211 lines
6.7 KiB
Go
211 lines
6.7 KiB
Go
/*
|
|
Copyright 2019 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package priorities
|
|
|
|
import (
|
|
"context"
|
|
"sync"
|
|
"sync/atomic"
|
|
|
|
"k8s.io/api/core/v1"
|
|
"k8s.io/apimachinery/pkg/labels"
|
|
"k8s.io/client-go/util/workqueue"
|
|
"k8s.io/kubernetes/pkg/scheduler/algorithm/predicates"
|
|
schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
|
|
schedulernodeinfo "k8s.io/kubernetes/pkg/scheduler/nodeinfo"
|
|
|
|
"k8s.io/klog"
|
|
)
|
|
|
|
type topologyPair struct {
|
|
key string
|
|
value string
|
|
}
|
|
|
|
type topologySpreadConstrantsMap struct {
|
|
// The first error that we faced.
|
|
firstError error
|
|
sync.Mutex
|
|
|
|
// counts store the mapping from node name to so-far computed score of
|
|
// the node.
|
|
counts map[string]*int64
|
|
// total number of matching pods on each qualified <topologyKey:value> pair
|
|
total int64
|
|
// topologyPairToNodeNames store the mapping from potential <topologyKey:value>
|
|
// pair to node names
|
|
topologyPairToNodeNames map[topologyPair][]string
|
|
}
|
|
|
|
func newTopologySpreadConstrantsMap(len int) *topologySpreadConstrantsMap {
|
|
return &topologySpreadConstrantsMap{
|
|
counts: make(map[string]*int64, len),
|
|
topologyPairToNodeNames: make(map[topologyPair][]string),
|
|
}
|
|
}
|
|
|
|
func (t *topologySpreadConstrantsMap) setError(err error) {
|
|
t.Lock()
|
|
if t.firstError == nil {
|
|
t.firstError = err
|
|
}
|
|
t.Unlock()
|
|
}
|
|
|
|
func (t *topologySpreadConstrantsMap) initialize(pod *v1.Pod, nodes []*v1.Node) {
|
|
constraints := getSoftTopologySpreadConstraints(pod)
|
|
for _, node := range nodes {
|
|
labelSet := labels.Set(node.Labels)
|
|
allMatch := true
|
|
var pairs []topologyPair
|
|
for _, constraint := range constraints {
|
|
tpKey := constraint.TopologyKey
|
|
if !labelSet.Has(tpKey) {
|
|
allMatch = false
|
|
break
|
|
}
|
|
pairs = append(pairs, topologyPair{key: tpKey, value: node.Labels[tpKey]})
|
|
}
|
|
if allMatch {
|
|
for _, pair := range pairs {
|
|
t.topologyPairToNodeNames[pair] = append(t.topologyPairToNodeNames[pair], node.Name)
|
|
}
|
|
t.counts[node.Name] = new(int64)
|
|
}
|
|
// for those nodes which don't have all required topologyKeys present, it's intentional to
|
|
// leave counts[nodeName] as nil, so that we're able to score these nodes to 0 afterwards
|
|
}
|
|
}
|
|
|
|
// CalculateEvenPodsSpreadPriority computes a score by checking through the topologySpreadConstraints
|
|
// that are with WhenUnsatifiable=ScheduleAnyway (a.k.a soft constraint).
|
|
// For each node (not only "filtered" nodes by Predicates), it adds the number of matching pods
|
|
// (all topologySpreadConstraints must be satified) as a "weight" to any "filtered" node
|
|
// which has the <topologyKey:value> pair present.
|
|
// Then the sumed "weight" are normalized to 0~10, and the node(s) with the highest score are
|
|
// the most preferred.
|
|
// Symmetry is not considered.
