Merge pull request #642 from robertbaldyga/parallelize

Parallelize metadata initialization
This commit is contained in:
Robert Baldyga 2022-02-07 13:53:45 +01:00 committed by GitHub
commit 76684ed8a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1384 additions and 355 deletions

View File

@ -9,6 +9,7 @@
#include "../metadata/metadata.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_cache_line.h"
#include "../utils/utils_parallelize.h"
#include "../ocf_request.h"
#include "../cleaning/acp.h"
#include "../engine/engine_common.h"
@ -270,8 +271,7 @@ void cleaning_policy_acp_setup(struct ocf_cache *cache)
config->flush_max_buffers = OCF_ACP_DEFAULT_FLUSH_MAX_BUFFERS;
}
int cleaning_policy_acp_initialize(struct ocf_cache *cache,
int init_metadata)
int cleaning_policy_acp_init_common(ocf_cache_t cache)
{
struct acp_context *acp;
int err, i;
@ -317,12 +317,206 @@ int cleaning_policy_acp_initialize(struct ocf_cache *cache,
}
}
return 0;
}
int cleaning_policy_acp_initialize(ocf_cache_t cache, int init_metadata)
{
int result;
result = cleaning_policy_acp_init_common(cache);
if (result)
return result;
_acp_rebuild(cache);
ocf_kick_cleaner(cache);
return 0;
}
#define OCF_ACP_RECOVERY_SHARDS_CNT 32
struct ocf_acp_recovery_context {
ocf_cache_t cache;
struct {
uint16_t *chunk[OCF_CORE_MAX];
struct {
struct list_head chunk_list;
} bucket[ACP_MAX_BUCKETS];
} shard[OCF_ACP_RECOVERY_SHARDS_CNT];
ocf_cleaning_recovery_end_t cmpl;
void *priv;
};
static int ocf_acp_recovery_handle(ocf_parallelize_t parallelize,
void *priv, unsigned shard_id, unsigned shards_cnt)
{
struct ocf_acp_recovery_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_cache_line_t entries = cache->device->collision_table_entries;
ocf_cache_line_t cline, portion;
uint64_t begin, end;
struct acp_cleaning_policy_meta *acp_meta;
struct acp_chunk_info *chunk;
ocf_core_id_t core_id;
uint32_t step = 0;
portion = DIV_ROUND_UP((uint64_t)entries, shards_cnt);
begin = portion*shard_id;
end = OCF_MIN(portion*(shard_id + 1), entries);
for (cline = begin; cline < end; cline++) {
ocf_metadata_get_core_and_part_id(cache, cline, &core_id, NULL);
OCF_COND_RESCHED_DEFAULT(step);
if (core_id == OCF_CORE_MAX)
continue;
if (!metadata_test_dirty(cache, cline)) {
cleaning_policy_acp_init_cache_block(cache, cline);
continue;
}
acp_meta = _acp_meta_get(cache, cline);
acp_meta->dirty = 1;
chunk = _acp_get_chunk(cache, cline);
context->shard[shard_id].chunk[core_id][chunk->chunk_id]++;
}
return 0;
}
static void ocf_acp_recovery_chunk(struct ocf_acp_recovery_context *context,
struct acp_chunk_info *chunk)
{
ocf_cache_t cache = context->cache;
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
struct acp_bucket *bucket;
unsigned shard_id;
uint8_t bucket_id;
chunk->num_dirty = 0;
for (shard_id = 0; shard_id < OCF_ACP_RECOVERY_SHARDS_CNT; shard_id++) {
chunk->num_dirty += context->shard[shard_id]
.chunk[chunk->core_id][chunk->chunk_id];
}
for (bucket_id = 0; bucket_id < ACP_MAX_BUCKETS; bucket_id++) {
bucket = &acp->bucket_info[bucket_id];
if (chunk->num_dirty < bucket->threshold)
break;
}
bucket = &acp->bucket_info[--bucket_id];
chunk->bucket_id = bucket_id;
list_move_tail(&chunk->list, &bucket->chunk_list);
}
static void ocf_acp_recovery_finish(ocf_parallelize_t parallelize,
void *priv, int error)
{
struct ocf_acp_recovery_context *context = priv;
ocf_cache_t cache = context->cache;
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
ocf_core_id_t core_id;
ocf_core_t core;
uint64_t core_size;
uint64_t num_chunks;
uint64_t chunk_id;
uint32_t step = 0;
for_each_core(cache, core, core_id) {
core_size = core->conf_meta->length;
num_chunks = OCF_DIV_ROUND_UP(core_size, ACP_CHUNK_SIZE);
for (chunk_id = 0; chunk_id < num_chunks; chunk_id++) {
ocf_acp_recovery_chunk(context,
&acp->chunk_info[core_id][chunk_id]);
OCF_COND_RESCHED_DEFAULT(step);
}
}
ocf_cache_log(cache, log_info, "Finished rebuilding ACP metadata\n");
ocf_kick_cleaner(cache);
context->cmpl(context->priv, error);
for_each_core(cache, core, core_id) {
if (context->shard[0].chunk[core_id])
env_vfree(context->shard[0].chunk[core_id]);
}
ocf_parallelize_destroy(parallelize);
}
void cleaning_policy_acp_recovery(ocf_cache_t cache,
ocf_cleaning_recovery_end_t cmpl, void *priv)
{
struct ocf_acp_recovery_context *context;
ocf_parallelize_t parallelize;
ocf_core_id_t core_id;
ocf_core_t core;
unsigned shards_cnt = OCF_ACP_RECOVERY_SHARDS_CNT;
unsigned shard_id;
uint64_t core_size;
uint64_t num_chunks;
uint16_t *chunks;
int result;
result = ocf_parallelize_create(&parallelize, cache,
OCF_ACP_RECOVERY_SHARDS_CNT, sizeof(*context),
ocf_acp_recovery_handle, ocf_acp_recovery_finish);
if (result) {
cmpl(priv, result);
return;
}
context = ocf_parallelize_get_priv(parallelize);
context->cache = cache;
context->cmpl = cmpl;
context->priv = priv;
for_each_core(cache, core, core_id) {
core_size = core->conf_meta->length;
num_chunks = OCF_DIV_ROUND_UP(core_size, ACP_CHUNK_SIZE);
chunks = env_vzalloc(sizeof(*chunks) * num_chunks * shards_cnt);
if (!chunks) {
result = -OCF_ERR_NO_MEM;
goto err;
}
for (shard_id = 0; shard_id < shards_cnt; shard_id++) {
context->shard[shard_id].chunk[core_id] =
&chunks[num_chunks * shard_id];
}
}
result = cleaning_policy_acp_init_common(cache);
if (result)
goto err;
ocf_parallelize_run(parallelize);
return;
err:
for_each_core(cache, core, core_id) {
if (context->shard[0].chunk[core_id])
env_vfree(context->shard[0].chunk[core_id]);
}
ocf_parallelize_destroy(parallelize);
cmpl(priv, result);
}
int cleaning_policy_acp_set_cleaning_param(ocf_cache_t cache,
uint32_t param_id, uint32_t param_value)
{

View File

@ -12,6 +12,9 @@ void cleaning_policy_acp_setup(ocf_cache_t cache);
int cleaning_policy_acp_initialize(ocf_cache_t cache, int init_metadata);
void cleaning_policy_acp_recovery(ocf_cache_t cache,
ocf_cleaning_recovery_end_t cmpl, void *priv);
void cleaning_policy_acp_deinitialize(ocf_cache_t cache);
void cleaning_policy_acp_perform_cleaning(ocf_cache_t cache,

