846 lines
18 KiB
Go
846 lines
18 KiB
Go
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||
|
||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/internal/asm/f32"
|
||
)
|
||
|
||
var _ blas.Float32Level3 = Implementation{}
|
||
|
||
// Strsm solves one of the matrix equations
|
||
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
|
||
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
|
||
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
|
||
// scalar.
|
||
//
|
||
// At entry to the function, X contains the values of B, and the result is
|
||
// stored in-place into X.
|
||
//
|
||
// No check is made that A is invertible.
|
||
//
|
||
// Float32 implementations are autogenerated and not directly tested.
|
||
func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
|
||
if s != blas.Left && s != blas.Right {
|
||
panic(badSide)
|
||
}
|
||
if ul != blas.Lower && ul != blas.Upper {
|
||
panic(badUplo)
|
||
}
|
||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||
panic(badTranspose)
|
||
}
|
||
if d != blas.NonUnit && d != blas.Unit {
|
||
panic(badDiag)
|
||
}
|
||
if m < 0 {
|
||
panic(mLT0)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if ldb < n {
|
||
panic(badLdB)
|
||
}
|
||
var k int
|
||
if s == blas.Left {
|
||
k = m
|
||
} else {
|
||
k = n
|
||
}
|
||
if lda*(k-1)+k > len(a) || lda < max(1, k) {
|
||
panic(badLdA)
|
||
}
|
||
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
|
||
panic(badLdB)
|
||
}
|
||
|
||
if m == 0 || n == 0 {
|
||
return
|
||
}
|
||
|
||
if alpha == 0 {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j := range btmp {
|
||
btmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
nonUnit := d == blas.NonUnit
|
||
if s == blas.Left {
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := m - 1; i >= 0; i-- {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
if alpha != 1 {
|
||
for j := range btmp {
|
||
btmp[j] *= alpha
|
||
}
|
||
}
|
||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||
k := ka + i + 1
|
||
if va != 0 {
|
||
f32.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
|
||
}
|
||
}
|
||
if nonUnit {
|
||
tmp := 1 / a[i*lda+i]
|
||
for j := 0; j < n; j++ {
|
||
btmp[j] *= tmp
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
if alpha != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmp[j] *= alpha
|
||
}
|
||
}
|
||
for k, va := range a[i*lda : i*lda+i] {
|
||
if va != 0 {
|
||
f32.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
|
||
}
|
||
}
|
||
if nonUnit {
|
||
tmp := 1 / a[i*lda+i]
|
||
for j := 0; j < n; j++ {
|
||
btmp[j] *= tmp
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is transposed
|
||
if ul == blas.Upper {
|
||
for k := 0; k < m; k++ {
|
||
btmpk := b[k*ldb : k*ldb+n]
|
||
if nonUnit {
|
||
tmp := 1 / a[k*lda+k]
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= tmp
|
||
}
|
||
}
|
||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||
i := ia + k + 1
|
||
if va != 0 {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
f32.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
|
||
}
|
||
}
|
||
if alpha != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= alpha
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for k := m - 1; k >= 0; k-- {
|
||
btmpk := b[k*ldb : k*ldb+n]
|
||
if nonUnit {
|
||
tmp := 1 / a[k*lda+k]
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= tmp
|
||
}
|
||
}
|
||
for i, va := range a[k*lda : k*lda+k] {
|
||
if va != 0 {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
f32.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
|
||
}
|
||
}
|
||
if alpha != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= alpha
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is to the right of X.
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
if alpha != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmp[j] *= alpha
|
||
}
|
||
}
|
||
for k, vb := range btmp {
|
||
if vb != 0 {
|
||
if btmp[k] != 0 {
|
||
if nonUnit {
|
||
btmp[k] /= a[k*lda+k]
|
||
}
|
||
btmpk := btmp[k+1 : n]
|
||
f32.AxpyUnitaryTo(btmpk, -btmp[k], a[k*lda+k+1:k*lda+n], btmpk)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*lda : i*lda+n]
|
||
if alpha != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmp[j] *= alpha
|
||
}
|
||
}
|
||
for k := n - 1; k >= 0; k-- {
|
||
if btmp[k] != 0 {
|
||
if nonUnit {
|
||
btmp[k] /= a[k*lda+k]
|
||
}
|
||
f32.AxpyUnitaryTo(btmp, -btmp[k], a[k*lda:k*lda+k], btmp)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is transposed.
