kubernetes/vendor/gonum.org/v1/gonum/blas/gonum/level3single.go
2018-07-26 13:24:36 -04:00

846 lines
18 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
)
var _ blas.Float32Level3 = Implementation{}
// Strsm solves one of the matrix equations
// A * X = alpha * B if tA == blas.NoTrans and side == blas.Left
// A^T * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// X * A = alpha * B if tA == blas.NoTrans and side == blas.Right
// X * A^T = alpha * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and alpha is a
// scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if ldb < n {
panic(badLdB)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if m == 0 || n == 0 {
return
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := m - 1; i >= 0; i-- {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := range btmp {
btmp[j] *= alpha
}
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
if va != 0 {
f32.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
for j := 0; j < n; j++ {
btmp[j] *= tmp
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f32.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
for j := 0; j < n; j++ {
btmp[j] *= tmp
}
}
}
return
}
// Cases where a is transposed
if ul == blas.Upper {
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
if va != 0 {
btmp := b[i*ldb : i*ldb+n]
f32.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
}
}
if alpha != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= alpha
}
}
}
return
}
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
for i, va := range a[k*lda : k*lda+k] {
if va != 0 {
btmp := b[i*ldb : i*ldb+n]
f32.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
}
}
if alpha != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= alpha
}
}
}
return
}
// Cases where a is to the right of X.
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k, vb := range btmp {
if vb != 0 {
if btmp[k] != 0 {
if nonUnit {
btmp[k] /= a[k*lda+k]
}
btmpk := btmp[k+1 : n]
f32.AxpyUnitaryTo(btmpk, -btmp[k], a[k*lda+k+1:k*lda+n], btmpk)
}
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k := n - 1; k >= 0; k-- {
if btmp[k] != 0 {
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f32.AxpyUnitaryTo(btmp, -btmp[k], a[k*lda:k*lda+k], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
for j := n - 1; j >= 0; j-- {
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
for j := 0; j < n; j++ {
tmp := alpha*btmp[j] - f32.DotUnitary(a[j*lda:j*lda+j], btmp)
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
}
// Ssymm performs one of the matrix-matrix operations
// C = alpha * A * B + beta * C if side == blas.Left
// C = alpha * B * A + beta * C if side == blas.Right
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
// is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssymm(s blas.Side, ul blas.Uplo, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
if s != blas.Right && s != blas.Left {
panic("goblas: bad side")
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if ldc*(m-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if m == 0 || n == 0 {
return
}
if alpha == 0 && beta == 1 {
return
}
if alpha == 0 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] *= beta
}
}
return
}
isUpper := ul == blas.Upper
if s == blas.Left {
for i := 0; i < m; i++ {
atmp := alpha * a[i*lda+i]
btmp := b[i*ldb : i*ldb+n]
ctmp := c[i*ldc : i*ldc+n]
for j, v := range btmp {
ctmp[j] *= beta
ctmp[j] += atmp * v
}
for k := 0; k < i; k++ {
var atmp float32
if isUpper {
atmp = a[k*lda+i]
} else {
atmp = a[i*lda+k]
}
atmp *= alpha
ctmp := c[i*ldc : i*ldc+n]
f32.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
}
for k := i + 1; k < m; k++ {
var atmp float32
if isUpper {
atmp = a[i*lda+k]
} else {
atmp = a[k*lda+i]
}
atmp *= alpha
ctmp := c[i*ldc : i*ldc+n]
f32.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
}
}
return
}
if isUpper {
for i := 0; i < m; i++ {
for j := n - 1; j >= 0; j-- {
tmp := alpha * b[i*ldb+j]
var tmp2 float32
atmp := a[j*lda+j+1 : j*lda+n]
btmp := b[i*ldb+j+1 : i*ldb+n]
ctmp := c[i*ldc+j+1 : i*ldc+n]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
return
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
tmp := alpha * b[i*ldb+j]
var tmp2 float32
atmp := a[j*lda : j*lda+j]
btmp := b[i*ldb : i*ldb+j]
ctmp := c[i*ldc : i*ldc+j]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
}
// Ssyrk performs one of the symmetric rank-k operations
// C = alpha * A * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A is an n×k or k×n matrix, C is an n×n symmetric matrix, and alpha and
// beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, beta float32, c []float32, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
if ldc < n {
panic(badLdC)
}
var row, col int
if tA == blas.NoTrans {
row, col = n, k
} else {
row, col = k, n
}
if lda*(row-1)+col > len(a) || lda < max(1, col) {
panic(badLdA)
}
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
atmp := a[i*lda : i*lda+k]
for jc, vc := range ctmp {
j := jc + i
ctmp[jc] = vc*beta + alpha*f32.DotUnitary(atmp, a[j*lda:j*lda+k])
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
for j, vc := range c[i*ldc : i*ldc+i+1] {
c[i*ldc+j] = vc*beta + alpha*f32.DotUnitary(a[j*lda:j*lda+k], atmp)
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f32.AxpyUnitaryTo(ctmp, tmp, a[l*lda+i:l*lda+n], ctmp)
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 0 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f32.AxpyUnitaryTo(ctmp, tmp, a[l*lda:l*lda+i+1], ctmp)
}
}
}
}
// Ssyr2k performs one of the symmetric rank 2k operations
// C = alpha * A * B^T + alpha * B * A^T + beta * C if tA == blas.NoTrans
// C = alpha * A^T * B + alpha * B^T * A + beta * C if tA == blas.Trans or tA == blas.ConjTrans
// where A and B are n×k or k×n matrices, C is an n×n symmetric matrix, and
// alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
if ldc < n {
panic(badLdC)
}
var row, col int
if tA == blas.NoTrans {
row, col = n, k
} else {
row, col = k, n
}
if lda*(row-1)+col > len(a) || lda < max(1, col) {
panic(badLdA)
}
if ldb*(row-1)+col > len(b) || ldb < max(1, col) {
panic(badLdB)
}
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc+i : i*ldc+n]
for jc := range ctmp {
j := i + jc
var tmp1, tmp2 float32
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[jc] *= beta
ctmp[jc] += alpha * (tmp1 + tmp2)
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc : i*ldc+i+1]
for j := 0; j <= i; j++ {
var tmp1, tmp2 float32
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[j] *= beta
ctmp[j] += alpha * (tmp1 + tmp2)
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*lda+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb+i : l*ldb+n]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda+i : l*lda+n] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*lda+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb : l*ldb+i+1]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda : l*lda+i+1] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
}
// Strmm performs one of the matrix-matrix operations
// B = alpha * A * B if tA == blas.NoTrans and side == blas.Left
// B = alpha * A^T * B if tA == blas.Trans or blas.ConjTrans, and side == blas.Left
// B = alpha * B * A if tA == blas.NoTrans and side == blas.Right
// B = alpha * B * A^T if tA == blas.Trans or blas.ConjTrans, and side == blas.Right
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float32, a []float32, lda int, b []float32, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] *= tmp
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
tmp := alpha * va
if tmp != 0 {
f32.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
for i := m - 1; i >= 0; i-- {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] *= tmp
}
for k, va := range a[i*lda : i*lda+i] {
tmp := alpha * va
if tmp != 0 {
f32.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
btmp := b[i*ldb : i*ldb+n]
tmp := alpha * va
if tmp != 0 {
f32.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
}
return
}
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
for i, va := range a[k*lda : k*lda+k] {
btmp := b[i*ldb : i*ldb+n]
tmp := alpha * va
if tmp != 0 {
f32.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
}
return
}
// Cases where a is on the right
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := n - 1; k >= 0; k-- {
tmp := alpha * btmp[k]
if tmp != 0 {
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
for ja, v := range a[k*lda+k+1 : k*lda+n] {
j := ja + k + 1
btmp[j] += tmp * v
}
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := 0; k < n; k++ {
tmp := alpha * btmp[k]
if tmp != 0 {
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f32.AxpyUnitaryTo(btmp, tmp, a[k*lda:k*lda+k], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j, vb := range btmp {
tmp := vb
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f32.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
btmp[j] = alpha * tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := btmp[j]
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f32.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
btmp[j] = alpha * tmp
}
}
}