View File

@ -10,6 +10,7 @@
#include "../metadata/metadata.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_user_part.h"
#include "../utils/utils_parallelize.h"
#include "../utils/utils_realloc.h"
#include "../concurrency/ocf_cache_line_concurrency.h"
#include "../ocf_def_priv.h"
@ -61,54 +62,63 @@ struct alru_context {
/* -- Start of ALRU functions -- */
/* Adds the given collision_index to the _head_ of the ALRU list */
static void add_alru_head(struct ocf_cache *cache, int partition_id,
unsigned int collision_index)
/* Appends given sublist to the _head_ of the ALRU list */
static void append_alru_head(ocf_cache_t cache, ocf_part_id_t part_id,
ocf_cache_line_t head, ocf_cache_line_t tail)
{
unsigned int curr_head_index;
unsigned int collision_table_entries = cache->device->collision_table_entries;
struct alru_cleaning_policy *part_alru = &cache->user_parts[partition_id]
.clean_pol->policy.alru;
struct alru_cleaning_policy_meta *alru;
ocf_cache_line_t terminator = cache->device->collision_table_entries;
struct alru_cleaning_policy *part_alru;
struct cleaning_policy_meta *meta;
struct alru_cleaning_policy_meta *old_head;
struct alru_cleaning_policy_meta *entry;
ENV_BUG_ON(!(collision_index < collision_table_entries));
part_alru = &cache->user_parts[part_id].clean_pol->policy.alru;
ENV_BUG_ON(env_atomic_read(&part_alru->size) < 0);
if (head == terminator && tail == terminator)
return;
ENV_WARN_ON(!metadata_test_dirty(cache, collision_index));
ENV_WARN_ON(!metadata_test_valid_any(cache, collision_index));
ENV_BUG_ON(head == terminator);
ENV_BUG_ON(tail == terminator);
/* First node to be added/ */
if (env_atomic_read(&part_alru->size) == 0) {
part_alru->lru_head = collision_index;
part_alru->lru_tail = collision_index;
alru = &ocf_metadata_get_cleaning_policy(cache,
collision_index)->meta.alru;
alru->lru_next = collision_table_entries;
alru->lru_prev = collision_table_entries;
alru->timestamp = env_ticks_to_secs(
env_get_tick_count());
if (part_alru->lru_head == terminator) {
part_alru->lru_head = head;
part_alru->lru_tail = tail;
} else {
/* Not the first node to be added. */
meta = ocf_metadata_get_cleaning_policy(cache, part_alru->lru_head);
old_head = &meta->meta.alru;
old_head->lru_prev = tail;
curr_head_index = part_alru->lru_head;
meta = ocf_metadata_get_cleaning_policy(cache, tail);
entry = &meta->meta.alru;
entry->lru_next = part_alru->lru_head;
ENV_BUG_ON(!(curr_head_index < collision_table_entries));
alru = &ocf_metadata_get_cleaning_policy(cache,
collision_index)->meta.alru;
alru->lru_next = curr_head_index;
alru->lru_prev = collision_table_entries;
alru->timestamp = env_ticks_to_secs(
env_get_tick_count());
alru = &ocf_metadata_get_cleaning_policy(cache,
curr_head_index)->meta.alru;
alru->lru_prev = collision_index;
part_alru->lru_head = collision_index;
part_alru->lru_head = head;
}
}
/* Adds the given collision_index to the _head_ of the ALRU list */
static void add_alru_head(ocf_cache_t cache, ocf_part_id_t part_id,
ocf_cache_line_t cline)
{
ocf_cache_line_t terminator = cache->device->collision_table_entries;
struct alru_cleaning_policy *part_alru;
struct cleaning_policy_meta *meta;
struct alru_cleaning_policy_meta *entry;
ENV_BUG_ON(!(cline < terminator));
ENV_WARN_ON(!metadata_test_dirty(cache, cline));
ENV_WARN_ON(!metadata_test_valid_any(cache, cline));
part_alru = &cache->user_parts[part_id].clean_pol->policy.alru;
meta = ocf_metadata_get_cleaning_policy(cache, cline);
entry = &meta->meta.alru;
entry->lru_next = terminator;
entry->lru_prev = terminator;
entry->timestamp = env_ticks_to_secs(env_get_tick_count());
append_alru_head(cache, part_id, cline, cline);
env_atomic_inc(&part_alru->size);
}
@ -375,24 +385,6 @@ static void _alru_rebuild(struct ocf_cache *cache)
}
}
static int cleaning_policy_alru_initialize_part(struct ocf_cache *cache,
struct ocf_user_part *user_part, int init_metadata)
{
struct alru_cleaning_policy *part_alru =
&user_part->clean_pol->policy.alru;
if (init_metadata) {
/* ALRU initialization */
env_atomic_set(&part_alru->size, 0);
part_alru->lru_head = cache->device->collision_table_entries;
part_alru->lru_tail = cache->device->collision_table_entries;
}
cache->device->runtime_meta->cleaning_thread_access = 0;
return 0;
}
void cleaning_policy_alru_setup(struct ocf_cache *cache)
{
struct alru_cleaning_policy_config *config;
@ -405,10 +397,8 @@ void cleaning_policy_alru_setup(struct ocf_cache *cache)
config->activity_threshold = OCF_ALRU_DEFAULT_ACTIVITY_THRESHOLD;
}
int cleaning_policy_alru_initialize(ocf_cache_t cache, int init_metadata)
int cleaning_policy_alru_init_common(ocf_cache_t cache)
{
struct ocf_user_part *user_part;
ocf_part_id_t part_id;
struct alru_context *ctx;
int error = 0;
unsigned i;
@ -432,13 +422,20 @@ int cleaning_policy_alru_initialize(ocf_cache_t cache, int init_metadata)
return error;
}
cache->device->runtime_meta->cleaning_thread_access = 0;
cache->cleaner.cleaning_policy_context = ctx;
for_each_user_part(cache, user_part, part_id) {
cleaning_policy_alru_initialize_part(cache,
user_part, init_metadata);
}
return 0;
}
int cleaning_policy_alru_initialize(ocf_cache_t cache, int init_metadata)
{
int result;
result = cleaning_policy_alru_init_common(cache);
if (result)
return result;
if (init_metadata)
_alru_rebuild(cache);
@ -448,6 +445,184 @@ int cleaning_policy_alru_initialize(ocf_cache_t cache, int init_metadata)
return 0;
}
#define OCF_ALRU_RECOVERY_SHARDS_CNT 32
struct ocf_alru_recovery_context {
ocf_cache_t cache;
struct {
struct {
ocf_cache_line_t head;
ocf_cache_line_t tail;
} part[OCF_USER_IO_CLASS_MAX];
} shard[OCF_ALRU_RECOVERY_SHARDS_CNT] __attribute__((aligned(64)));
ocf_cleaning_recovery_end_t cmpl;
void *priv;
};
static void add_alru_head_recovery(struct ocf_alru_recovery_context *context,
unsigned shard_id, ocf_core_id_t part_id,
ocf_cache_line_t cline)
{
ocf_cache_t cache = context->cache;
ocf_cache_line_t curr_head, terminator;
struct cleaning_policy_meta *meta;
struct alru_cleaning_policy_meta *entry;
struct alru_cleaning_policy_meta *next;
terminator = ocf_metadata_collision_table_entries(cache);
curr_head = context->shard[shard_id].part[part_id].head;
meta = ocf_metadata_get_cleaning_policy(cache, cline);
entry = &meta->meta.alru;
if (curr_head == terminator) {
/* First node to be added/ */
entry->lru_next = terminator;
entry->lru_prev = terminator;
entry->timestamp = env_ticks_to_secs(env_get_tick_count());
context->shard[shard_id].part[part_id].head = cline;
context->shard[shard_id].part[part_id].tail = cline;
} else {
/* Not the first node to be added. */
entry->lru_next = curr_head;
entry->lru_prev = terminator;
entry->timestamp = env_ticks_to_secs(env_get_tick_count());
meta = ocf_metadata_get_cleaning_policy(cache, curr_head);
next = &meta->meta.alru;
next->lru_prev = cline;
context->shard[shard_id].part[part_id].head = cline;
}
}
static int ocf_alru_recovery_handle(ocf_parallelize_t parallelize,
void *priv, unsigned shard_id, unsigned shards_cnt)
{
struct ocf_alru_recovery_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_cache_line_t entries = cache->device->collision_table_entries;
ocf_cache_line_t terminator = entries;
unsigned part_size[OCF_USER_IO_CLASS_MAX] = {};
struct ocf_user_part *user_part;
struct alru_cleaning_policy *part_alru;
ocf_part_id_t part_id;
ocf_core_id_t core_id;
ocf_cache_line_t cline, portion;
uint64_t begin, end;
uint32_t step = 0;
int i;
portion = DIV_ROUND_UP((uint64_t)entries, shards_cnt);
begin = portion*shard_id;
end = OCF_MIN(portion*(shard_id + 1), entries);
for (i = 0; i < OCF_USER_IO_CLASS_MAX; i++) {
context->shard[shard_id].part[i].head = terminator;
context->shard[shard_id].part[i].tail = terminator;
}
for (cline = begin; cline < end; cline++) {
ocf_metadata_get_core_and_part_id(cache, cline,
&core_id, &part_id);
OCF_COND_RESCHED_DEFAULT(step);
if (core_id == OCF_CORE_MAX)
continue;
if (!metadata_test_dirty(cache, cline)) {
cleaning_policy_alru_init_cache_block(cache, cline);
} else {
add_alru_head_recovery(context, shard_id,
part_id, cline);
++part_size[part_id];
}
}
for_each_user_part(cache, user_part, part_id) {
part_alru = &user_part->clean_pol->policy.alru;
env_atomic_add(part_size[part_id], &part_alru->size);
}
return 0;
}
static void ocf_alru_recovery_finish(ocf_parallelize_t parallelize,
void *priv, int error)
{
struct ocf_alru_recovery_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_part_id_t part_id;
ocf_cache_line_t head, tail;
unsigned shard;
if (error)
goto end;
for (part_id = 0; part_id < OCF_USER_IO_CLASS_MAX; part_id++) {
for (shard = 0; shard < OCF_ALRU_RECOVERY_SHARDS_CNT; shard++) {
head = context->shard[shard].part[part_id].head;
tail = context->shard[shard].part[part_id].tail;
append_alru_head(cache, part_id, head, tail);
}
}
ocf_kick_cleaner(cache);
end:
context->cmpl(context->priv, error);
ocf_parallelize_destroy(parallelize);
}
void cleaning_policy_alru_recovery(ocf_cache_t cache,
ocf_cleaning_recovery_end_t cmpl, void *priv)
{
struct ocf_alru_recovery_context *context;
ocf_parallelize_t parallelize;
struct alru_cleaning_policy *part_alru;
struct ocf_user_part *user_part;
ocf_part_id_t part_id;
int result;
result = ocf_parallelize_create(&parallelize, cache,
OCF_ALRU_RECOVERY_SHARDS_CNT, sizeof(*context),
ocf_alru_recovery_handle, ocf_alru_recovery_finish);
if (result) {
cmpl(priv, result);
return;
}
result = cleaning_policy_alru_init_common(cache);
if (result) {
ocf_parallelize_destroy(parallelize);
cmpl(priv, result);
return;
}
for_each_user_part(cache, user_part, part_id) {
/* ALRU initialization */
part_alru = &user_part->clean_pol->policy.alru;
env_atomic_set(&part_alru->size, 0);
part_alru->lru_head = cache->device->collision_table_entries;
part_alru->lru_tail = cache->device->collision_table_entries;
cache->device->runtime_meta->cleaning_thread_access = 0;
}
context = ocf_parallelize_get_priv(parallelize);
context->cache = cache;
context->cmpl = cmpl;
context->priv = priv;
ocf_parallelize_run(parallelize);
}
void cleaning_policy_alru_deinitialize(struct ocf_cache *cache)
{
struct alru_context *alru = cache->cleaner.cleaning_policy_context;

