327 lines
12 KiB
Go
327 lines
12 KiB
Go
/*
|
|
Copyright 2019 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package topologymanager
|
|
|
|
import (
|
|
"k8s.io/klog/v2"
|
|
"k8s.io/kubernetes/pkg/kubelet/cm/topologymanager/bitmask"
|
|
)
|
|
|
|
// Policy interface for Topology Manager Pod Admit Result
|
|
type Policy interface {
|
|
// Returns Policy Name
|
|
Name() string
|
|
// Returns a merged TopologyHint based on input from hint providers
|
|
// and a Pod Admit Handler Response based on hints and policy type
|
|
Merge(providersHints []map[string][]TopologyHint) (TopologyHint, bool)
|
|
}
|
|
|
|
// Merge a TopologyHints permutation to a single hint by performing a bitwise-AND
|
|
// of their affinity masks. The hint shall be preferred if all hits in the permutation
|
|
// are preferred.
|
|
func mergePermutation(numaNodes []int, permutation []TopologyHint) TopologyHint {
|
|
// Get the NUMANodeAffinity from each hint in the permutation and see if any
|
|
// of them encode unpreferred allocations.
|
|
preferred := true
|
|
defaultAffinity, _ := bitmask.NewBitMask(numaNodes...)
|
|
var numaAffinities []bitmask.BitMask
|
|
for _, hint := range permutation {
|
|
// Only consider hints that have an actual NUMANodeAffinity set.
|
|
if hint.NUMANodeAffinity != nil {
|
|
numaAffinities = append(numaAffinities, hint.NUMANodeAffinity)
|
|
// Only mark preferred if all affinities are equal.
|
|
if !hint.NUMANodeAffinity.IsEqual(numaAffinities[0]) {
|
|
preferred = false
|
|
}
|
|
}
|
|
// Only mark preferred if all affinities are preferred.
|
|
if !hint.Preferred {
|
|
preferred = false
|
|
}
|
|
}
|
|
|
|
// Merge the affinities using a bitwise-and operation.
|
|
mergedAffinity := bitmask.And(defaultAffinity, numaAffinities...)
|
|
// Build a mergedHint from the merged affinity mask, setting preferred as
|
|
// appropriate based on the logic above.
|
|
return TopologyHint{mergedAffinity, preferred}
|
|
}
|
|
|
|
func filterProvidersHints(providersHints []map[string][]TopologyHint) [][]TopologyHint {
|
|
// Loop through all hint providers and save an accumulated list of the
|
|
// hints returned by each hint provider. If no hints are provided, assume
|
|
// that provider has no preference for topology-aware allocation.
|
|
var allProviderHints [][]TopologyHint
|
|
for _, hints := range providersHints {
|
|
// If hints is nil, insert a single, preferred any-numa hint into allProviderHints.
|
|
if len(hints) == 0 {
|
|
klog.InfoS("Hint Provider has no preference for NUMA affinity with any resource")
|
|
allProviderHints = append(allProviderHints, []TopologyHint{{nil, true}})
|
|
continue
|
|
}
|
|
|
|
// Otherwise, accumulate the hints for each resource type into allProviderHints.
|
|
for resource := range hints {
|
|
if hints[resource] == nil {
|
|
klog.InfoS("Hint Provider has no preference for NUMA affinity with resource", "resource", resource)
|
|
allProviderHints = append(allProviderHints, []TopologyHint{{nil, true}})
|
|
continue
|
|
}
|
|
|
|
if len(hints[resource]) == 0 {
|
|
klog.InfoS("Hint Provider has no possible NUMA affinities for resource", "resource", resource)
|
|
allProviderHints = append(allProviderHints, []TopologyHint{{nil, false}})
|
|
continue
|
|
}
|
|
|
|
allProviderHints = append(allProviderHints, hints[resource])
|
|
}
|
|
}
|
|
return allProviderHints
|
|
}
|
|
|
|
func narrowestHint(hints []TopologyHint) *TopologyHint {
|
|
if len(hints) == 0 {
|
|
return nil
|
|
}
|
|
var narrowestHint *TopologyHint
|
|
for i := range hints {
|
|
if hints[i].NUMANodeAffinity == nil {
|
|
continue
|
|
}
|
|
if narrowestHint == nil {
|
|
narrowestHint = &hints[i]
|
|
}
|
|
if hints[i].NUMANodeAffinity.IsNarrowerThan(narrowestHint.NUMANodeAffinity) {
|
|
narrowestHint = &hints[i]
|
|
}
|
|
}
|
|
return narrowestHint
|
|
}
|
|
|
|
func maxOfMinAffinityCounts(filteredHints [][]TopologyHint) int {
|
|
maxOfMinCount := 0
|
|
for _, resourceHints := range filteredHints {
|
|
narrowestHint := narrowestHint(resourceHints)
|
|
if narrowestHint == nil {
|
|
continue
|
|
}
|
|
if narrowestHint.NUMANodeAffinity.Count() > maxOfMinCount {
|
|
maxOfMinCount = narrowestHint.NUMANodeAffinity.Count()
|
|
}
|
|
}
|
|
return maxOfMinCount
|
|
}
|
|
|
|
func compareHints(bestNonPreferredAffinityCount int, current *TopologyHint, candidate *TopologyHint) *TopologyHint {
|
|
// Only consider candidates that result in a NUMANodeAffinity > 0 to
|
|
// replace the current bestHint.