|
|
func CalculateEvenPodsSpreadPriority(pod *v1.Pod, nodeNameToInfo map[string]*schedulernodeinfo.NodeInfo, nodes []*v1.Node) (schedulerapi.HostPriorityList, error) {
|
|
nodesLen := len(nodes)
|
|
result := make(schedulerapi.HostPriorityList, nodesLen)
|
|
// if incoming pod doesn't have soft topology spread constraints, return
|
|
constraints := getSoftTopologySpreadConstraints(pod)
|
|
if len(constraints) == 0 {
|
|
return result, nil
|
|
}
|
|
|
|
t := newTopologySpreadConstrantsMap(len(nodes))
|
|
t.initialize(pod, nodes)
|
|
|
|
allNodeNames := make([]string, 0, len(nodeNameToInfo))
|
|
for name := range nodeNameToInfo {
|
|
allNodeNames = append(allNodeNames, name)
|
|
}
|
|
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
processNode := func(i int) {
|
|
nodeInfo := nodeNameToInfo[allNodeNames[i]]
|
|
if node := nodeInfo.Node(); node != nil {
|
|
// (1) `node` should satisfy incoming pod's NodeSelector/NodeAffinity
|
|
// (2) All topologyKeys need to be present in `node`
|
|
if !predicates.PodMatchesNodeSelectorAndAffinityTerms(pod, node) ||
|
|
!predicates.NodeLabelsMatchSpreadConstraints(node.Labels, constraints) {
|
|
return
|
|
}
|
|
matchCount := 0
|
|
for _, existingPod := range nodeInfo.Pods() {
|
|
match, err := predicates.PodMatchesAllSpreadConstraints(existingPod, pod.Namespace, constraints)
|
|
if err != nil {
|
|
t.setError(err)
|
|
cancel()
|
|
return
|
|
}
|
|
if match {
|
|
matchCount++
|
|
}
|
|
}
|
|
// add matchCount up to EACH node which is at least in one topology domain
|
|
// with current node
|
|
for _, constraint := range constraints {
|
|
tpKey := constraint.TopologyKey
|
|
pair := topologyPair{key: tpKey, value: node.Labels[tpKey]}
|
|
for _, nodeName := range t.topologyPairToNodeNames[pair] {
|
|
atomic.AddInt64(t.counts[nodeName], int64(matchCount))
|
|
atomic.AddInt64(&t.total, int64(matchCount))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
workqueue.ParallelizeUntil(ctx, 16, len(allNodeNames), processNode)
|
|
if t.firstError != nil {
|
|
return nil, t.firstError
|
|
}
|
|
|
|
var maxCount, minCount int64
|
|
for _, node := range nodes {
|
|
if t.counts[node.Name] == nil {
|
|
continue
|
|
}
|
|
// reverse
|
|
count := t.total - *t.counts[node.Name]
|
|
if count > maxCount {
|
|
maxCount = count
|
|
} else if count < minCount {
|
|
minCount = count
|
|
}
|
|
t.counts[node.Name] = &count
|
|
}
|
|
// calculate final priority score for each node
|
|
// TODO(Huang-Wei): in alpha version, we keep the formula as simple as possible.
|
|
// current version ranks the nodes properly, but it doesn't take MaxSkew into
|
|
// consideration, we may come up with a better formula in the future.
|
|
maxMinDiff := maxCount - minCount
|
|
for i := range nodes {
|
|
node := nodes[i]
|
|
result[i].Host = node.Name
|
|
if t.counts[node.Name] == nil {
|
|
result[i].Score = 0
|
|
continue
|
|
}
|
|
if maxMinDiff == 0 {
|
|
result[i].Score = schedulerapi.MaxPriority
|
|
continue
|
|
}
|
|
fScore := float64(schedulerapi.MaxPriority) * (float64(*t.counts[node.Name]-minCount) / float64(maxMinDiff))
|
|
// need to reverse b/c the more matching pods it has, the less qualified it is
|
|
// result[i].Score = schedulerapi.MaxPriority - int(fScore)
|
|
result[i].Score = int(fScore)
|
|
if klog.V(10) {
|
|
klog.Infof("%v -> %v: EvenPodsSpreadPriority, Score: (%d)", pod.Name, node.Name, int(fScore))
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
// TODO(Huang-Wei): combine this with getHardTopologySpreadConstraints() in predicates package
|
|
func getSoftTopologySpreadConstraints(pod *v1.Pod) (constraints []v1.TopologySpreadConstraint) {
|
|
if pod != nil {
|
|
for _, constraint := range pod.Spec.TopologySpreadConstraints {
|
|
if constraint.WhenUnsatisfiable == v1.ScheduleAnyway {
|
|
constraints = append(constraints, constraint)
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|