View File

@ -11,6 +11,8 @@
void cleaning_policy_alru_setup(ocf_cache_t cache);
int cleaning_policy_alru_initialize(ocf_cache_t cache, int init_metadata);
void cleaning_policy_alru_recovery(ocf_cache_t cache,
ocf_cleaning_recovery_end_t cmpl, void *priv);
void cleaning_policy_alru_deinitialize(ocf_cache_t cache);
void cleaning_policy_alru_init_cache_block(ocf_cache_t cache,
uint32_t cache_line);

View File

@ -54,4 +54,6 @@ void ocf_kick_cleaner(ocf_cache_t cache);
void ocf_stop_cleaner(ocf_cache_t cache);
typedef void (*ocf_cleaning_recovery_end_t)(void *priv, int error);
#endif

View File

@ -14,6 +14,8 @@
struct cleaning_policy_ops {
void (*setup)(ocf_cache_t cache);
int (*initialize)(ocf_cache_t cache, int init_metadata);
void (*recovery)(ocf_cache_t cache,
ocf_cleaning_recovery_end_t cmpl, void *priv);
void (*deinitialize)(ocf_cache_t cache);
int (*add_core)(ocf_cache_t cache, ocf_core_id_t core_id);
void (*remove_core)(ocf_cache_t cache, ocf_core_id_t core_id);
@ -43,6 +45,7 @@ static struct cleaning_policy_ops cleaning_policy_ops[ocf_cleaning_max] = {
.purge_range = cleaning_policy_alru_purge_range,
.set_hot_cache_line = cleaning_policy_alru_set_hot_cache_line,
.initialize = cleaning_policy_alru_initialize,
.recovery = cleaning_policy_alru_recovery,
.deinitialize = cleaning_policy_alru_deinitialize,
.set_cleaning_param = cleaning_policy_alru_set_cleaning_param,
.get_cleaning_param = cleaning_policy_alru_get_cleaning_param,
@ -56,6 +59,7 @@ static struct cleaning_policy_ops cleaning_policy_ops[ocf_cleaning_max] = {
.purge_range = cleaning_policy_acp_purge_range,
.set_hot_cache_line = cleaning_policy_acp_set_hot_cache_line,
.initialize = cleaning_policy_acp_initialize,
.recovery = cleaning_policy_acp_recovery,
.deinitialize = cleaning_policy_acp_deinitialize,
.set_cleaning_param = cleaning_policy_acp_set_cleaning_param,
.get_cleaning_param = cleaning_policy_acp_get_cleaning_param,
@ -87,6 +91,20 @@ static inline int ocf_cleaning_initialize(ocf_cache_t cache,
return cleaning_policy_ops[policy].initialize(cache, init_metadata);
}
static inline void ocf_cleaning_recovery(ocf_cache_t cache,
ocf_cleaning_t policy,
ocf_cleaning_recovery_end_t cmpl, void *priv)
{
ENV_BUG_ON(policy >= ocf_cleaning_max);
if (unlikely(!cleaning_policy_ops[policy].recovery)) {
cmpl(priv, 0);
return;
}
cleaning_policy_ops[policy].recovery(cache, cmpl, priv);
}
static inline void ocf_cleaning_deinitialize(ocf_cache_t cache)
{
ocf_cleaning_t policy;

View File

@ -299,6 +299,18 @@ void ocf_hb_cline_naked_unlock_wr(struct ocf_metadata_lock *metadata_lock,
ocf_hb_id_naked_unlock(metadata_lock, hash, OCF_METADATA_WR);
}
void ocf_hb_id_naked_lock_wr(struct ocf_metadata_lock *metadata_lock,
ocf_cache_line_t hash)
{
ocf_hb_id_naked_lock(metadata_lock, hash, OCF_METADATA_WR);
}
void ocf_hb_id_naked_unlock_wr(struct ocf_metadata_lock *metadata_lock,
ocf_cache_line_t hash)
{
ocf_hb_id_naked_unlock(metadata_lock, hash, OCF_METADATA_WR);
}
/* common part of protected hash bucket lock routines */
static inline void ocf_hb_id_prot_lock_common(
struct ocf_metadata_lock *metadata_lock,

