Initial commit

Signed-off-by: Robert Baldyga <robert.baldyga@intel.com>
This commit is contained in:
Robert Baldyga
2018-11-29 15:14:21 +01:00
commit a8e1ce8cc5
178 changed files with 35378 additions and 0 deletions

735
src/cleaning/acp.c Normal file
View File

@@ -0,0 +1,735 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#include "ocf/ocf.h"
#include "../ocf_cache_priv.h"
#include "cleaning.h"
#include "../metadata/metadata.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_cache_line.h"
#include "../utils/utils_rq.h"
#include "../cleaning/acp.h"
#include "../engine/engine_common.h"
#include "../concurrency/ocf_cache_concurrency.h"
#include "cleaning_priv.h"
#define OCF_ACP_DEBUG 0
#if 1 == OCF_ACP_DEBUG
#define OCF_DEBUG_PREFIX "[Clean] %s():%d "
#define OCF_DEBUG_LOG(cache, format, ...) \
ocf_cache_log_prefix(cache, log_info, OCF_DEBUG_PREFIX, \
format"\n", __func__, __LINE__, ##__VA_ARGS__)
#define OCF_DEBUG_TRACE(cache) OCF_DEBUG_LOG(cache, "")
#define OCF_DEBUG_MSG(cache, msg) OCF_DEBUG_LOG(cache, "- %s", msg)
#define OCF_DEBUG_PARAM(cache, format, ...) OCF_DEBUG_LOG(cache, "- "format, \
##__VA_ARGS__)
#define ACP_DEBUG_INIT(acp) acp->checksum = 0
#define ACP_DEBUG_BEGIN(acp, cache_line) acp->checksum ^= cache_line
#define ACP_DEBUG_END(acp, cache_line) acp->checksum ^= cache_line
#define ACP_DEBUG_CHECK(acp) ENV_BUG_ON(acp->checksum)
#else
#define OCF_DEBUG_PREFIX
#define OCF_DEBUG_LOG(cache, format, ...)
#define OCF_DEBUG_TRACE(cache)
#define OCF_DEBUG_MSG(cache, msg)
#define OCF_DEBUG_PARAM(cache, format, ...)
#define ACP_DEBUG_INIT(acp)
#define ACP_DEBUG_BEGIN(acp, cache_line)
#define ACP_DEBUG_END(acp, cache_line)
#define ACP_DEBUG_CHECK(acp)
#endif
#define ACP_CHUNK_SIZE (100 * MiB)
/* minimal time to chunk cleaning after error */
#define ACP_CHUNK_CLEANING_BACKOFF_TIME 5
/* time to sleep when nothing to clean in ms */
#define ACP_BACKOFF_TIME_MS 1000
#define ACP_MAX_BUCKETS 11
/* Upper thresholds for buckets in percent dirty pages. First bucket should have
* threshold=0 - it isn't cleaned and we don't want dirty chunks staying dirty
* forever. Last bucket also should stay at 100 for obvious reasons */
static const uint16_t ACP_BUCKET_DEFAULTS[ACP_MAX_BUCKETS] = { 0, 10, 20, 30, 40,
50, 60, 70, 80, 90, 100 };
struct acp_flush_context {
/* number of cache lines in flush */
uint64_t size;
/* chunk_for error handling */
struct acp_chunk_info *chunk;
/* cache lines to flush */
struct flush_data data[OCF_ACP_MAX_FLUSH_MAX_BUFFERS];
/* flush error code */
int error;
};
struct acp_state {
/* currently cleaned chunk */
struct acp_chunk_info *chunk;
/* cache line iterator within current chunk */
unsigned iter;
/* true if there are cache lines to process
* current chunk */
bool in_progress;
};
struct acp_chunk_info {
struct list_head list;
uint64_t chunk_id;
uint64_t next_cleaning_timestamp;
ocf_core_id_t core_id;
uint16_t num_dirty;
uint8_t bucket_id;
};
struct acp_bucket {
struct list_head chunk_list;
uint16_t threshold; /* threshold in clines */
};
struct acp_context {
env_rwsem chunks_lock;
/* number of chunks per core */
uint64_t num_chunks[OCF_CORE_MAX];
/* per core array of all chunks */
struct acp_chunk_info *chunk_info[OCF_CORE_MAX];
struct acp_bucket bucket_info[ACP_MAX_BUCKETS];
/* total number of chunks in cache */
uint64_t chunks_total;
/* structure to keep track of I/O in progress */
struct acp_flush_context flush;
/* cleaning state persistent over subsequent calls to
perform_cleaning */
struct acp_state state;
#if 1 == OCF_ACP_DEBUG
/* debug only */
uint64_t checksum;
#endif
};
struct acp_core_line_info
{
ocf_cache_line_t cache_line;
ocf_core_id_t core_id;
uint64_t core_line;
};
#define ACP_LOCK_CHUNKS_RD() env_rwsem_down_read(&acp->chunks_lock)
#define ACP_UNLOCK_CHUNKS_RD() env_rwsem_up_read(&acp->chunks_lock)
#define ACP_LOCK_CHUNKS_WR() env_rwsem_down_write(&acp->chunks_lock)
#define ACP_UNLOCK_CHUNKS_WR() env_rwsem_up_write(&acp->chunks_lock)
static struct acp_context *_acp_get_ctx_from_cache(struct ocf_cache *cache)
{
return cache->cleaning_policy_context;
}
static struct acp_cleaning_policy_meta* _acp_meta_get(
struct ocf_cache *cache, uint32_t cache_line,
struct cleaning_policy_meta *policy_meta)
{
ocf_metadata_get_cleaning_policy(cache, cache_line, policy_meta);
return &policy_meta->meta.acp;
}
static void _acp_meta_set(struct ocf_cache *cache, uint32_t cache_line,
struct cleaning_policy_meta *policy_meta)
{
ocf_metadata_set_cleaning_policy(cache, cache_line, policy_meta);
}
static struct acp_core_line_info _acp_core_line_info(struct ocf_cache *cache,
ocf_cache_line_t cache_line)
{
struct acp_core_line_info acp_core_line_info = {.cache_line = cache_line, };
ocf_metadata_get_core_info(cache, cache_line, &acp_core_line_info.core_id,
&acp_core_line_info.core_line);
return acp_core_line_info;
}
static struct acp_chunk_info *_acp_get_chunk(struct ocf_cache *cache,
uint32_t cache_line)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
struct acp_core_line_info core_line =
_acp_core_line_info(cache, cache_line);
uint64_t chunk_id;
chunk_id = core_line.core_line * ocf_line_size(cache) / ACP_CHUNK_SIZE;
return &acp->chunk_info[core_line.core_id][chunk_id];
}
#define for_each_core(cache, iter) \
for (iter = 0; iter < OCF_CORE_MAX; iter++) \
if (cache->core_conf_meta[iter].added)
static void _acp_remove_cores(struct ocf_cache *cache)
{
int i;
for_each_core(cache, i)
cleaning_policy_acp_remove_core(cache, i);
}
static int _acp_load_cores(struct ocf_cache *cache)
{
int i;
int err = 0;
for_each_core(cache, i) {
OCF_DEBUG_PARAM(cache, "loading core %i\n", i);
err = cleaning_policy_acp_add_core(cache, i);
if (err)
break;
}
if (err)
_acp_remove_cores(cache);
return err;
}
void cleaning_policy_acp_init_cache_block(struct ocf_cache *cache,
uint32_t cache_line)
{
struct cleaning_policy_meta policy_meta;
struct acp_cleaning_policy_meta *acp_meta;
/* TODO: acp meta is going to be removed soon */
acp_meta = _acp_meta_get(cache, cache_line, &policy_meta);
acp_meta->dirty = 0;
_acp_meta_set(cache, cache_line, &policy_meta);
}
void cleaning_policy_acp_deinitialize(struct ocf_cache *cache)
{
_acp_remove_cores(cache);
env_vfree(cache->cleaning_policy_context);
cache->cleaning_policy_context = NULL;
}
static void _acp_rebuild(struct ocf_cache *cache)
{
ocf_cache_line_t cline;
ocf_core_id_t cline_core_id;
uint32_t step = 0;
for (cline = 0; cline < cache->device->collision_table_entries; cline++) {
ocf_metadata_get_core_and_part_id(cache, cline, &cline_core_id,
NULL);
OCF_COND_RESCHED_DEFAULT(step);
if (cline_core_id == OCF_CORE_MAX)
continue;
cleaning_policy_acp_init_cache_block(cache, cline);
if (!metadata_test_dirty(cache, cline))
continue;
cleaning_policy_acp_set_hot_cache_line(cache, cline);
}
ocf_cache_log(cache, log_info, "Finished rebuilding ACP metadata\n");
}
void cleaning_policy_acp_setup(struct ocf_cache *cache)
{
struct acp_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_acp].data;
config->thread_wakeup_time = OCF_ACP_DEFAULT_WAKE_UP;
config->flush_max_buffers = OCF_ACP_DEFAULT_FLUSH_MAX_BUFFERS;
}
int cleaning_policy_acp_initialize(struct ocf_cache *cache,
int init_metadata)
{
struct acp_context *acp;
int err, i;
/* bug if max chunk number would overflow dirty_no array type */
#if defined (BUILD_BUG_ON)
BUILD_BUG_ON(ACP_CHUNK_SIZE / ocf_cache_line_size_min >=
1U << (sizeof(acp->chunk_info[0][0].num_dirty) * 8));
#else
ENV_BUG_ON(ACP_CHUNK_SIZE / ocf_cache_line_size_min >=
1U << (sizeof(acp->chunk_info[0][0].num_dirty) * 8));
#endif
ENV_BUG_ON(cache->cleaning_policy_context);
cache->cleaning_policy_context = env_vzalloc(sizeof(struct acp_context));
if (!cache->cleaning_policy_context) {
ocf_cache_log(cache, log_err, "acp context allocation error\n");
return -OCF_ERR_NO_MEM;
}
acp = cache->cleaning_policy_context;
env_rwsem_init(&acp->chunks_lock);
for (i = 0; i < ACP_MAX_BUCKETS; i++) {
INIT_LIST_HEAD(&acp->bucket_info[i].chunk_list);
acp->bucket_info[i].threshold =
((ACP_CHUNK_SIZE/ocf_line_size(cache)) *
ACP_BUCKET_DEFAULTS[i]) / 100;
}
if (cache->conf_meta->core_obj_count > 0) {
err = _acp_load_cores(cache);
if (err) {
cleaning_policy_acp_deinitialize(cache);
return err;
}
}
_acp_rebuild(cache);
return 0;
}
int cleaning_policy_acp_set_cleaning_param(ocf_cache_t cache,
uint32_t param_id, uint32_t param_value)
{
struct acp_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_acp].data;
switch (param_id) {
case ocf_acp_wake_up_time:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ACP_MIN_WAKE_UP,
OCF_ACP_MAX_WAKE_UP,
"thread_wakeup_time");
config->thread_wakeup_time = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread "
"wake-up time: %d\n", config->thread_wakeup_time);
break;
case ocf_acp_flush_max_buffers:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ACP_MIN_FLUSH_MAX_BUFFERS,
OCF_ACP_MAX_FLUSH_MAX_BUFFERS,
"flush_max_buffers");
config->flush_max_buffers = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread max "
"buffers flushed per iteration: %d\n",
config->flush_max_buffers);
break;
default:
return -OCF_ERR_INVAL;
}
return 0;
}
int cleaning_policy_acp_get_cleaning_param(ocf_cache_t cache,
uint32_t param_id, uint32_t *param_value)
{
struct acp_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_acp].data;
switch (param_id) {