|
|
if candidate.NUMANodeAffinity.Count() == 0 {
|
|
return current
|
|
}
|
|
|
|
// If no current bestHint is set, return the candidate as the bestHint.
|
|
if current == nil {
|
|
return candidate
|
|
}
|
|
|
|
// If the current bestHint is non-preferred and the candidate hint is
|
|
// preferred, always choose the preferred hint over the non-preferred one.
|
|
if !current.Preferred && candidate.Preferred {
|
|
return candidate
|
|
}
|
|
|
|
// If the current bestHint is preferred and the candidate hint is
|
|
// non-preferred, never update the bestHint, regardless of the
|
|
// candidate hint's narowness.
|
|
if current.Preferred && !candidate.Preferred {
|
|
return current
|
|
}
|
|
|
|
// If the current bestHint and the candidate hint are both preferred,
|
|
// then only consider candidate hints that have a narrower
|
|
// NUMANodeAffinity than the NUMANodeAffinity in the current bestHint.
|
|
if current.Preferred && candidate.Preferred {
|
|
if candidate.NUMANodeAffinity.IsNarrowerThan(current.NUMANodeAffinity) {
|
|
return candidate
|
|
}
|
|
return current
|
|
}
|
|
|
|
// The only case left is if the current best bestHint and the candidate
|
|
// hint are both non-preferred. In this case, try and find a hint whose
|
|
// affinity count is as close to (but not higher than) the
|
|
// bestNonPreferredAffinityCount as possible. To do this we need to
|
|
// consider the following cases and react accordingly:
|
|
//
|
|
// 1. current.NUMANodeAffinity.Count() > bestNonPreferredAffinityCount
|
|
// 2. current.NUMANodeAffinity.Count() == bestNonPreferredAffinityCount
|
|
// 3. current.NUMANodeAffinity.Count() < bestNonPreferredAffinityCount
|
|
//
|
|
// For case (1), the current bestHint is larger than the
|
|
// bestNonPreferredAffinityCount, so updating to any narrower mergeHint
|
|
// is preferred over staying where we are.
|
|
//
|
|
// For case (2), the current bestHint is equal to the
|
|
// bestNonPreferredAffinityCount, so we would like to stick with what
|
|
// we have *unless* the candidate hint is also equal to
|
|
// bestNonPreferredAffinityCount and it is narrower.
|
|
//
|
|
// For case (3), the current bestHint is less than
|
|
// bestNonPreferredAffinityCount, so we would like to creep back up to
|
|
// bestNonPreferredAffinityCount as close as we can. There are three
|
|
// cases to consider here:
|
|
//
|
|
// 3a. candidate.NUMANodeAffinity.Count() > bestNonPreferredAffinityCount
|
|
// 3b. candidate.NUMANodeAffinity.Count() == bestNonPreferredAffinityCount
|
|
// 3c. candidate.NUMANodeAffinity.Count() < bestNonPreferredAffinityCount
|
|
//
|
|
// For case (3a), we just want to stick with the current bestHint
|
|
// because choosing a new hint that is greater than
|
|
// bestNonPreferredAffinityCount would be counter-productive.
|
|
//
|
|
// For case (3b), we want to immediately update bestHint to the
|
|
// candidate hint, making it now equal to bestNonPreferredAffinityCount.
|
|
//
|
|
// For case (3c), we know that *both* the current bestHint and the
|
|
// candidate hint are less than bestNonPreferredAffinityCount, so we
|
|
// want to choose one that brings us back up as close to
|
|
// bestNonPreferredAffinityCount as possible. There are three cases to
|
|
// consider here:
|
|
//
|
|
// 3ca. candidate.NUMANodeAffinity.Count() > current.NUMANodeAffinity.Count()
|
|
// 3cb. candidate.NUMANodeAffinity.Count() < current.NUMANodeAffinity.Count()
|
|
// 3cc. candidate.NUMANodeAffinity.Count() == current.NUMANodeAffinity.Count()
|
|
//
|
|
// For case (3ca), we want to immediately update bestHint to the
|
|
// candidate hint because that will bring us closer to the (higher)
|
|
// value of bestNonPreferredAffinityCount.
|
|
//
|
|
// For case (3cb), we want to stick with the current bestHint because
|
|
// choosing the candidate hint would strictly move us further away from
|
|
// the bestNonPreferredAffinityCount.
|
|
//
|
|
// Finally, for case (3cc), we know that the current bestHint and the
|
|
// candidate hint are equal, so we simply choose the narrower of the 2.