View File

@ -17,10 +17,12 @@
#include "../utils/utils_cache_line.h"
#include "../utils/utils_io.h"
#include "../utils/utils_cache_line.h"
#include "../utils/utils_parallelize.h"
#include "../utils/utils_pipeline.h"
#include "../utils/utils_refcnt.h"
#include "../utils/utils_async_lock.h"
#include "../concurrency/ocf_concurrency.h"
#include "../concurrency/ocf_metadata_concurrency.h"
#include "../ocf_lru.h"
#include "../ocf_ctx_priv.h"
#include "../cleaning/cleaning.h"
@ -215,14 +217,6 @@ static void __init_parts_attached(ocf_cache_t cache)
ocf_lru_init(cache, &cache->free);
}
static void __populate_free(ocf_cache_t cache)
{
uint64_t free_clines = ocf_metadata_collision_table_entries(cache) -
ocf_get_cache_occupancy(cache);
ocf_lru_populate(cache, free_clines);
}
static ocf_error_t __init_cleaning_policy(ocf_cache_t cache)
{
int i;
@ -300,29 +294,6 @@ static void __reset_stats(ocf_cache_t cache)
}
}
static ocf_error_t init_attached_data_structures(ocf_cache_t cache)
{
ocf_error_t result;
/* Lock to ensure consistency */
ocf_metadata_init_hash_table(cache);
ocf_metadata_init_collision(cache);
__init_parts_attached(cache);
__populate_free(cache);
result = __init_cleaning_policy(cache);
if (result) {
ocf_cache_log(cache, log_err,
"Cannot initialize cleaning policy\n");
return result;
}
__setup_promotion_policy(cache);
return 0;
}
static void init_attached_data_structures_recovery(ocf_cache_t cache,
bool init_collision)
{
@ -487,28 +458,84 @@ err:
OCF_PL_FINISH_RET(pipeline, -OCF_ERR_START_CACHE_FAIL);
}
static void _recovery_reset_cline_metadata(struct ocf_cache *cache,
ocf_cache_line_t cline)
typedef void (*ocf_mngt_rebuild_metadata_end_t)(void *priv, int error);
/*
* IMPORTANT: This value must match number of LRU lists so that adding
* cache lines to the list can be implemented without locking (each shard
* owns it's own LRU list). Don't change this value unless you are really
* sure you know what you're doing.
*/
#define OCF_MNGT_REBUILD_METADATA_SHARDS_CNT OCF_NUM_LRU_LISTS
struct ocf_mngt_rebuild_metadata_context {
ocf_cache_t cache;
struct {
env_atomic lines;
} core[OCF_CORE_MAX];
struct {
struct {
uint32_t lines;
} core[OCF_CORE_MAX];
} shard[OCF_MNGT_REBUILD_METADATA_SHARDS_CNT];
env_atomic free_lines;
ocf_mngt_rebuild_metadata_end_t cmpl;
void *priv;
};
static void ocf_mngt_cline_reset_metadata(ocf_cache_t cache,
ocf_cache_line_t cline, uint32_t lru_list)
{
ocf_metadata_set_core_info(cache, cline, OCF_CORE_MAX, ULLONG_MAX);
metadata_init_status_bits(cache, cline);
ocf_cleaning_init_cache_block(cache, cline);
ocf_metadata_set_partition_id(cache, cline, PARTITION_FREELIST);
ocf_lru_add_free(cache, cline);
}
static int _ocf_mngt_rebuild_metadata(ocf_cache_t cache)
static void ocf_mngt_cline_rebuild_metadata(ocf_cache_t cache,
ocf_core_id_t core_id, uint64_t core_line,
ocf_cache_line_t cline)
{
ocf_cache_line_t cline;
ocf_part_id_t part_id = PARTITION_DEFAULT;
ocf_cache_line_t hash_index;
ocf_metadata_set_partition_id(cache, cline, part_id);
hash_index = ocf_metadata_hash_func(cache, core_line, core_id);
ocf_hb_id_naked_lock_wr(&cache->metadata.lock, hash_index);
ocf_metadata_add_to_collision(cache, core_id, core_line, hash_index,
cline);
ocf_hb_id_naked_unlock_wr(&cache->metadata.lock, hash_index);
ocf_lru_init_cline(cache, cline);
ocf_lru_add(cache, cline);
}
static int ocf_mngt_rebuild_metadata_handle(ocf_parallelize_t parallelize,
void *priv, unsigned shard_id, unsigned shards_cnt)
{
struct ocf_mngt_rebuild_metadata_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_cache_line_t begin, increment, cline, free_lines;
ocf_core_t core;
ocf_core_id_t core_id;
uint64_t core_line;
unsigned char step = 0;
const uint64_t collision_table_entries =
ocf_metadata_collision_table_entries(cache);
const uint64_t entries = ocf_metadata_collision_table_entries(cache);
ocf_metadata_start_exclusive_access(&cache->metadata.lock);
begin = shard_id;
increment = shards_cnt;
for (cline = 0; cline < collision_table_entries; cline++) {
free_lines = 0;
for (cline = begin; cline < entries; cline += increment) {
bool any_valid = true;
OCF_COND_RESCHED(step, 128);
@ -525,11 +552,12 @@ static int _ocf_mngt_rebuild_metadata(ocf_cache_t cache)
any_valid = metadata_clear_valid_if_clean(cache, cline);
if (!any_valid || core_id == OCF_CORE_MAX) {
/* Reset metadata for not mapped or clean cache line */
_recovery_reset_cline_metadata(cache, cline);
ocf_mngt_cline_reset_metadata(cache, cline, shard_id);
free_lines++;
continue;
}
if (!cache->core[core_id].added) {
if (!cache->core[core_id].conf_meta->valid) {
ocf_cache_log(cache, log_err, "Stale mapping in "
"on-disk metadata - refusing to "
"recover cache.\n");
@ -537,58 +565,130 @@ static int _ocf_mngt_rebuild_metadata(ocf_cache_t cache)
}
/* Rebuild metadata for mapped cache line */
ocf_cline_rebuild_metadata(cache, core_id, core_line, cline);
ocf_mngt_cline_rebuild_metadata(cache, core_id,
core_line, cline);
context->shard[shard_id].core[core_id].lines++;
}
ocf_metadata_end_exclusive_access(&cache->metadata.lock);
for_each_core(cache, core, core_id) {
env_atomic_add(context->shard[shard_id].core[core_id].lines,
&context->core[core_id].lines);
}
env_atomic_add(free_lines, &context->free_lines);
return 0;
}
static int _ocf_mngt_recovery_rebuild_metadata(ocf_cache_t cache)
static void ocf_mngt_rebuild_metadata_finish(ocf_parallelize_t parallelize,
void *priv, int error)
{
return _ocf_mngt_rebuild_metadata(cache);
struct ocf_mngt_rebuild_metadata_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_part_id_t part_id = PARTITION_DEFAULT;
struct ocf_part_runtime *part;
ocf_core_t core;
ocf_core_id_t core_id;
uint32_t lines_total = 0;
for_each_core(cache, core, core_id) {
uint32_t lines = env_atomic_read(&context->core[core_id].lines);
env_atomic_set(&core->runtime_meta->cached_clines, lines);
env_atomic_set(&core->runtime_meta->
part_counters[part_id].cached_clines, lines);
env_atomic_set(&core->runtime_meta->dirty_clines, lines);
env_atomic_set(&core->runtime_meta->
part_counters[part_id].dirty_clines, lines);
if (lines) {
env_atomic64_set(&core->runtime_meta->dirty_since,
env_ticks_to_secs(env_get_tick_count()));
}
lines_total += lines;
}
part = cache->user_parts[part_id].part.runtime;
env_atomic_set(&part->curr_size, lines_total);
env_atomic_set(&cache->free.runtime->curr_size,
env_atomic_read(&context->free_lines));
context->cmpl(context->priv, error);
ocf_parallelize_destroy(parallelize);
}
static inline ocf_error_t _ocf_init_cleaning_policy(ocf_cache_t cache,
ocf_cleaning_t cleaning_policy,
enum ocf_metadata_shutdown_status shutdown_status)
static void ocf_mngt_rebuild_metadata(ocf_cache_t cache,
ocf_mngt_rebuild_metadata_end_t cmpl, void *priv)
{
ocf_error_t result;
struct ocf_mngt_rebuild_metadata_context *context;
ocf_parallelize_t parallelize;
int result;
if (shutdown_status == ocf_metadata_clean_shutdown)
result = ocf_cleaning_initialize(cache, cleaning_policy, 0);
else