|
||
if ul == blas.Upper {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*lda : i*lda+n]
|
||
for j := n - 1; j >= 0; j-- {
|
||
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
|
||
if nonUnit {
|
||
tmp /= a[j*lda+j]
|
||
}
|
||
btmp[j] = tmp
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*lda : i*lda+n]
|
||
for j := 0; j < n; j++ {
|
||
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda:j*lda+j], btmp)
|
||
if nonUnit {
|
||
tmp /= a[j*lda+j]
|
||
}
|
||
btmp[j] = tmp
|
||
}
|
||
}
|
||
}
|
||
|
||
// Ssymm performs one of the matrix-matrix operations
|
||
// C = alpha * A * B + beta * C if side == blas.Left
|
||
// C = alpha * B * A + beta * C if side == blas.Right
|
||
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
|
||
// is a scalar.
|
||
//
|
||
// Float32 implementations are autogenerated and not directly tested.
|
||
func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||
if s != blas.Right && s != blas.Left {
|
||
panic("goblas: bad side")
|
||
}
|
||
if ul != blas.Lower && ul != blas.Upper {
|
||
panic(badUplo)
|
||
}
|
||
if m < 0 {
|
||
panic(mLT0)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
var k int
|
||
if s == blas.Left {
|
||
k = m
|
||
} else {
|
||
k = n
|
||
}
|
||
if lda*(k-1)+k > len(a) || lda < max(1, k) {
|
||
panic(badLdA)
|
||
}
|
||
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
|
||
panic(badLdB)
|
||
}
|
||
if ldc*(m-1)+n > len(c) || ldc < max(1, n) {
|
||
panic(badLdC)
|
||
}
|
||
if m == 0 || n == 0 {
|
||
return
|
||
}
|
||
if alpha == 0 && beta == 1 {
|
||
return
|
||
}
|
||
if alpha == 0 {
|
||
if beta == 0 {
|
||
for i := 0; i < m; i++ {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j := 0; j < n; j++ {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
isUpper := ul == blas.Upper
|
||
if s == blas.Left {
|
||
for i := 0; i < m; i++ {
|
||
atmp := alpha * a[i*lda+i]
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
for j, v := range btmp {
|
||
ctmp[j] *= beta
|
||
ctmp[j] += atmp * v
|
||
}
|
||
|
||
for k := 0; k < i; k++ {
|
||
var atmp float32
|
||
if isUpper {
|
||
atmp = a[k*lda+i]
|
||
} else {
|
||
atmp = a[i*lda+k]
|
||
}
|
||
atmp *= alpha
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
f32.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
|
||
}
|
||
for k := i + 1; k < m; k++ {
|
||
var atmp float32
|
||
if isUpper {
|
||
atmp = a[i*lda+k]
|
||
} else {
|
||
atmp = a[k*lda+i]
|
||
}
|
||
atmp *= alpha
|
||
ctmp := c[i*ldc : i*ldc+n]
|
||
f32.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if isUpper {
|
||
for i := 0; i < m; i++ {
|
||
for j := n - 1; j >= 0; j-- {
|
||
tmp := alpha * b[i*ldb+j]
|
||
var tmp2 float32
|
||
atmp := a[j*lda+j+1 : j*lda+n]
|
||
btmp := b[i*ldb+j+1 : i*ldb+n]
|
||
ctmp := c[i*ldc+j+1 : i*ldc+n]
|
||
for k, v := range atmp {
|
||
ctmp[k] += tmp * v
|
||
tmp2 += btmp[k] * v
|
||
}
|
||
c[i*ldc+j] *= beta
|
||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
for j := 0; j < n; j++ {
|
||
tmp := alpha * b[i*ldb+j]
|
||
var tmp2 float32
|
||
atmp := a[j*lda : j*lda+j]
|
||
btmp := b[i*ldb : i*ldb+j]
|
||
ctmp := c[i*ldc : i*ldc+j]
|
||
for k, v := range atmp {
|
||
ctmp[k] += tmp * v
|
||
tmp2 += btmp[k] * v
|
||
}
|
||
c[i*ldc+j] *= beta
|
||
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
|
||
}
|
||
}
|
||
}
|
||
|
||
// Ssyrk performs one of the symmetric rank-k operations
|
||
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
|
||
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
|
||
// beta are scalars.
|
||
//
|
||
// Float32 implementations are autogenerated and not directly tested.