case ocf_acp_flush_max_buffers:
*param_value = config->flush_max_buffers;
break;
case ocf_acp_wake_up_time:
*param_value = config->thread_wakeup_time;
break;
default:
return -OCF_ERR_INVAL;
}
return 0;
}
/* attempt to lock cache line if it's dirty */
static ocf_cache_line_t _acp_trylock_dirty(struct ocf_cache *cache,
uint32_t core_id, uint64_t core_line)
{
struct ocf_map_info info;
bool locked = false;
OCF_METADATA_LOCK_RD();
ocf_engine_lookup_map_entry(cache, &info, core_id,
core_line);
if (info.status == LOOKUP_HIT &&
metadata_test_dirty(cache, info.coll_idx) &&
ocf_cache_line_try_lock_rd(cache, info.coll_idx)) {
locked = true;
}
OCF_METADATA_UNLOCK_RD();
return locked ? info.coll_idx : cache->device->collision_table_entries;
}
static void _acp_handle_flush_error(struct ocf_cache *cache,
struct acp_context *acp)
{
struct acp_flush_context *flush = &acp->flush;
flush->chunk->next_cleaning_timestamp = env_get_tick_count() +
env_secs_to_ticks(ACP_CHUNK_CLEANING_BACKOFF_TIME);
if (ocf_cache_log_rl(cache)) {
ocf_core_log(&cache->core_obj[flush->chunk->core_id],
log_err, "Cleaning error (%d) in range"
" <%llu; %llu) backing off for %u seconds\n",
flush->error,
flush->chunk->chunk_id * ACP_CHUNK_SIZE,
(flush->chunk->chunk_id * ACP_CHUNK_SIZE) +
ACP_CHUNK_SIZE,
ACP_CHUNK_CLEANING_BACKOFF_TIME);
}
}
/* called after flush request completed */
static void _acp_flush_end(
struct ocf_cache *cache,
struct acp_context *acp)
{
struct acp_flush_context *flush = &acp->flush;
int i;
for (i = 0; i < flush->size; i++) {
ocf_cache_line_unlock_rd(cache, flush->data[i].cache_line);
ACP_DEBUG_END(acp, flush->data[i].cache_line);
}
if (flush->error)
_acp_handle_flush_error(cache, acp);
}
/* flush data */
static void _acp_flush(struct ocf_cache *cache, struct acp_context *acp,
uint32_t io_queue, struct acp_flush_context *flush)
{
struct ocf_cleaner_attribs attribs = {
.cache_line_lock = false,
.metadata_locked = false,
.do_sort = false,
.io_queue = io_queue,
};
flush->error = ocf_cleaner_do_flush_data(cache, flush->data,
flush->size, &attribs);
_acp_flush_end(cache, acp);
}
static inline bool _acp_can_clean_chunk(struct ocf_cache *cache,
struct acp_chunk_info *chunk)
{
/* Check if core device is opened and if timeout after cleaning error
* expired or wasn't set in the first place */
return (cache->core_obj[chunk->core_id].opened &&
(chunk->next_cleaning_timestamp > env_get_tick_count() ||
!chunk->next_cleaning_timestamp));
}
static struct acp_chunk_info *_acp_get_cleaning_candidate(
struct ocf_cache *cache)
{
int i;
struct acp_chunk_info *cur;
struct acp_context *acp = cache->cleaning_policy_context;
ACP_LOCK_CHUNKS_RD();
/* go through all buckets in descending order, excluding bucket 0 which
* is supposed to contain all clean chunks */
for (i = ACP_MAX_BUCKETS - 1; i > 0; i--) {
list_for_each_entry(cur, &acp->bucket_info[i].chunk_list, list) {
if (_acp_can_clean_chunk(cache, cur)) {
ACP_UNLOCK_CHUNKS_RD();
return cur;
}
}
}
ACP_UNLOCK_CHUNKS_RD();
return NULL;
}
#define CHUNK_FINISHED -1
/* clean at most 'flush_max_buffers' cache lines from given chunk, starting
* at given cache line */
static int _acp_clean(struct ocf_cache *cache, uint32_t io_queue,
struct acp_chunk_info *chunk, unsigned start,
uint32_t flush_max_buffers)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
size_t lines_per_chunk = ACP_CHUNK_SIZE /
ocf_line_size(cache);
uint64_t first_core_line = chunk->chunk_id * lines_per_chunk;
unsigned i;
OCF_DEBUG_PARAM(cache, "lines per chunk %llu chunk %llu "
"first_core_line %llu\n",
(uint64_t)lines_per_chunk,
chunk->chunk_id,
first_core_line);
ACP_DEBUG_INIT(acp);
acp->flush.size = 0;
acp->flush.chunk = chunk;
for (i = start; i < lines_per_chunk && acp->flush.size < flush_max_buffers ; i++) {
uint64_t core_line = first_core_line + i;
ocf_cache_line_t cache_line;
cache_line = _acp_trylock_dirty(cache, chunk->core_id, core_line);
if (cache_line == cache->device->collision_table_entries)
continue;
acp->flush.data[acp->flush.size].core_id = chunk->core_id;
acp->flush.data[acp->flush.size].core_line = core_line;
acp->flush.data[acp->flush.size].cache_line = cache_line;
acp->flush.size++;
ACP_DEBUG_BEGIN(acp, cache_line);
}
if (acp->flush.size > 0) {
_acp_flush(cache, acp, io_queue, &acp->flush);
}
ACP_DEBUG_CHECK(acp);
return (i == lines_per_chunk) ? CHUNK_FINISHED : i;
}
#define NOTHING_TO_CLEAN 0
#define MORE_TO_CLEAN 1
/* Clean at most 'flush_max_buffers' cache lines from current or newly
* selected chunk */
static int _acp_clean_iteration(struct ocf_cache *cache, uint32_t io_queue,
uint32_t flush_max_buffers)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
struct acp_state *state = &acp->state;
if (!state->in_progress) {
/* get next chunk to clean */
state->chunk = _acp_get_cleaning_candidate(cache);
if (!state->chunk) {
/* nothing co clean */
return NOTHING_TO_CLEAN;
}
/* new cleaning cycle - reset state */
state->iter = 0;
state->in_progress = true;
}
state->iter = _acp_clean(cache, io_queue, state->chunk, state->iter,
flush_max_buffers);
if (state->iter == CHUNK_FINISHED) {
/* reached end of chunk - reset state */
state->in_progress = false;
}
return MORE_TO_CLEAN;
}
int cleaning_policy_acp_perform_cleaning(struct ocf_cache *cache,
uint32_t io_queue)
{
struct acp_cleaning_policy_config *config;
int ret;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_acp].data;
if (NOTHING_TO_CLEAN == _acp_clean_iteration(cache, io_queue,
config->flush_max_buffers)) {
ret = ACP_BACKOFF_TIME_MS;
} else {
ret = config->thread_wakeup_time;
}
return ret;
}
static void _acp_update_bucket(struct acp_context *acp,
struct acp_chunk_info *chunk)
{
struct acp_bucket *bucket = &acp->bucket_info[chunk->bucket_id];
if (chunk->num_dirty > bucket->threshold) {
ENV_BUG_ON(chunk->bucket_id == ACP_MAX_BUCKETS - 1);
chunk->bucket_id++;
/* buckets are stored in array, move up one bucket.
* No overflow here. ENV_BUG_ON made sure of no incrementation on
* last bucket */
bucket++;
list_move_tail(&chunk->list, &bucket->chunk_list);
} else if (chunk->bucket_id &&
chunk->num_dirty <= (bucket - 1)->threshold) {
chunk->bucket_id--;
/* move down one bucket, we made sure we won't underflow */
bucket--;
list_move(&chunk->list, &bucket->chunk_list);
}
}
void cleaning_policy_acp_set_hot_cache_line(struct ocf_cache *cache,
uint32_t cache_line)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
struct cleaning_policy_meta policy_meta;
struct acp_cleaning_policy_meta *acp_meta;
struct acp_chunk_info *chunk;
ACP_LOCK_CHUNKS_WR();
acp_meta = _acp_meta_get(cache, cache_line, &policy_meta);
chunk = _acp_get_chunk(cache, cache_line);
if (!acp_meta->dirty) {
acp_meta->dirty = 1;
_acp_meta_set(cache, cache_line, &policy_meta);
chunk->num_dirty++;
}
_acp_update_bucket(acp, chunk);
ACP_UNLOCK_CHUNKS_WR();
}
void cleaning_policy_acp_purge_block(struct ocf_cache *cache,
uint32_t cache_line)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
struct cleaning_policy_meta policy_meta;
struct acp_cleaning_policy_meta *acp_meta;
struct acp_chunk_info *chunk;
acp_meta = _acp_meta_get(cache, cache_line, &policy_meta);
chunk = _acp_get_chunk(cache, cache_line);
if (acp_meta->dirty) {
acp_meta->dirty = 0;
_acp_meta_set(cache, cache_line, &policy_meta);
chunk->num_dirty--;
}
_acp_update_bucket(acp, chunk);
}
int cleaning_policy_acp_purge_range(struct ocf_cache *cache,
int core_id, uint64_t start_byte, uint64_t end_byte)
{
return ocf_metadata_actor(cache, PARTITION_INVALID,
core_id, start_byte, end_byte,
cleaning_policy_acp_purge_block);
}
void cleaning_policy_acp_remove_core(ocf_cache_t cache,
ocf_core_id_t core_id)
{
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
uint64_t i;
ENV_BUG_ON(acp->chunks_total < acp->num_chunks[core_id]);
if (acp->state.in_progress && acp->state.chunk->core_id == core_id) {
acp->state.in_progress = false;
acp->state.iter = 0;
acp->state.chunk = NULL;
}
ACP_LOCK_CHUNKS_WR();
for (i = 0; i < acp->num_chunks[core_id]; i++)
list_del(&acp->chunk_info[core_id][i].list);
acp->chunks_total -= acp->num_chunks[core_id];
acp->num_chunks[core_id] = 0;
env_vfree(acp->chunk_info[core_id]);
acp->chunk_info[core_id] = NULL;
ACP_UNLOCK_CHUNKS_WR();
}
int cleaning_policy_acp_add_core(ocf_cache_t cache,
ocf_core_id_t core_id)
{
uint64_t core_size = cache->core_conf_meta[core_id].length;
uint64_t num_chunks = DIV_ROUND_UP(core_size, ACP_CHUNK_SIZE);
struct acp_context *acp = _acp_get_ctx_from_cache(cache);
int i;
OCF_DEBUG_PARAM(cache, "%s core_id %llu num_chunks %llu\n",
__func__, (uint64_t)core_id, (uint64_t) num_chunks);
ACP_LOCK_CHUNKS_WR();
ENV_BUG_ON(acp->chunk_info[core_id]);
acp->chunk_info[core_id] =
env_vzalloc(num_chunks * sizeof(acp->chunk_info[0][0]));
if (!acp->chunk_info[core_id]) {
ACP_UNLOCK_CHUNKS_WR();
OCF_DEBUG_PARAM(cache, "failed to allocate acp tables\n");
return -ENOMEM;
}
OCF_DEBUG_PARAM(cache, "successfully allocated acp tables\n");
/* increment counters */
acp->num_chunks[core_id] = num_chunks;
acp->chunks_total += num_chunks;
for (i = 0; i < acp->num_chunks[core_id]; i++) {
/* fill in chunk metadata and add to the clean bucket */
acp->chunk_info[core_id][i].core_id = core_id;
acp->chunk_info[core_id][i].chunk_id = i;
list_add(&acp->chunk_info[core_id][i].list,
&acp->bucket_info[0].chunk_list);
}
ACP_UNLOCK_CHUNKS_WR();
return 0;
}