|
|
|
|
// Case 1
|
|
if current.NUMANodeAffinity.Count() > bestNonPreferredAffinityCount {
|
|
if candidate.NUMANodeAffinity.IsNarrowerThan(current.NUMANodeAffinity) {
|
|
return candidate
|
|
}
|
|
return current
|
|
}
|
|
// Case 2
|
|
if current.NUMANodeAffinity.Count() == bestNonPreferredAffinityCount {
|
|
if candidate.NUMANodeAffinity.Count() != bestNonPreferredAffinityCount {
|
|
return current
|
|
}
|
|
if candidate.NUMANodeAffinity.IsNarrowerThan(current.NUMANodeAffinity) {
|
|
return candidate
|
|
}
|
|
return current
|
|
}
|
|
// Case 3a
|
|
if candidate.NUMANodeAffinity.Count() > bestNonPreferredAffinityCount {
|
|
return current
|
|
}
|
|
// Case 3b
|
|
if candidate.NUMANodeAffinity.Count() == bestNonPreferredAffinityCount {
|
|
return candidate
|
|
}
|
|
// Case 3ca
|
|
if candidate.NUMANodeAffinity.Count() > current.NUMANodeAffinity.Count() {
|
|
return candidate
|
|
}
|
|
// Case 3cb
|
|
if candidate.NUMANodeAffinity.Count() < current.NUMANodeAffinity.Count() {
|
|
return current
|
|
}
|
|
// Case 3cc
|
|
if candidate.NUMANodeAffinity.IsNarrowerThan(current.NUMANodeAffinity) {
|
|
return candidate
|
|
}
|
|
return current
|
|
}
|
|
|
|
func mergeFilteredHints(numaNodes []int, filteredHints [][]TopologyHint) TopologyHint {
|
|
// Set bestNonPreferredAffinityCount to help decide which affinity mask is
|
|
// preferred amongst all non-preferred hints. We calculate this value as
|
|
// the maximum of the minimum affinity counts supplied for any given hint
|
|
// provider. In other words, prefer a hint that has an affinity mask that
|
|
// includes all of the NUMA nodes from the provider that requires the most
|
|
// NUMA nodes to satisfy its allocation.
|
|
bestNonPreferredAffinityCount := maxOfMinAffinityCounts(filteredHints)
|
|
|
|
var bestHint *TopologyHint
|
|
iterateAllProviderTopologyHints(filteredHints, func(permutation []TopologyHint) {
|
|
// Get the NUMANodeAffinity from each hint in the permutation and see if any
|
|
// of them encode unpreferred allocations.
|
|
mergedHint := mergePermutation(numaNodes, permutation)
|
|
|
|
// Compare the current bestHint with the candidate mergedHint and
|
|
// update bestHint if appropriate.
|
|
bestHint = compareHints(bestNonPreferredAffinityCount, bestHint, &mergedHint)
|
|
})
|
|
|
|
if bestHint == nil {
|
|
defaultAffinity, _ := bitmask.NewBitMask(numaNodes...)
|
|
bestHint = &TopologyHint{defaultAffinity, false}
|
|
}
|
|
|
|
return *bestHint
|
|
}
|
|
|
|
// Iterate over all permutations of hints in 'allProviderHints [][]TopologyHint'.
|
|
//
|
|
// This procedure is implemented as a recursive function over the set of hints
|
|
// in 'allproviderHints[i]'. It applies the function 'callback' to each
|
|
// permutation as it is found. It is the equivalent of:
|
|
//
|
|
// for i := 0; i < len(providerHints[0]); i++
|
|
//
|
|
// for j := 0; j < len(providerHints[1]); j++
|
|
// for k := 0; k < len(providerHints[2]); k++
|
|
// ...
|
|
// for z := 0; z < len(providerHints[-1]); z++
|
|
// permutation := []TopologyHint{
|
|
// providerHints[0][i],
|
|
// providerHints[1][j],
|
|
// providerHints[2][k],
|
|
// ...
|
|
// providerHints[-1][z]
|
|
// }
|
|
// callback(permutation)
|
|
func iterateAllProviderTopologyHints(allProviderHints [][]TopologyHint, callback func([]TopologyHint)) {
|
|
// Internal helper function to accumulate the permutation before calling the callback.
|
|
var iterate func(i int, accum []TopologyHint)
|
|
iterate = func(i int, accum []TopologyHint) {
|
|
// Base case: we have looped through all providers and have a full permutation.
|
|
if i == len(allProviderHints) {
|
|
callback(accum)
|
|
return
|
|
}
|
|
|
|
// Loop through all hints for provider 'i', and recurse to build the
|
|
// permutation of this hint with all hints from providers 'i++'.
|
|
for j := range allProviderHints[i] {
|
|
iterate(i+1, append(accum, allProviderHints[i][j]))
|
|
}
|
|
}
|
|
iterate(0, []TopologyHint{})
|
|
}
|