|
||
func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int) {
|
||
if ul != blas.Lower && ul != blas.Upper {
|
||
panic(badUplo)
|
||
}
|
||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||
panic(badTranspose)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
if ldc < n {
|
||
panic(badLdC)
|
||
}
|
||
var row, col int
|
||
if tA == blas.NoTrans {
|
||
row, col = n, k
|
||
} else {
|
||
row, col = k, n
|
||
}
|
||
if lda*(row-1)+col > len(a) || lda < max(1, col) {
|
||
panic(badLdA)
|
||
}
|
||
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
|
||
panic(badLdC)
|
||
}
|
||
if alpha == 0 {
|
||
if beta == 0 {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
atmp := a[i*lda : i*lda+k]
|
||
for jc, vc := range ctmp {
|
||
j := jc + i
|
||
ctmp[jc] = vc*beta + alpha*f32.DotUnitary(atmp, a[j*lda:j*lda+k])
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
atmp := a[i*lda : i*lda+k]
|
||
for j, vc := range c[i*ldc : i*ldc+i+1] {
|
||
c[i*ldc+j] = vc*beta + alpha*f32.DotUnitary(a[j*lda:j*lda+k], atmp)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is transposed.
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
if beta != 1 {
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
for l := 0; l < k; l++ {
|
||
tmp := alpha * a[l*lda+i]
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(ctmp, tmp, a[l*lda+i:l*lda+n], ctmp)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
if beta != 0 {
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
for l := 0; l < k; l++ {
|
||
tmp := alpha * a[l*lda+i]
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(ctmp, tmp, a[l*lda:l*lda+i+1], ctmp)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Ssyr2k performs one of the symmetric rank 2k operations
|
||
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
|
||
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
|
||
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
|
||
// alpha and beta are scalars.
|
||
//
|
||
// Float32 implementations are autogenerated and not directly tested.
|
||
func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||
if ul != blas.Lower && ul != blas.Upper {
|
||
panic(badUplo)
|
||
}
|
||
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
|
||
panic(badTranspose)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
if ldc < n {
|
||
panic(badLdC)
|
||
}
|
||
var row, col int
|
||
if tA == blas.NoTrans {
|
||
row, col = n, k
|
||
} else {
|
||
row, col = k, n
|
||
}
|
||
if lda*(row-1)+col > len(a) || lda < max(1, col) {
|
||
panic(badLdA)
|
||
}
|
||
if ldb*(row-1)+col > len(b) || ldb < max(1, col) {
|
||
panic(badLdB)
|
||
}
|
||
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
|
||
panic(badLdC)
|
||
}
|
||
if alpha == 0 {
|
||
if beta == 0 {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
for j := range ctmp {
|
||
ctmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
atmp := a[i*lda : i*lda+k]
|
||
btmp := b[i*ldb : i*ldb+k]
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
for jc := range ctmp {
|
||
j := i + jc
|
||
var tmp1, tmp2 float32
|
||
binner := b[j*ldb : j*ldb+k]
|
||
for l, v := range a[j*lda : j*lda+k] {
|
||
tmp1 += v * btmp[l]
|
||
tmp2 += atmp[l] * binner[l]
|
||
}
|
||
ctmp[jc] *= beta
|
||
ctmp[jc] += alpha * (tmp1 + tmp2)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
atmp := a[i*lda : i*lda+k]
|
||
btmp := b[i*ldb : i*ldb+k]
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
for j := 0; j <= i; j++ {
|
||
var tmp1, tmp2 float32
|
||
binner := b[j*ldb : j*ldb+k]
|
||
for l, v := range a[j*lda : j*lda+k] {
|
||
tmp1 += v * btmp[l]
|
||
tmp2 += atmp[l] * binner[l]
|
||
}
|
||
ctmp[j] *= beta
|
||
ctmp[j] += alpha * (tmp1 + tmp2)
|
||
}
|
||
}
|
||
return
|
||
}
|
||
if ul == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc+i : i*ldc+n]
|
||
if beta != 1 {
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
for l := 0; l < k; l++ {
|
||
tmp1 := alpha * b[l*lda+i]
|
||
tmp2 := alpha * a[l*lda+i]
|
||
btmp := b[l*ldb+i : l*ldb+n]
|
||
if tmp1 != 0 || tmp2 != 0 {
|
||
for j, v := range a[l*lda+i : l*lda+n] {
|
||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
ctmp := c[i*ldc : i*ldc+i+1]
|
||
if beta != 1 {
|
||
for j := range ctmp {
|
||
ctmp[j] *= beta
|
||
}
|
||
}
|
||
for l := 0; l < k; l++ {
|
||
tmp1 := alpha * b[l*lda+i]
|
||
tmp2 := alpha * a[l*lda+i]
|
||
btmp := b[l*ldb : l*ldb+i+1]
|
||
if tmp1 != 0 || tmp2 != 0 {
|
||
for j, v := range a[l*lda : l*lda+i+1] {
|
||
ctmp[j] += v*tmp1 + btmp[j]*tmp2
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Strmm performs one of the matrix-matrix operations
|
||
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
|
||
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
|
||
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
|
||
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
|
||
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
|
||
//
|
||
// Float32 implementations are autogenerated and not directly tested.