45
src/cleaning/acp.h Normal file
View File

@@ -0,0 +1,45 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __LAYER_CLEANING_POLICY_AGGRESSIVE_H__
#define __LAYER_CLEANING_POLICY_AGGRESSIVE_H__
#include "cleaning.h"
void cleaning_policy_acp_setup(struct ocf_cache *cache);
int cleaning_policy_acp_initialize(struct ocf_cache *cache,
int init_metadata);
void cleaning_policy_acp_deinitialize(struct ocf_cache *cache);
int cleaning_policy_acp_perform_cleaning(struct ocf_cache *cache,
uint32_t io_queue);
void cleaning_policy_acp_init_cache_block(struct ocf_cache *cache,
uint32_t cache_line);
void cleaning_policy_acp_set_hot_cache_line(struct ocf_cache *cache,
uint32_t cache_line);
void cleaning_policy_acp_purge_block(struct ocf_cache *cache,
uint32_t cache_line);
int cleaning_policy_acp_purge_range(struct ocf_cache *cache,
int core_id, uint64_t start_byte, uint64_t end_byte);
int cleaning_policy_acp_set_cleaning_param(struct ocf_cache *cache,
uint32_t param_id, uint32_t param_value);
int cleaning_policy_acp_get_cleaning_param(struct ocf_cache *cache,
uint32_t param_id, uint32_t *param_value);
int cleaning_policy_acp_add_core(ocf_cache_t cache, ocf_core_id_t core_id);
void cleaning_policy_acp_remove_core(ocf_cache_t cache,
ocf_core_id_t core_id);
#endif

View File

@@ -0,0 +1,23 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __CLEANING_AGGRESSIVE_STRUCTS_H__
#define __CLEANING_AGGRESSIVE_STRUCTS_H__
#include "../utils/utils_cleaner.h"
/* TODO: remove acp metadata */
struct acp_cleaning_policy_meta {
uint8_t dirty : 1;
};
/* cleaning policy per partition metadata */
struct acp_cleaning_policy_config {
uint32_t thread_wakeup_time; /* in milliseconds*/
uint32_t flush_max_buffers; /* in lines */
};
#endif