result = ocf_cleaning_initialize(cache, cleaning_policy, 1);
result = ocf_parallelize_create(&parallelize, cache,
OCF_MNGT_REBUILD_METADATA_SHARDS_CNT,
sizeof(*context), ocf_mngt_rebuild_metadata_handle,
ocf_mngt_rebuild_metadata_finish);
if (result) {
cmpl(priv, result);
return;
}
if (result)
ocf_cache_log(cache, log_err, "Cannot initialize cleaning policy\n");
context = ocf_parallelize_get_priv(parallelize);
context->cache = cache;
context->cmpl = cmpl;
context->priv = priv;
return result;
ocf_parallelize_run(parallelize);
}
static void _ocf_mngt_load_post_metadata_load(ocf_pipeline_t pipeline,
static void _ocf_mngt_load_rebuild_metadata_complete(void *priv, int error)
{
struct ocf_cache_attach_context *context = priv;
OCF_PL_NEXT_ON_SUCCESS_RET(context->pipeline, error);
}
static void _ocf_mngt_load_rebuild_metadata(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
if (context->metadata.shutdown_status != ocf_metadata_clean_shutdown) {
ocf_mngt_rebuild_metadata(cache,
_ocf_mngt_load_rebuild_metadata_complete,
context);
return;
}
ocf_pipeline_next(pipeline);
}
static void _ocf_mngt_cleaning_recovery_complete(void *priv, int error)
{
struct ocf_cache_attach_context *context = priv;
OCF_PL_NEXT_ON_SUCCESS_RET(context->pipeline, error);
}
static void _ocf_mngt_load_init_cleaning(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_error_t result;
int ret;
if (context->metadata.shutdown_status != ocf_metadata_clean_shutdown) {
ret = _ocf_mngt_recovery_rebuild_metadata(cache);
if (ret)
OCF_PL_FINISH_RET(pipeline, ret);
__populate_free(cache);
if (context->metadata.shutdown_status == ocf_metadata_clean_shutdown) {
result = ocf_cleaning_initialize(cache,
cache->cleaner.policy, 0);
OCF_PL_NEXT_ON_SUCCESS_RET(pipeline, result);
}
result = _ocf_init_cleaning_policy(cache, cache->cleaner.policy,
context->metadata.shutdown_status);
if (result)
OCF_PL_FINISH_RET(pipeline, result);
ocf_pipeline_next(pipeline);
ocf_cleaning_recovery(cache, cache->cleaner.policy,
_ocf_mngt_cleaning_recovery_complete, context);
}
void _ocf_mngt_load_metadata_complete(void *priv, int error)
@ -1108,16 +1208,51 @@ static void _ocf_mngt_attach_prepare_metadata(ocf_pipeline_t pipeline,
/**
* @brief initializing cache anew (not loading or recovering)
*/
static void _ocf_mngt_attach_init_instance(ocf_pipeline_t pipeline,
static void _ocf_mngt_attach_init_metadata(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_metadata_init_hash_table(cache);
ocf_metadata_init_collision(cache);
__init_parts_attached(cache);
ocf_pipeline_next(pipeline);
}
static void _ocf_mngt_attach_populate_free_complete(void *priv, int error)
{
struct ocf_cache_attach_context *context = priv;
OCF_PL_NEXT_ON_SUCCESS_RET(context->pipeline, error);
}
static void _ocf_mngt_attach_populate_free(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_lru_populate(cache, _ocf_mngt_attach_populate_free_complete,
context);
}
static void _ocf_mngt_attach_init_services(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_error_t result;
result = init_attached_data_structures(cache);
if (result)
result = __init_cleaning_policy(cache);
if (result) {
ocf_cache_log(cache, log_err,
"Cannot initialize cleaning policy\n");
OCF_PL_FINISH_RET(pipeline, result);
}
__setup_promotion_policy(cache);
/* In initial cache state there is no dirty data, so all dirty data is
considered to be flushed
@ -1728,7 +1863,9 @@ struct ocf_pipeline_properties _ocf_mngt_cache_attach_pipeline_properties = {
OCF_PL_STEP(_ocf_mngt_test_volume),
OCF_PL_STEP(_ocf_mngt_init_cleaner),
OCF_PL_STEP(_ocf_mngt_init_promotion),
OCF_PL_STEP(_ocf_mngt_attach_init_instance),
OCF_PL_STEP(_ocf_mngt_attach_init_metadata),
OCF_PL_STEP(_ocf_mngt_attach_populate_free),
OCF_PL_STEP(_ocf_mngt_attach_init_services),
OCF_PL_STEP(_ocf_mngt_zero_superblock),
OCF_PL_STEP(_ocf_mngt_attach_flush_metadata),
OCF_PL_STEP(_ocf_mngt_attach_discard),
@ -1756,7 +1893,8 @@ struct ocf_pipeline_properties _ocf_mngt_cache_load_pipeline_properties = {
OCF_PL_STEP(_ocf_mngt_init_promotion),
OCF_PL_STEP(_ocf_mngt_load_add_cores),
OCF_PL_STEP(_ocf_mngt_load_metadata),
OCF_PL_STEP(_ocf_mngt_load_post_metadata_load),
OCF_PL_STEP(_ocf_mngt_load_rebuild_metadata),
OCF_PL_STEP(_ocf_mngt_load_init_cleaning),
OCF_PL_STEP(_ocf_mngt_attach_shutdown_status),
OCF_PL_STEP(_ocf_mngt_attach_flush_metadata),
OCF_PL_STEP(_ocf_mngt_attach_shutdown_status),
@ -2098,7 +2236,6 @@ static void _ocf_mngt_standby_init_structures_attach(ocf_pipeline_t pipeline,
ocf_cache_t cache = context->cache;
init_attached_data_structures_recovery(cache, true);
__populate_free(cache);
ocf_pipeline_next(pipeline);
}
@ -2128,37 +2265,6 @@ static void _ocf_mngt_standby_init_pio_concurrency(ocf_pipeline_t pipeline,
OCF_PL_NEXT_ON_SUCCESS_RET(context->pipeline, result);
}
static void _ocf_mngt_standby_recovery(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
int ret;
ret = _ocf_mngt_recovery_rebuild_metadata(cache);
if (ret)
OCF_PL_FINISH_RET(pipeline, ret);
__populate_free(cache);
ocf_pipeline_next(pipeline);
}
static void _ocf_mngt_standby_init_cleaning(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
struct ocf_cache_attach_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_error_t result;
result = _ocf_init_cleaning_policy(cache, cache->cleaner.policy,
context->metadata.shutdown_status);
if (result)
OCF_PL_FINISH_RET(pipeline, result);
ocf_pipeline_next(pipeline);
}
static void _ocf_mngt_standby_post_init(ocf_pipeline_t pipeline,
void *priv, ocf_pipeline_arg_t arg)
{
@ -2185,7 +2291,8 @@ struct ocf_pipeline_properties _ocf_mngt_cache_standby_attach_pipeline_propertie
OCF_PL_STEP(_ocf_mngt_test_volume),
OCF_PL_STEP(_ocf_mngt_init_cleaner),
OCF_PL_STEP(_ocf_mngt_standby_init_structures_attach),
OCF_PL_STEP(_ocf_mngt_standby_init_cleaning),
OCF_PL_STEP(_ocf_mngt_attach_populate_free),
OCF_PL_STEP(_ocf_mngt_load_init_cleaning),
OCF_PL_STEP(_ocf_mngt_standby_preapre_mempool),
OCF_PL_STEP(_ocf_mngt_standby_init_pio_concurrency),
OCF_PL_STEP(_ocf_mngt_zero_superblock),
@ -2213,10 +2320,10 @@ struct ocf_pipeline_properties _ocf_mngt_cache_standby_load_pipeline_properties
OCF_PL_STEP(_ocf_mngt_load_metadata_recovery),
OCF_PL_STEP(_ocf_mngt_init_cleaner),
OCF_PL_STEP(_ocf_mngt_standby_init_structures_load),
OCF_PL_STEP(_ocf_mngt_standby_init_cleaning),
OCF_PL_STEP(_ocf_mngt_load_init_cleaning),
OCF_PL_STEP(_ocf_mngt_standby_preapre_mempool),
OCF_PL_STEP(_ocf_mngt_standby_init_pio_concurrency),
OCF_PL_STEP(_ocf_mngt_standby_recovery),
OCF_PL_STEP(_ocf_mngt_load_rebuild_metadata),
OCF_PL_STEP(_ocf_mngt_standby_post_init),
OCF_PL_STEP_TERMINATOR(),
},
@ -2430,6 +2537,7 @@ struct ocf_pipeline_properties _ocf_mngt_cache_activate_pipeline_properties = {
.steps = {
OCF_PL_STEP(_ocf_mngt_copy_uuid_data),
OCF_PL_STEP(_ocf_mngt_activate_set_cache_device),
OCF_PL_STEP(_ocf_mngt_activate_init_properties),
OCF_PL_STEP(_ocf_mngt_activate_compare_superblock),
OCF_PL_STEP(_ocf_mngt_load_superblock),
OCF_PL_STEP(_ocf_mngt_activate_check_superblock),

