
in.order(v.Z)
case *IndexExpr:
in.order(v.X)
in.order(v.Y)
case *LambdaExpr:
for _, name := range v.Var {
in.order(name)
}
in.order(v.Expr)
}
if v != nil {
in.post = append(in.post, v)
}
}
// assignComments attaches comments to nearby syntax.
func (in *input) assignComments() {
// Generate preorder and postorder lists.
in.order(in.file)
// Split into whole-line comments and suffix comments.
var line, suffix []Comment
for _, com := range in.comments {
if com.Suffix {
suffix = append(suffix, com)
} else {
line = append(line, com)
}
}
// Assign line comments to syntax immediately following.
for _, x := range in.pre {
start, _ := x.Span()
xcom := x.Comment()
for len(line) > 0 && start.Byte >= line[0].Start.Byte {
xcom.Before = append(xcom.Before, line[0])
line = line[1:]
}
}
// Remaining line comments go at end of file.
in.file.After = append(in.file.After, line...)
// Assign suffix comments to syntax immediately before.
for i := len(in.post) - 1; i >= 0; i-- {
x := in.post[i]
// Do not assign suffix comments to file
switch x.(type) {
case *File:
continue
}
_, end := x.Span()
xcom := x.Comment()
for len(suffix) > 0 && end.Byte <= suffix[len(suffix)-1].Start.Byte {
xcom.Suffix = append(xcom.Suffix, suffix[len(suffix)-1])
suffix = suffix[:len(suffix)-1]
}
}
// We assigned suffix comments in reverse.
// If multiple suffix comments were appended to the same
// expression node, they are now in reverse. Fix that.
for _, x := range in.post {
reverseComments(x.Comment().Suffix)
}
// Remaining suffix comments go at beginning of file.
in.file.Before = append(in.file.Before, suffix...)
}
// reverseComments reverses the []Comment list.
func reverseComments(list []Comment) {
for i, j := 0, len(list)-1; i < j; i, j = i+1, j-1 {
list[i], list[j] = list[j], list[i]
}
}