802
src/cleaning/alru.c Normal file
View File

@@ -0,0 +1,802 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#include "ocf/ocf.h"
#include "../ocf_cache_priv.h"
#include "cleaning.h"
#include "alru.h"
#include "../metadata/metadata.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_part.h"
#include "../utils/utils_allocator.h"
#include "../concurrency/ocf_cache_concurrency.h"
#include "../ocf_def_priv.h"
#include "cleaning_priv.h"
#define is_alru_head(x) (x == collision_table_entries)
#define is_alru_tail(x) (x == collision_table_entries)
#define OCF_CLEANING_DEBUG 0
#if 1 == OCF_CLEANING_DEBUG
#define OCF_DEBUG_PREFIX "[Clean] %s():%d "
#define OCF_DEBUG_LOG(cache, format, ...) \
ocf_cache_log_prefix(cache, log_info, OCF_DEBUG_PREFIX, \
format"\n", __func__, __LINE__, ##__VA_ARGS__)
#define OCF_DEBUG_TRACE(cache) OCF_DEBUG_LOG(cache, "")
#define OCF_DEBUG_MSG(cache, msg) OCF_DEBUG_LOG(cache, "- %s", msg)
#define OCF_DEBUG_PARAM(cache, format, ...) OCF_DEBUG_LOG(cache, "- "format, \
##__VA_ARGS__)
#else
#define OCF_DEBUG_PREFIX
#define OCF_DEBUG_LOG(cache, format, ...)
#define OCF_DEBUG_TRACE(cache)
#define OCF_DEBUG_MSG(cache, msg)
#define OCF_DEBUG_PARAM(cache, format, ...)
#endif
struct flush_merge_struct {
ocf_cache_line_t cache_line;
ocf_core_id_t core_id;
uint64_t core_sector;
};
/* -- Start of ALRU functions -- */
/* Sets the given collision_index as the new _head_ of the ALRU list. */
static inline void update_alru_head(struct ocf_cache *cache,
int partition_id, unsigned int collision_index)
{
struct ocf_user_part *part = &cache->user_parts[partition_id];
part->runtime->cleaning.policy.alru.lru_head = collision_index;
}
/* Sets the given collision_index as the new _tail_ of the ALRU list. */
static inline void update_alru_tail(struct ocf_cache *cache,
int partition_id, unsigned int collision_index)
{
struct ocf_user_part *part = &cache->user_parts[partition_id];
part->runtime->cleaning.policy.alru.lru_tail = collision_index;
}
/* Sets the given collision_index as the new _head_ and _tail_
* of the ALRU list.
*/
static inline void update_alru_head_tail(struct ocf_cache *cache,
int partition_id, unsigned int collision_index)
{
update_alru_head(cache, partition_id, collision_index);
update_alru_tail(cache, partition_id, collision_index);
}
/* Adds the given collision_index to the _head_ of the ALRU list */
static void add_alru_head(struct ocf_cache *cache, int partition_id,
unsigned int collision_index)
{
unsigned int curr_head_index;
unsigned int collision_table_entries = cache->device->collision_table_entries;
struct ocf_user_part *part = &cache->user_parts[partition_id];
struct cleaning_policy_meta policy;
ENV_BUG_ON(!(collision_index < collision_table_entries));
ENV_BUG_ON(env_atomic_read(
&part->runtime->cleaning.policy.alru.size) < 0);
ENV_WARN_ON(!metadata_test_dirty(cache, collision_index));
ENV_WARN_ON(!metadata_test_valid_any(cache, collision_index));
/* First node to be added/ */
if (env_atomic_read(&part->runtime->cleaning.policy.alru.size) == 0) {
update_alru_head_tail(cache, partition_id, collision_index);
ocf_metadata_get_cleaning_policy(cache, collision_index,
&policy);
policy.meta.alru.lru_next = collision_table_entries;
policy.meta.alru.lru_prev = collision_table_entries;
policy.meta.alru.timestamp = env_ticks_to_secs(
env_get_tick_count());
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
} else {
/* Not the first node to be added. */
curr_head_index = part->runtime->cleaning.policy.alru.lru_head;
ENV_BUG_ON(!(curr_head_index < collision_table_entries));
ocf_metadata_get_cleaning_policy(cache, collision_index,
&policy);
policy.meta.alru.lru_next = curr_head_index;
policy.meta.alru.lru_prev = collision_table_entries;
policy.meta.alru.timestamp = env_ticks_to_secs(
env_get_tick_count());
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
ocf_metadata_get_cleaning_policy(cache, curr_head_index,
&policy);
policy.meta.alru.lru_prev = collision_index;
ocf_metadata_set_cleaning_policy(cache, curr_head_index,
&policy);
update_alru_head(cache, partition_id, collision_index);
}
env_atomic_inc(&part->runtime->cleaning.policy.alru.size);
}
/* Deletes the node with the given collision_index from the ALRU list */
static void remove_alru_list(struct ocf_cache *cache, int partition_id,
unsigned int collision_index)
{
uint32_t prev_lru_node, next_lru_node;
uint32_t collision_table_entries = cache->device->collision_table_entries;
struct ocf_user_part *part = &cache->user_parts[partition_id];
struct alru_cleaning_policy *cleaning_policy =
&part->runtime->cleaning.policy.alru;
struct cleaning_policy_meta policy;
ENV_BUG_ON(!(collision_index < collision_table_entries));
if (env_atomic_read(&part->runtime->cleaning.policy.alru.size) == 0) {
ocf_cache_log(cache, log_err, "ERROR: Attempt to remove item "
"from empty ALRU Cleaning Policy queue!\n");
ENV_BUG();
}
ocf_metadata_get_cleaning_policy(cache, collision_index, &policy);
/* Set prev and next (even if non existent) */
next_lru_node = policy.meta.alru.lru_next;
prev_lru_node = policy.meta.alru.lru_prev;
/* Check if entry is not part of the ALRU list */
if ((next_lru_node == collision_table_entries) &&
(prev_lru_node == collision_table_entries) &&
(cleaning_policy->lru_head != collision_index) &&
(cleaning_policy->lru_tail != collision_index)) {
return;
}
/* Case 0: If we are head AND tail, there is only one node. So unlink
* node and set that there is no node left in the list.
*/
if (cleaning_policy->lru_head == collision_index &&
cleaning_policy->lru_tail == collision_index) {
policy.meta.alru.lru_next = collision_table_entries;
policy.meta.alru.lru_prev = collision_table_entries;
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
update_alru_head_tail(cache, partition_id,
collision_table_entries);
}
/* Case 1: else if this collision_index is ALRU head, but not tail,
* update head and return
*/
else if ((cleaning_policy->lru_tail != collision_index) &&
(cleaning_policy->lru_head == collision_index)) {
struct cleaning_policy_meta next_policy;
ENV_BUG_ON(!(next_lru_node < collision_table_entries));
ocf_metadata_get_cleaning_policy(cache, next_lru_node,
&next_policy);
update_alru_head(cache, partition_id, next_lru_node);
policy.meta.alru.lru_next = collision_table_entries;
next_policy.meta.alru.lru_prev = collision_table_entries;
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
ocf_metadata_set_cleaning_policy(cache, next_lru_node,
&next_policy);
}
/* Case 2: else if this collision_index is ALRU tail, but not head,
* update tail and return
*/
else if ((cleaning_policy->lru_head != collision_index) &&
(cleaning_policy->lru_tail == collision_index)) {
struct cleaning_policy_meta prev_policy;
ENV_BUG_ON(!(prev_lru_node < collision_table_entries));
ocf_metadata_get_cleaning_policy(cache, prev_lru_node,
&prev_policy);
update_alru_tail(cache, partition_id, prev_lru_node);
policy.meta.alru.lru_prev = collision_table_entries;
prev_policy.meta.alru.lru_next = collision_table_entries;
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
ocf_metadata_set_cleaning_policy(cache, prev_lru_node,
&prev_policy);
}
/* Case 3: else this collision_index is a middle node. There is no