View File

@ -7,6 +7,8 @@
#include "ocf_lru.h"
#include "utils/utils_cleaner.h"
#include "utils/utils_cache_line.h"
#include "utils/utils_generator.h"
#include "utils/utils_parallelize.h"
#include "concurrency/ocf_concurrency.h"
#include "mngt/ocf_mngt_common.h"
#include "engine/engine_zero.h"
@ -867,63 +869,91 @@ void ocf_lru_dirty_cline(ocf_cache_t cache, struct ocf_part *part,
OCF_METADATA_LRU_WR_UNLOCK(cline);
}
static ocf_cache_line_t next_phys_invalid(ocf_cache_t cache,
ocf_cache_line_t phys)
struct ocf_lru_populate_context {
ocf_cache_t cache;
env_atomic curr_size;
ocf_lru_populate_end_t cmpl;
void *priv;
};
static int ocf_lru_populate_handle(ocf_parallelize_t parallelize,
void *priv, unsigned shard_id, unsigned shards_cnt)
{
ocf_cache_line_t lg;
ocf_cache_line_t collision_table_entries =
ocf_metadata_collision_table_entries(cache);
if (phys == collision_table_entries)
return collision_table_entries;
lg = ocf_metadata_map_phy2lg(cache, phys);
while (metadata_test_valid_any(cache, lg)) {
++phys;
if (phys == collision_table_entries)
break;
lg = ocf_metadata_map_phy2lg(cache, phys);
}
return phys;
}
/* put invalid cachelines on freelist partition lru list */
void ocf_lru_populate(ocf_cache_t cache, ocf_cache_line_t num_free_clines)
{
ocf_cache_line_t phys, cline;
ocf_cache_line_t collision_table_entries =
ocf_metadata_collision_table_entries(cache);
struct ocf_lru_populate_context *context = priv;
ocf_cache_t cache = context->cache;
ocf_cache_line_t cnt, cline;
ocf_cache_line_t entries = ocf_metadata_collision_table_entries(cache);
struct ocf_generator_bisect_state generator;
struct ocf_lru_list *list;
unsigned lru_list;
unsigned i;
unsigned lru_list = shard_id;
unsigned step = 0;
uint32_t portion, offset;
uint32_t i, idx;
phys = 0;
for (i = 0; i < num_free_clines; i++) {
/* find first invalid cacheline */
phys = next_phys_invalid(cache, phys);
ENV_BUG_ON(phys == collision_table_entries);
cline = ocf_metadata_map_phy2lg(cache, phys);
++phys;
portion = DIV_ROUND_UP((uint64_t)entries, shards_cnt);
offset = shard_id * portion / shards_cnt;
ocf_generator_bisect_init(&generator, portion, offset);
list = ocf_lru_get_list(&cache->free, lru_list, true);
cnt = 0;
for (i = 0; i < portion; i++) {
OCF_COND_RESCHED_DEFAULT(step);
idx = ocf_generator_bisect_next(&generator);
cline = idx * shards_cnt + shard_id;
if (cline >= entries)
continue;
ocf_metadata_set_partition_id(cache, cline, PARTITION_FREELIST);
lru_list = (cline % OCF_NUM_LRU_LISTS);
list = ocf_lru_get_list(&cache->free, lru_list, true);
add_lru_head_nobalance(cache, list, cline);
add_lru_head(cache, list, cline);
OCF_COND_RESCHED_DEFAULT(step);
cnt++;
}
/* we should have reached the last invalid cache line */
phys = next_phys_invalid(cache, phys);
ENV_BUG_ON(phys != collision_table_entries);
env_atomic_add(cnt, &context->curr_size);
env_atomic_set(&cache->free.runtime->curr_size, i);
return 0;
}
static void ocf_lru_populate_finish(ocf_parallelize_t parallelize,
void *priv, int error)
{
struct ocf_lru_populate_context *context = priv;
env_atomic_set(&context->cache->free.runtime->curr_size,
env_atomic_read(&context->curr_size));
context->cmpl(context->priv, error);
ocf_parallelize_destroy(parallelize);
}
/* put invalid cachelines on freelist partition lru list */
void ocf_lru_populate(ocf_cache_t cache,
ocf_lru_populate_end_t cmpl, void *priv)
{
struct ocf_lru_populate_context *context;
ocf_parallelize_t parallelize;
int result;
result = ocf_parallelize_create(&parallelize, cache, OCF_NUM_LRU_LISTS,
sizeof(*context), ocf_lru_populate_handle,
ocf_lru_populate_finish);
if (result) {
cmpl(priv, result);
return;
}
context = ocf_parallelize_get_priv(parallelize);
context->cache = cache;
env_atomic_set(&context->curr_size, 0);
context->cmpl = cmpl;
context->priv = priv;
ocf_parallelize_run(parallelize);
}
static bool _is_cache_line_acting(struct ocf_cache *cache,
@ -1027,3 +1057,12 @@ uint32_t ocf_lru_num_free(ocf_cache_t cache)
{
return env_atomic_read(&cache->free.runtime->curr_size);
}
void ocf_lru_add_free(ocf_cache_t cache, ocf_cache_line_t cline)
{
uint32_t lru_list = (cline % OCF_NUM_LRU_LISTS);
struct ocf_lru_list *list;
list = ocf_lru_get_list(&cache->free, lru_list, true);
add_lru_head_nobalance(cache, list, cline);
}

View File

@ -30,11 +30,16 @@ void ocf_lru_clean(ocf_cache_t cache, struct ocf_user_part *user_part,
ocf_queue_t io_queue, uint32_t count);
void ocf_lru_repart(ocf_cache_t cache, ocf_cache_line_t cline,
struct ocf_part *src_upart, struct ocf_part *dst_upart);
void ocf_lru_add_free(ocf_cache_t cache, ocf_cache_line_t cline);
uint32_t ocf_lru_num_free(ocf_cache_t cache);
void ocf_lru_populate(ocf_cache_t cache, ocf_cache_line_t num_free_clines);
struct ocf_lru_list *ocf_lru_get_list(struct ocf_part *part,
uint32_t lru_idx, bool clean);
void ocf_lru_remove_locked(ocf_cache_t cache, struct ocf_lru_list *list,
ocf_cache_line_t cline);
typedef void (*ocf_lru_populate_end_t)(void *priv, int error);
void ocf_lru_populate(ocf_cache_t cache,
ocf_lru_populate_end_t cmpl, void *priv);
#endif

187
src/utils/utils_generator.c Normal file
View File

@ -0,0 +1,187 @@
#include "utils_generator.h"
/**
* @brief Reverse bits of 32-bit value
*
* @param[in] x Value to be reversed
*
* @return Reversed value
*/
static inline uint32_t bitreverse32(register uint32_t x)
{
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return((x >> 16) | (x << 16));
}
/**
* @brief Initialize bisect generator state
*
* @param[in] generator Pointer to generator structure
* @param[in] limit Limit of the value returned by generator (maximum value
* returned by the generator is limit - 1)
* @param[in] offset Offset at which generator should start
*
* @return Reversed value
*/
void ocf_generator_bisect_init(
struct ocf_generator_bisect_state *generator,
uint32_t limit, uint32_t offset)
{
unsigned clz;
uint32_t maplen;
clz = __builtin_clz(limit - 1);
maplen = 1 << (32 - clz);
generator->curr = (uint64_t)offset * maplen / limit;
generator->limit = limit;
}
/**
* @brief Generate next value of bisect generator
*
* This function calculates next value of the generator. The generator
* pattern is based on order of indexes in array visited with bisection
* algorithm, where always the left child is visited first at every depth.
* This can be imagined as a special implementation of BFS done on a full
* binary tree, where visiting nodes on each depth level is done the same
* order as original array (so the algorithm is recursive at each level).
*
* Example:
*
* 1. We generate array of all values for number of bits needed to express
* limit value - 1.
*
* For limit==14 (4 bits) it would be:
* [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
*
* 2. We take first element of the array, and then build full binary tree
* from other elements (it should always be possible to build a full
* binary tree, as number of remaining elements is always 2^n-1).
*
* The full binary tree for example array looks like this:
*
* Depth 0 -> 8
* / \
* / \
* / \
* / \
* / \
* / \
* / \
* / \
* Depth 1 -> 4 12
* / \ / \
* / \ / \
* / \ / \
* Depth 2 -> 2 6 10 14
* / \ / \ / \ / \
* Depth 3 -> 1 3 5 7 9 11 13 15
*
* 3. We traverse the tree:
* a) If depth level has one element, we take it.
* b) If depth level has two elements, we take left and then right.
* c) If depth level has more than two elements, we repeat steps
* from 2 on array built from elements on that level left to right.
*
* At level 0 we take 8, at level 1 we take 4 and 12, and at level 3 we
* take 2 and build tree like this one:
*
* 10
* / \
* 6 14
*
* Then at level 0 of that tree we take 10, at level 1 we take 6 and 14,
* and then we go back the original tree.
*
* At level 3 we take 1 and we build another tree from remaining elements
* of that level:
*
* 9
* / \
* / \
* / \
* 5 13
* / \ / \
* 3 7 11 15
*
* Repeating step 3 on that tree we get elements 9, then 5 and 13, and then
* by running steps from 2 on the lowest level of that tree we get elements
* in following order: 3, 11, 7 and 15.
*
* So the entire sequence would be as follows:
* [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
*
* This algorithm is however quite complex, and it can be simplified
* significantly thanks to properties of the result sequence. Note that
* when this sequence is written in binary it looks like this:
*
* 0 0000
* 8 1000
* 4 0100
* 12 1100
* 2 0010
* 10 1010
* 6 0110
* 14 1110
* 1 0001
* 9 1001
* 5 0101
* 13 1101
* 3 0011
* 11 1011
* 7 0111
* 15 1111
*
* So in its binary representation it looks like a mirror image of binary
* representation of the original sequence:
*
* 0 0000 0000 0
* 8 1000 0001 1
* 4 0100 0010 2
* 12 1100 0011 3
* 2 0010 0100 4
* 10 1010 0101 5
* 6 0110 0110 6
* 14 1110 0111 7
* 1 0001 1000 8
* 9 1001 1001 9
* 5 0101 1010 10
* 13 1101 1011 11
* 3 0011 1100 12
* 11 1011 1101 13
* 7 0111 1110 14
* 15 1111 1111 15
*
* With that knowledge we can easily calculate the next result value by just
* reversing order of bits for each value in original sequence.
*
* As a result we are left with sequence that contains all the numbers that
* can be expressed with number of bits reqiured to express limit - 1. The only
* thing we need to do at that point is to just filter out values that do not
* fit within the limit.
*
* @param[in] generator Pointer to generator structure
*
* @return Generated value
*/
uint32_t ocf_generator_bisect_next(
struct ocf_generator_bisect_state *generator)
{
unsigned clz;
uint32_t maplen;
uint32_t value;
clz = __builtin_clz(generator->limit - 1);
maplen = 1 << (32 - clz);
do {
value = bitreverse32(generator->curr) >> clz;
generator->curr = (generator->curr + 1) % maplen;
} while (value >= generator->limit);
return value;
}