|
||
func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
|
||
if s != blas.Left && s != blas.Right {
|
||
panic(badSide)
|
||
}
|
||
if ul != blas.Lower && ul != blas.Upper {
|
||
panic(badUplo)
|
||
}
|
||
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
|
||
panic(badTranspose)
|
||
}
|
||
if d != blas.NonUnit && d != blas.Unit {
|
||
panic(badDiag)
|
||
}
|
||
if m < 0 {
|
||
panic(mLT0)
|
||
}
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
var k int
|
||
if s == blas.Left {
|
||
k = m
|
||
} else {
|
||
k = n
|
||
}
|
||
if lda*(k-1)+k > len(a) || lda < max(1, k) {
|
||
panic(badLdA)
|
||
}
|
||
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
|
||
panic(badLdB)
|
||
}
|
||
if alpha == 0 {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j := range btmp {
|
||
btmp[j] = 0
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
nonUnit := d == blas.NonUnit
|
||
if s == blas.Left {
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < m; i++ {
|
||
tmp := alpha
|
||
if nonUnit {
|
||
tmp *= a[i*lda+i]
|
||
}
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j := range btmp {
|
||
btmp[j] *= tmp
|
||
}
|
||
for ka, va := range a[i*lda+i+1 : i*lda+m] {
|
||
k := ka + i + 1
|
||
tmp := alpha * va
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := m - 1; i >= 0; i-- {
|
||
tmp := alpha
|
||
if nonUnit {
|
||
tmp *= a[i*lda+i]
|
||
}
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j := range btmp {
|
||
btmp[j] *= tmp
|
||
}
|
||
for k, va := range a[i*lda : i*lda+i] {
|
||
tmp := alpha * va
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is transposed.
|
||
if ul == blas.Upper {
|
||
for k := m - 1; k >= 0; k-- {
|
||
btmpk := b[k*ldb : k*ldb+n]
|
||
for ia, va := range a[k*lda+k+1 : k*lda+m] {
|
||
i := ia + k + 1
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
tmp := alpha * va
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
|
||
}
|
||
}
|
||
tmp := alpha
|
||
if nonUnit {
|
||
tmp *= a[k*lda+k]
|
||
}
|
||
if tmp != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= tmp
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for k := 0; k < m; k++ {
|
||
btmpk := b[k*ldb : k*ldb+n]
|
||
for i, va := range a[k*lda : k*lda+k] {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
tmp := alpha * va
|
||
if tmp != 0 {
|
||
f32.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
|
||
}
|
||
}
|
||
tmp := alpha
|
||
if nonUnit {
|
||
tmp *= a[k*lda+k]
|
||
}
|
||
if tmp != 1 {
|
||
for j := 0; j < n; j++ {
|
||
btmpk[j] *= tmp
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is on the right
|
||
if tA == blas.NoTrans {
|
||
if ul == blas.Upper {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for k := n - 1; k >= 0; k-- {
|
||
tmp := alpha * btmp[k]
|
||
if tmp != 0 {
|
||
btmp[k] = tmp
|
||
if nonUnit {
|
||
btmp[k] *= a[k*lda+k]
|
||
}
|
||
for ja, v := range a[k*lda+k+1 : k*lda+n] {
|
||
j := ja + k + 1
|
||
btmp[j] += tmp * v
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for k := 0; k < n; k++ {
|
||
tmp := alpha * btmp[k]
|
||
if tmp != 0 {
|
||
btmp[k] = tmp
|
||
if nonUnit {
|
||
btmp[k] *= a[k*lda+k]
|
||
}
|
||
f32.AxpyUnitaryTo(btmp, tmp, a[k*lda:k*lda+k], btmp)
|
||
}
|
||
}
|
||
}
|
||
return
|
||
}
|
||
// Cases where a is transposed.
|
||
if ul == blas.Upper {
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j, vb := range btmp {
|
||
tmp := vb
|
||
if nonUnit {
|
||
tmp *= a[j*lda+j]
|
||
}
|
||
tmp += f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
|
||
btmp[j] = alpha * tmp
|
||
}
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < m; i++ {
|
||
btmp := b[i*ldb : i*ldb+n]
|
||
for j := n - 1; j >= 0; j-- {
|
||
tmp := btmp[j]
|
||
if nonUnit {
|
||
tmp *= a[j*lda+j]
|
||
}
|
||
tmp += f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
|
||
btmp[j] = alpha * tmp
|
||
}
|
||
}
|
||
}
|