* change to the head and the tail pointers.
*/
else {
struct cleaning_policy_meta next_policy;
struct cleaning_policy_meta prev_policy;
ENV_BUG_ON(!(next_lru_node < collision_table_entries));
ENV_BUG_ON(!(prev_lru_node < collision_table_entries));
ocf_metadata_get_cleaning_policy(cache, prev_lru_node,
&prev_policy);
ocf_metadata_get_cleaning_policy(cache, next_lru_node,
&next_policy);
/* Update prev and next nodes */
prev_policy.meta.alru.lru_next = policy.meta.alru.lru_next;
next_policy.meta.alru.lru_prev = policy.meta.alru.lru_prev;
/* Update the given node */
policy.meta.alru.lru_next = collision_table_entries;
policy.meta.alru.lru_prev = collision_table_entries;
ocf_metadata_set_cleaning_policy(cache, collision_index,
&policy);
ocf_metadata_set_cleaning_policy(cache, prev_lru_node,
&prev_policy);
ocf_metadata_set_cleaning_policy(cache, next_lru_node,
&next_policy);
}
env_atomic_dec(&part->runtime->cleaning.policy.alru.size);
}
static bool is_on_alru_list(struct ocf_cache *cache, int partition_id,
unsigned int collision_index)
{
uint32_t prev_lru_node, next_lru_node;
uint32_t collision_table_entries = cache->device->collision_table_entries;
struct ocf_user_part *part = &cache->user_parts[partition_id];
struct alru_cleaning_policy *cleaning_policy =
&part->runtime->cleaning.policy.alru;
struct cleaning_policy_meta policy;
ENV_BUG_ON(!(collision_index < collision_table_entries));
ocf_metadata_get_cleaning_policy(cache, collision_index, &policy);
next_lru_node = policy.meta.alru.lru_next;
prev_lru_node = policy.meta.alru.lru_prev;
return cleaning_policy->lru_tail == collision_index ||
cleaning_policy->lru_head == collision_index ||
next_lru_node != collision_table_entries ||
prev_lru_node != collision_table_entries;
}
/* -- End of ALRU functions -- */
void cleaning_policy_alru_init_cache_block(struct ocf_cache *cache,
uint32_t cache_line)
{
struct cleaning_policy_meta policy;
ocf_metadata_get_cleaning_policy(cache, cache_line, &policy);
policy.meta.alru.timestamp = 0;
policy.meta.alru.lru_prev = cache->device->collision_table_entries;
policy.meta.alru.lru_next = cache->device->collision_table_entries;
ocf_metadata_set_cleaning_policy(cache, cache_line, &policy);
}
void cleaning_policy_alru_purge_cache_block(struct ocf_cache *cache,
uint32_t cache_line)
{
ocf_part_id_t part_id = ocf_metadata_get_partition_id(cache,
cache_line);
remove_alru_list(cache, part_id, cache_line);
}
static void __cleaning_policy_alru_purge_cache_block_any(
struct ocf_cache *cache, uint32_t cache_line)
{
ocf_part_id_t part_id = ocf_metadata_get_partition_id(cache,
cache_line);
if (is_on_alru_list(cache, part_id, cache_line))
remove_alru_list(cache, part_id, cache_line);
}
int cleaning_policy_alru_purge_range(struct ocf_cache *cache, int core_id,
uint64_t start_byte, uint64_t end_byte) {
struct ocf_user_part *part;
ocf_part_id_t part_id;
int ret = 0;
for_each_part(cache, part, part_id) {
if (env_atomic_read(&part->runtime->cleaning.
policy.alru.size) == 0)
continue;
ret |= ocf_metadata_actor(cache, part_id,
core_id, start_byte, end_byte,
__cleaning_policy_alru_purge_cache_block_any);
}
return ret;
}
void cleaning_policy_alru_set_hot_cache_line(struct ocf_cache *cache,
uint32_t cache_line)
{
ocf_part_id_t part_id = ocf_metadata_get_partition_id(cache,
cache_line);
struct ocf_user_part *part = &cache->user_parts[part_id];
uint32_t prev_lru_node, next_lru_node;
uint32_t collision_table_entries = cache->device->collision_table_entries;
struct cleaning_policy_meta policy;
ENV_WARN_ON(!metadata_test_dirty(cache, cache_line));
ENV_WARN_ON(!metadata_test_valid_any(cache, cache_line));
ocf_metadata_get_cleaning_policy(cache, cache_line, &policy);
next_lru_node = policy.meta.alru.lru_next;
prev_lru_node = policy.meta.alru.lru_prev;
if ((next_lru_node != collision_table_entries) ||
(prev_lru_node != collision_table_entries) ||
((part->runtime->cleaning.policy.
alru.lru_head == cache_line) &&
(part->runtime->cleaning.policy.
alru.lru_tail == cache_line)))
remove_alru_list(cache, part_id, cache_line);
add_alru_head(cache, part_id, cache_line);
}
static void _alru_rebuild(struct ocf_cache *cache)
{
struct ocf_user_part *part;
ocf_part_id_t part_id;
ocf_core_id_t core_id;
ocf_cache_line_t cline;
uint32_t step = 0;
for_each_part(cache, part, part_id) {
/* ALRU initialization */
env_atomic_set(&part->runtime->cleaning.policy.alru.size, 0);
part->runtime->cleaning.policy.alru.lru_head =
cache->device->collision_table_entries;
part->runtime->cleaning.policy.alru.lru_tail =
cache->device->collision_table_entries;
cache->device->runtime_meta->cleaning_thread_access = 0;
}
for (cline = 0; cline < cache->device->collision_table_entries; cline++) {
ocf_metadata_get_core_and_part_id(cache, cline, &core_id,
NULL);
OCF_COND_RESCHED_DEFAULT(step);
if (core_id == OCF_CORE_MAX)
continue;
cleaning_policy_alru_init_cache_block(cache, cline);
if (!metadata_test_dirty(cache, cline))
continue;
cleaning_policy_alru_set_hot_cache_line(cache, cline);
}
}
static int cleaning_policy_alru_initialize_part(struct ocf_cache *cache,
struct ocf_user_part *part, int init_metadata)
{
if (init_metadata) {
/* ALRU initialization */
env_atomic_set(&part->runtime->cleaning.policy.alru.size, 0);
part->runtime->cleaning.policy.alru.lru_head =
cache->device->collision_table_entries;
part->runtime->cleaning.policy.alru.lru_tail =
cache->device->collision_table_entries;
}
cache->device->runtime_meta->cleaning_thread_access = 0;
return 0;
}
void cleaning_policy_alru_setup(struct ocf_cache *cache)
{
struct alru_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
config->thread_wakeup_time = OCF_ALRU_DEFAULT_WAKE_UP;
config->stale_buffer_time = OCF_ALRU_DEFAULT_STALENESS_TIME;
config->flush_max_buffers = OCF_ALRU_DEFAULT_FLUSH_MAX_BUFFERS;
config->activity_threshold = OCF_ALRU_DEFAULT_ACTIVITY_THRESHOLD;
}
int cleaning_policy_alru_initialize(struct ocf_cache *cache, int init_metadata)
{
struct ocf_user_part *part;
ocf_part_id_t part_id;
for_each_part(cache, part, part_id) {
cleaning_policy_alru_initialize_part(cache,
part, init_metadata);
}
if (init_metadata)
_alru_rebuild(cache);
return 0;
}
int cleaning_policy_alru_set_cleaning_param(ocf_cache_t cache,
uint32_t param_id, uint32_t param_value)
{
struct alru_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
switch (param_id) {
case ocf_alru_wake_up_time:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ALRU_MIN_WAKE_UP,
OCF_ALRU_MAX_WAKE_UP,
"thread_wakeup_time");
config->thread_wakeup_time = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread "
"wake-up time: %d\n", config->thread_wakeup_time);
break;
case ocf_alru_stale_buffer_time:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ALRU_MIN_STALENESS_TIME,
OCF_ALRU_MAX_STALENESS_TIME,
"stale_buffer_time");
config->stale_buffer_time = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread "
"staleness time: %d\n", config->stale_buffer_time);
break;
case ocf_alru_flush_max_buffers:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ALRU_MIN_FLUSH_MAX_BUFFERS,
OCF_ALRU_MAX_FLUSH_MAX_BUFFERS,
"flush_max_buffers");
config->flush_max_buffers = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread max "