View File

@ -0,0 +1,23 @@
/*
* Copyright(c) 2022 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __UTILS_GENERATOR_H__
#define __UTILS_GENERATOR_H__
#include "ocf/ocf.h"
struct ocf_generator_bisect_state {
uint32_t curr;
uint32_t limit;
};
void ocf_generator_bisect_init(
struct ocf_generator_bisect_state *generator,
uint32_t limit, uint32_t offset);
uint32_t ocf_generator_bisect_next(
struct ocf_generator_bisect_state *generator);
#endif /* __UTILS_GENERATOR_H__ */

View File

@ -0,0 +1,145 @@
/*
* Copyright(c) 2012-2021 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "ocf/ocf.h"
#include "../engine/cache_engine.h"
#include "../engine/engine_common.h"
#include "../ocf_request.h"
#include "utils_parallelize.h"
struct ocf_parallelize {
ocf_cache_t cache;
ocf_parallelize_handle_t handle;
ocf_parallelize_finish_t finish;
void *priv;
unsigned shards_cnt;
env_atomic remaining;
env_atomic error;
struct ocf_request *reqs[];
};
static int _ocf_parallelize_hndl(struct ocf_request *req)
{
ocf_parallelize_t parallelize = req->priv;
ocf_parallelize_finish_t finish;
void *priv;
int error;
error = parallelize->handle(parallelize, parallelize->priv,
req->byte_position, parallelize->shards_cnt);
env_atomic_cmpxchg(&parallelize->error, 0, error);
if (env_atomic_dec_return(&parallelize->remaining))
return 0;
finish = parallelize->finish;
priv = parallelize->priv;
error = env_atomic_read(&parallelize->error);
finish(parallelize, priv, error);
return 0;
}
static const struct ocf_io_if _io_if_parallelize = {
.read = _ocf_parallelize_hndl,
.write = _ocf_parallelize_hndl,
};
int ocf_parallelize_create(ocf_parallelize_t *parallelize,
ocf_cache_t cache, unsigned shards_cnt, uint32_t priv_size,
ocf_parallelize_handle_t handle,
ocf_parallelize_finish_t finish)
{
ocf_parallelize_t tmp_parallelize;
ocf_queue_t queue;
size_t prl_size;
unsigned queue_count = 0;
int result, i;
list_for_each_entry(queue, &cache->io_queues, list)
queue_count++;
if (shards_cnt == 0)
shards_cnt = queue_count;
prl_size = sizeof(*tmp_parallelize) +
shards_cnt * sizeof(*tmp_parallelize->reqs);
tmp_parallelize = env_vzalloc(prl_size + priv_size);
if (!tmp_parallelize)
return -OCF_ERR_NO_MEM;
if (priv_size > 0)
tmp_parallelize->priv = (void *)tmp_parallelize + prl_size;
tmp_parallelize->cache = cache;
tmp_parallelize->handle = handle;
tmp_parallelize->finish = finish;
tmp_parallelize->shards_cnt = shards_cnt;
env_atomic_set(&tmp_parallelize->remaining, shards_cnt);
env_atomic_set(&tmp_parallelize->error, 0);
for (i = 0; i < shards_cnt;) {
list_for_each_entry(queue, &cache->io_queues, list) {
if (i == shards_cnt)
break;
tmp_parallelize->reqs[i] = ocf_req_new(queue,
NULL, 0, 0, 0);
if (!tmp_parallelize->reqs[i]) {
result = -OCF_ERR_NO_MEM;
goto err_reqs;
}
tmp_parallelize->reqs[i]->info.internal = true;
tmp_parallelize->reqs[i]->io_if = &_io_if_parallelize;
tmp_parallelize->reqs[i]->byte_position = i;
tmp_parallelize->reqs[i]->priv = tmp_parallelize;
i++;
}
}
*parallelize = tmp_parallelize;
return 0;
err_reqs:
while (i--)
ocf_req_put(tmp_parallelize->reqs[i]);
env_vfree(tmp_parallelize);
return result;
}
void ocf_parallelize_destroy(ocf_parallelize_t parallelize)
{
int i;
for (i = 0; i < parallelize->shards_cnt; i++)
ocf_req_put(parallelize->reqs[i]);
env_vfree(parallelize);
}
void *ocf_parallelize_get_priv(ocf_parallelize_t parallelize)
{
return parallelize->priv;
}
void ocf_parallelize_set_priv(ocf_parallelize_t parallelize, void *priv)
{
parallelize->priv = priv;
}
void ocf_parallelize_run(ocf_parallelize_t parallelize)
{
int i;
for (i = 0; i < parallelize->shards_cnt; i++)
ocf_engine_push_req_front(parallelize->reqs[i], false);
}

View File

@ -0,0 +1,32 @@
/*
* Copyright(c) 2022 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __UTILS_PARALLELIZE_H__
#define __UTILS_PARALLELIZE_H__
#include "ocf/ocf.h"
typedef struct ocf_parallelize *ocf_parallelize_t;
typedef int (*ocf_parallelize_handle_t)(ocf_parallelize_t parallelize,
void *priv, unsigned shard_id, unsigned shards_cnt);
typedef void (*ocf_parallelize_finish_t)(ocf_parallelize_t parallelize,
void *priv, int error);
int ocf_parallelize_create(ocf_parallelize_t *parallelize,
ocf_cache_t cache, unsigned shards_cnt, uint32_t priv_size,
ocf_parallelize_handle_t handle,
ocf_parallelize_finish_t finish);
void ocf_parallelize_destroy(ocf_parallelize_t parallelize);
void ocf_parallelize_set_priv(ocf_parallelize_t parallelize, void *priv);
void *ocf_parallelize_get_priv(ocf_parallelize_t parallelize);
void ocf_parallelize_run(ocf_parallelize_t parallelize);
#endif /* __UTILS_PARALLELIZE_H__ */