"buffers flushed per iteration: %d\n",
config->flush_max_buffers);
break;
case ocf_alru_activity_threshold:
OCF_CLEANING_CHECK_PARAM(cache, param_value,
OCF_ALRU_MIN_ACTIVITY_THRESHOLD,
OCF_ALRU_MAX_ACTIVITY_THRESHOLD,
"activity_threshold");
config->activity_threshold = param_value;
ocf_cache_log(cache, log_info, "Write-back flush thread "
"activity time threshold: %d\n",
config->activity_threshold);
break;
default:
return -OCF_ERR_INVAL;
}
return 0;
}
int cleaning_policy_alru_get_cleaning_param(ocf_cache_t cache,
uint32_t param_id, uint32_t *param_value)
{
struct alru_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
switch (param_id) {
case ocf_alru_wake_up_time:
*param_value = config->thread_wakeup_time;
break;
case ocf_alru_stale_buffer_time:
*param_value = config->stale_buffer_time;
break;
case ocf_alru_flush_max_buffers:
*param_value = config->flush_max_buffers;
break;
case ocf_alru_activity_threshold:
*param_value = config->activity_threshold;
break;
default:
return -OCF_ERR_INVAL;
}
return 0;
}
static inline uint32_t compute_timestamp(
const struct alru_cleaning_policy_config *config)
{
unsigned long time;
time = env_get_tick_count();
time -= env_secs_to_ticks(config->stale_buffer_time);
time = env_ticks_to_secs(time);
return (uint32_t) time;
}
static int check_for_io_activity(struct ocf_cache *cache,
struct alru_cleaning_policy_config *config)
{
unsigned int now, last;
now = env_ticks_to_msecs(env_get_tick_count());
last = env_atomic_read(&cache->last_access_ms);
if ((now - last) < config->activity_threshold)
return 1;
return 0;
}
static int cmp_ocf_user_parts(const void *p1, const void *p2) {
const struct ocf_user_part *t1 = *(const struct ocf_user_part**)p1;
const struct ocf_user_part *t2 = *(const struct ocf_user_part**)p2;
if (t1->config->priority > t2->config->priority)
return 1;
else if (t1->config->priority < t2->config->priority)
return -1;
return 0;
}
static void swp_ocf_user_part(void *part1, void *part2, int size) {
void *tmp = *(void **)part1;
*(void **)part1 = *(void **) part2;
*(void **)part2 = tmp;
}
static void get_parts_sorted(struct ocf_user_part **parts,
struct ocf_cache *cache) {
int i;
for (i = 0; i < OCF_IO_CLASS_MAX; i++)
parts[i] = &cache->user_parts[i];
env_sort(parts, OCF_IO_CLASS_MAX, sizeof(struct ocf_user_part*),
cmp_ocf_user_parts, swp_ocf_user_part);
}
static int clean_later(ocf_cache_t cache, uint32_t *delta)
{
struct alru_cleaning_policy_config *config;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
*delta = env_ticks_to_secs(env_get_tick_count()) -
cache->device->runtime_meta->cleaning_thread_access;
if (*delta <= config->thread_wakeup_time)
return true;
return false;
}
static void get_block_to_flush(struct flush_data* dst,
ocf_cache_line_t cache_line, struct ocf_cache* cache)
{
ocf_core_id_t core_id;
uint64_t core_line;
ocf_metadata_get_core_info(cache, cache_line,
&core_id, &core_line);
dst->cache_line = cache_line;
dst->core_id = core_id;
dst->core_line = core_line;
}
static int more_blocks_to_flush(struct ocf_cache *cache,
ocf_cache_line_t cache_line, uint32_t last_access)
{
struct cleaning_policy_meta policy;
if (cache_line >= cache->device->collision_table_entries)
return false;
ocf_metadata_get_cleaning_policy(cache, cache_line, &policy);
if (policy.meta.alru.timestamp >= last_access)
return false;
return true;
}
static int block_is_busy(struct ocf_cache *cache,
ocf_cache_line_t cache_line)
{
ocf_core_id_t core_id;
uint64_t core_line;
ocf_metadata_get_core_info(cache, cache_line,
&core_id, &core_line);
if (!cache->core_obj[core_id].opened)
return true;
if (ocf_cache_line_is_used(cache, cache_line))
return true;
return false;
}
static int get_data_to_flush(struct flush_data *dst, uint32_t clines_no,
struct ocf_cache *cache, struct ocf_user_part *part)
{
struct alru_cleaning_policy_config *config;
struct cleaning_policy_meta policy;
ocf_cache_line_t cache_line;
int to_flush = 0;
uint32_t last_access;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
cache_line = part->runtime->cleaning.policy.alru.lru_tail;
last_access = compute_timestamp(config);
OCF_DEBUG_PARAM(cache, "Last access=%u, timestamp=%u rel=%d",
last_access, policy.meta.alru.timestamp,
policy.meta.alru.timestamp < last_access);
while (to_flush < clines_no &&
more_blocks_to_flush(cache, cache_line, last_access)) {
if (!block_is_busy(cache, cache_line)) {
get_block_to_flush(&dst[to_flush], cache_line, cache);
to_flush++;
}
ocf_metadata_get_cleaning_policy(cache, cache_line, &policy);
cache_line = policy.meta.alru.lru_prev;
}
OCF_DEBUG_PARAM(cache, "Collected items_to_clean=%u", to_flush);
return to_flush;
}
static int perform_flushing(int clines_no, struct ocf_cache *cache, uint32_t io_queue,
struct flush_data *flush_data, struct ocf_user_part *part)
{
int to_clean = get_data_to_flush(flush_data, clines_no, cache, part);
if (to_clean > 0) {
struct ocf_cleaner_attribs attribs = {
.cache_line_lock = true,
.metadata_locked = true,
.do_sort = true,
.io_queue = io_queue
};
ocf_cleaner_do_flush_data(cache, flush_data,
to_clean, &attribs);
} else {
/* Update timestamp only if there are no items to be cleaned */
cache->device->runtime_meta->cleaning_thread_access =
env_ticks_to_secs(env_get_tick_count());
}
return to_clean;
}
static int is_cleanup_possible(ocf_cache_t cache)
{
struct alru_cleaning_policy_config *config;
uint32_t delta;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
if (check_for_io_activity(cache, config)) {
OCF_DEBUG_PARAM(cache, "IO activity detected");
return false;
}
if (clean_later(cache, &delta)) {
OCF_DEBUG_PARAM(cache,
"Cleaning policy configured to clean later "
"delta=%u wake_up=%u", delta,
config->thread_wakeup_time);
return false;
}
//Cleaning policy configured to not clean anything
if (config->flush_max_buffers == 0)
return false;
return true;
}
static int cleanup(struct ocf_cache *cache, uint32_t clines_no,
struct ocf_user_part *part, uint32_t io_queue)
{
struct flush_data *flush_data;
size_t flush_data_limit;
int flushed_blocks = 0;
if (!is_cleanup_possible(cache))
return flushed_blocks;
if (OCF_METADATA_LOCK_WR_TRY())
return flushed_blocks;
OCF_REALLOC_INIT(&flush_data, &flush_data_limit);
OCF_REALLOC(&flush_data, sizeof(flush_data[0]), clines_no,
&flush_data_limit);
if (!flush_data) {
OCF_METADATA_UNLOCK_WR();
ocf_cache_log(cache, log_warn, "No memory to allocate flush "
"data for ALRU cleaning policy");
return flushed_blocks;
}
flushed_blocks = perform_flushing(clines_no, cache, io_queue,
flush_data, part);
OCF_METADATA_UNLOCK_WR();
OCF_REALLOC_DEINIT(&flush_data, &flush_data_limit);
return flushed_blocks;
}
int cleaning_alru_perform_cleaning(ocf_cache_t cache, uint32_t io_queue)
{
struct ocf_user_part *parts[OCF_IO_CLASS_MAX];
int part_id = OCF_IO_CLASS_MAX - 1;
struct alru_cleaning_policy_config *config;
uint32_t clines_no;
config = (void *)&cache->conf_meta->cleaning[ocf_cleaning_alru].data;
get_parts_sorted(parts, cache);
clines_no = config->flush_max_buffers;
while (part_id >= 0) {
clines_no -= cleanup(cache, clines_no,
parts[part_id], io_queue);
if (clines_no > 0)
part_id--;
else
break;
}
if (clines_no > 0)
return config->thread_wakeup_time * 1000;
return 0;
}

30
src/cleaning/alru.h Normal file
View File

@@ -0,0 +1,30 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __LAYER_CLEANING_POLICY_ALRU_H__
#define __LAYER_CLEANING_POLICY_ALRU_H__
#include "cleaning.h"
#include "alru_structs.h"
void cleaning_policy_alru_setup(struct ocf_cache *cache);
int cleaning_policy_alru_initialize(struct ocf_cache *cache,
int init_metadata);
void cleaning_policy_alru_init_cache_block(struct ocf_cache *cache,
uint32_t cache_line);
void cleaning_policy_alru_purge_cache_block(struct ocf_cache *cache,
uint32_t cache_line);
int cleaning_policy_alru_purge_range(struct ocf_cache *cache, int core_id,
uint64_t start_byte, uint64_t end_byte);
void cleaning_policy_alru_set_hot_cache_line(struct ocf_cache *cache,
uint32_t cache_line);
int cleaning_policy_alru_set_cleaning_param(struct ocf_cache *cache,
uint32_t param_id, uint32_t param_value);
int cleaning_policy_alru_get_cleaning_param(struct ocf_cache *cache,
uint32_t param_id, uint32_t *param_value);
int cleaning_alru_perform_cleaning(struct ocf_cache *cache, uint32_t io_queue);
#endif