View File

@ -1,130 +0,0 @@
/*
* Copyright(c) 2012-2021 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
<tested_file_path>src/cleaning/alru.c</tested_file_path>
<tested_function>cleaning_policy_alru_initialize_part</tested_function>
<functions_to_leave>
</functions_to_leave>
*/
#undef static
#undef inline
/*
* This headers must be in test source file. It's important that cmocka.h is
* last.
*/
#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmocka.h>
#include "print_desc.h"
/*
* Headers from tested target.
*/
#include "ocf/ocf.h"
#include "../ocf_cache_priv.h"
#include "cleaning.h"
#include "alru.h"
#include "../metadata/metadata.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_user_part.h"
#include "../utils/utils_realloc.h"
#include "../concurrency/ocf_cache_line_concurrency.h"
#include "../ocf_def_priv.h"
#include "cleaning/alru.c/cleaning_policy_alru_initialize_part_test_generated_wraps.c"
static void cleaning_policy_alru_initialize_test01(void **state)
{
int result;
struct ocf_cache *cache;
ocf_part_id_t part_id = 0;
int collision_table_entries = 900729;
print_test_description("Check if all variables are set correctly");
cache = test_malloc(sizeof(*cache));
cache->user_parts[part_id].part.runtime = test_malloc(sizeof(struct ocf_part_runtime));
cache->user_parts[part_id].clean_pol = test_malloc(sizeof(*cache->user_parts[part_id].clean_pol));
cache->user_parts[part_id].part.id = part_id;
cache->device = test_malloc(sizeof(struct ocf_cache_device));
cache->device->runtime_meta = test_malloc(sizeof(struct ocf_superblock_runtime));
cache->device->collision_table_entries = collision_table_entries;
result = cleaning_policy_alru_initialize_part(cache, &cache->user_parts[part_id], 1, 1);
assert_int_equal(result, 0);
assert_int_equal(env_atomic_read(&cache->user_parts[part_id].clean_pol->policy.alru.size), 0);
assert_int_equal(cache->user_parts[part_id].clean_pol->policy.alru.lru_head, collision_table_entries);
assert_int_equal(cache->user_parts[part_id].clean_pol->policy.alru.lru_tail, collision_table_entries);
assert_int_equal(cache->device->runtime_meta->cleaning_thread_access, 0);
test_free(cache->device->runtime_meta);
test_free(cache->device);
test_free(cache->user_parts[part_id].clean_pol);
test_free(cache->user_parts[part_id].part.runtime);
test_free(cache);
}
static void cleaning_policy_alru_initialize_test02(void **state)
{
int result;
struct ocf_cache *cache;
ocf_part_id_t part_id = 0;
uint32_t collision_table_entries = 900729;
print_test_description("Check if only appropirate variables are changed");
cache = test_malloc(sizeof(*cache));
cache->user_parts[part_id].part.runtime = test_malloc(sizeof(struct ocf_part_runtime));
cache->user_parts[part_id].clean_pol = test_malloc(sizeof(*cache->user_parts[part_id].clean_pol));
cache->device = test_malloc(sizeof(struct ocf_cache_device));
cache->device->runtime_meta = test_malloc(sizeof(struct ocf_superblock_runtime));
env_atomic_set(&cache->user_parts[part_id].clean_pol->policy.alru.size, 1);
cache->user_parts[part_id].clean_pol->policy.alru.lru_head = -collision_table_entries;
cache->user_parts[part_id].clean_pol->policy.alru.lru_tail = -collision_table_entries;
result = cleaning_policy_alru_initialize_part(cache, &cache->user_parts[part_id], 0, 0);
assert_int_equal(result, 0);
assert_int_equal(env_atomic_read(&cache->user_parts[part_id].clean_pol->policy.alru.size), 1);
assert_int_equal(cache->user_parts[part_id].clean_pol->policy.alru.lru_head, -collision_table_entries);
assert_int_equal(cache->user_parts[part_id].clean_pol->policy.alru.lru_tail, -collision_table_entries);
assert_int_equal(cache->device->runtime_meta->cleaning_thread_access, 0);
test_free(cache->device->runtime_meta);
test_free(cache->device);
test_free(cache->user_parts[part_id].clean_pol);
test_free(cache->user_parts[part_id].part.runtime);
test_free(cache);
}
/*
* Main function. It runs tests.
*/
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(cleaning_policy_alru_initialize_test01),
cmocka_unit_test(cleaning_policy_alru_initialize_test02)
};
print_message("Unit test of alru.c\n");
return cmocka_run_group_tests(tests, NULL, NULL);
}

View File

@ -0,0 +1,214 @@
/*
* Copyright(c) 2022 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* <tested_file_path>src/utils/utils_generator.c</tested_file_path>
* <tested_function>ocf_generator_bisect_next</tested_function>
* <functions_to_leave>
* bitreverse32
* ocf_generator_bisect_init
* </functions_to_leave>
*/
#undef static
#undef inline
#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmocka.h>
#include "print_desc.h"
#include "utils_generator.h"
#include "utils/utils_generator.c/utils_generator_bisect_generated_wraps.c"
static void ocf_generator_bisect_test01(void **state)
{
struct {
uint32_t values[16];
uint32_t limit;
} expected_output[] = {
{
.values = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 },
.limit = 16,
},
{
.values = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7 },
.limit = 15,
},
{
.values = { 0, 8, 4, 12, 2, 10, 6, 1, 9, 5, 13, 3, 11, 7 },
.limit = 14,
},
{
.values = { 0, 8, 4, 12, 2, 10, 6, 1, 9, 5, 3, 11, 7 },
.limit = 13,
},
{
.values = { 0, 8, 4, 2, 10, 6, 1, 9, 5, 3, 11, 7 },
.limit = 12,
},
{
.values = { 0, 8, 4, 2, 10, 6, 1, 9, 5, 3, 7 },
.limit = 11,
},
{
.values = { 0, 8, 4, 2, 6, 1, 9, 5, 3, 7 },
.limit = 10,
},
{
.values = { 0, 8, 4, 2, 6, 1, 5, 3, 7 },
.limit = 9,
},
{
.values = { 0, 4, 2, 6, 1, 5, 3, 7 },
.limit = 8,
},
{
.values = { 0, 4, 2, 6, 1, 5, 3 },
.limit = 7,
},
{
.values = { 0, 4, 2, 1, 5, 3 },
.limit = 6,
},
{
.values = { 0, 4, 2, 1, 3 },
.limit = 5,
},
{
.values = { 0, 2, 1, 3 },
.limit = 4,
},
{
.values = { 0, 2, 1 },
.limit = 3,
},
{
.values = { 0, 1 },
.limit = 2,
},
{
.values = { 0 },
.limit = 1,
},
};
struct ocf_generator_bisect_state generator;
uint32_t value;
int i, j;
print_test_description("Check if sequence order is correct");
for (i = 0; i < sizeof(expected_output)/sizeof(*expected_output); i++) {
ocf_generator_bisect_init(&generator,
expected_output[i].limit, 0);
for (j = 0; j < expected_output[i].limit; j++) {
value = ocf_generator_bisect_next(&generator);
assert_int_equal(value, expected_output[i].values[j]);
}
}
}
static void ocf_generator_bisect_test02(void **state)
{
struct {
uint32_t values[16];
uint32_t limit;
uint32_t offset;
} expected_output[] = {
{
.values = { 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 0 },
.limit = 16,
.offset = 1,
},
{
.values = { 15, 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7 },
.limit = 16,
.offset = 15,
},
{
.values = { 1, 9, 5, 13, 3, 11, 7, 15, 0, 8, 4, 12, 2, 10, 6, 14 },
.limit = 16,
.offset = 8,
},
{
.values = { 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 0 },
.limit = 15,
.offset = 1,
},
{
.values = { 7, 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11 },
.limit = 15,
.offset = 14,
},
{
.values = { 1, 9, 5, 13, 3, 11, 7, 0, 8, 4, 12, 2, 10, 6, 14 },
.limit = 15,
.offset = 8,
},
{
.values = { 8, 4, 2, 10, 6, 1, 9, 5, 3, 11, 7, 0 },
.limit = 12,
.offset = 1,
},
{
.values = { 7, 0, 8, 4, 2, 10, 6, 1, 9, 5, 3, 11 },
.limit = 12,
.offset = 11,
},
{
.values = { 1, 9, 5, 3, 11, 7, 0, 8, 4, 2, 10, 6 },
.limit = 12,
.offset = 6,
},
{
.values = { 8, 4, 2, 6, 1, 5, 3, 7, 0 },
.limit = 9,
.offset = 1,
},
{
.values = { 7, 0, 8, 4, 2, 6, 1, 5, 3 },
.limit = 9,
.offset = 8,
},
{
.values = { 1, 5, 3, 7, 0, 8, 4, 2, 6 },
.limit = 9,
.offset = 5,
},
};
struct ocf_generator_bisect_state generator;
uint32_t value;
int i, j;
print_test_description("Check if offset works correctly");
for (i = 0; i < sizeof(expected_output)/sizeof(*expected_output); i++) {
ocf_generator_bisect_init(&generator,
expected_output[i].limit,
expected_output[i].offset);
for (j = 0; j < expected_output[i].limit; j++) {
value = ocf_generator_bisect_next(&generator);
assert_int_equal(value, expected_output[i].values[j]);
}
}
}
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(ocf_generator_bisect_test01),
cmocka_unit_test(ocf_generator_bisect_test02),
};
print_message("Unit tests for generator bisect\n");
return cmocka_run_group_tests(tests, NULL, NULL);
}