View File

@@ -0,0 +1,32 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __CLEANING_ALRU_STRUCTS_H__
#define __CLEANING_ALRU_STRUCTS_H__
#include "ocf/ocf.h"
#include "ocf_env.h"
struct alru_cleaning_policy_meta {
/* Lru pointers 2*4=8 bytes */
uint32_t timestamp;
uint32_t lru_prev;
uint32_t lru_next;
} __attribute__((packed));
struct alru_cleaning_policy_config {
uint32_t thread_wakeup_time; /* in seconds */
uint32_t stale_buffer_time; /* in seconds */
uint32_t flush_max_buffers; /* in lines */
uint32_t activity_threshold; /* in milliseconds */
};
struct alru_cleaning_policy {
env_atomic size;
uint32_t lru_head;
uint32_t lru_tail;
};
#endif

137
src/cleaning/cleaning.c Normal file
View File

@@ -0,0 +1,137 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#include "cleaning.h"
#include "alru.h"
#include "acp.h"
#include "../ocf_priv.h"
#include "../ocf_cache_priv.h"
#include "../ocf_ctx_priv.h"
#include "../mngt/ocf_mngt_common.h"
#include "../metadata/metadata.h"
#define SLEEP_TIME_MS (1000)
struct cleaning_policy_ops cleaning_policy_ops[ocf_cleaning_max] = {
[ocf_cleaning_nop] = {
.name = "nop",
},
[ocf_cleaning_alru] = {
.setup = cleaning_policy_alru_setup,
.init_cache_block = cleaning_policy_alru_init_cache_block,
.purge_cache_block = cleaning_policy_alru_purge_cache_block,
.purge_range = cleaning_policy_alru_purge_range,
.set_hot_cache_line = cleaning_policy_alru_set_hot_cache_line,
.initialize = cleaning_policy_alru_initialize,
.set_cleaning_param = cleaning_policy_alru_set_cleaning_param,
.get_cleaning_param = cleaning_policy_alru_get_cleaning_param,
.perform_cleaning = cleaning_alru_perform_cleaning,
.name = "alru",
},
[ocf_cleaning_acp] = {
.setup = cleaning_policy_acp_setup,
.init_cache_block = cleaning_policy_acp_init_cache_block,
.purge_cache_block = cleaning_policy_acp_purge_block,
.purge_range = cleaning_policy_acp_purge_range,
.set_hot_cache_line = cleaning_policy_acp_set_hot_cache_line,
.initialize = cleaning_policy_acp_initialize,
.deinitialize = cleaning_policy_acp_deinitialize,
.set_cleaning_param = cleaning_policy_acp_set_cleaning_param,
.get_cleaning_param = cleaning_policy_acp_get_cleaning_param,
.add_core = cleaning_policy_acp_add_core,
.remove_core = cleaning_policy_acp_remove_core,
.perform_cleaning = cleaning_policy_acp_perform_cleaning,
.name = "acp",
},
};
int ocf_start_cleaner(struct ocf_cache *cache)
{
return ctx_cleaner_init(cache->owner, &cache->cleaner);
}
void ocf_stop_cleaner(struct ocf_cache *cache)
{
ctx_cleaner_stop(cache->owner, &cache->cleaner);
}
void ocf_cleaner_set_priv(ocf_cleaner_t c, void *priv)
{
OCF_CHECK_NULL(c);
c->priv = priv;
}
void *ocf_cleaner_get_priv(ocf_cleaner_t c)
{
OCF_CHECK_NULL(c);
return c->priv;
}
ocf_cache_t ocf_cleaner_get_cache(ocf_cleaner_t c)
{
OCF_CHECK_NULL(c);
return container_of(c, struct ocf_cache, cleaner);
}
static int _ocf_cleaner_run_check_dirty_inactive(struct ocf_cache *cache)
{
int i;
if (!env_bit_test(ocf_cache_state_incomplete, &cache->cache_state))
return 0;
for (i = 0; i < OCF_CORE_MAX; ++i) {
if (!env_bit_test(i, cache->conf_meta->valid_object_bitmap))
continue;
if (cache->core_obj[i].opened && env_atomic_read(&(cache->
core_runtime_meta[i].dirty_clines))) {
return 0;
}
}
return 1;
}
uint32_t ocf_cleaner_run(ocf_cleaner_t c, uint32_t io_queue)
{
struct ocf_cache *cache;
ocf_cleaning_t clean_type;
int sleep = SLEEP_TIME_MS;
cache = ocf_cleaner_get_cache(c);
/* Do not involve cleaning when cache is not running
* (error, etc.).
*/
if (!env_bit_test(ocf_cache_state_running, &cache->cache_state) ||
ocf_mngt_is_cache_locked(cache)) {
return SLEEP_TIME_MS;
}
/* Sleep in case there is management operation in progress. */
if (env_rwsem_down_write_trylock(&cache->lock) == 0)
return SLEEP_TIME_MS;
if (_ocf_cleaner_run_check_dirty_inactive(cache)) {
env_rwsem_up_write(&cache->lock);
return SLEEP_TIME_MS;
}
clean_type = cache->conf_meta->cleaning_policy_type;
ENV_BUG_ON(clean_type >= ocf_cleaning_max);
/* Call cleaning. */
if (cleaning_policy_ops[clean_type].perform_cleaning) {
sleep = cleaning_policy_ops[clean_type].
perform_cleaning(cache, io_queue);
}
env_rwsem_up_write(&cache->lock);
return sleep;
}

75
src/cleaning/cleaning.h Normal file
View File

@@ -0,0 +1,75 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __LAYER_CLEANING_POLICY_H__
#define __LAYER_CLEANING_POLICY_H__
#include "alru_structs.h"
#include "nop_structs.h"
#include "acp_structs.h"
#define CLEANING_POLICY_CONFIG_BYTES 256
#define CLEANING_POLICY_TYPE_MAX 4
struct ocf_request;
struct cleaning_policy_config {
uint8_t data[CLEANING_POLICY_CONFIG_BYTES];
struct acp_cleaning_policy_config acp;
};
struct cleaning_policy {
union {
struct nop_cleaning_policy nop;
struct alru_cleaning_policy alru;
} policy;
};
/* Cleaning policy metadata per cache line */
struct cleaning_policy_meta {
union {
struct nop_cleaning_policy_meta nop;
struct alru_cleaning_policy_meta alru;
struct acp_cleaning_policy_meta acp;
} meta;
};
struct cleaning_policy_ops {
void (*setup)(struct ocf_cache *cache);
int (*initialize)(struct ocf_cache *cache, int init_metadata);
void (*deinitialize)(struct ocf_cache *cache);
int (*add_core)(struct ocf_cache *cache, ocf_core_id_t core_id);
void (*remove_core)(struct ocf_cache *cache, ocf_core_id_t core_id);
void (*init_cache_block)(struct ocf_cache *cache, uint32_t cache_line);
void (*purge_cache_block)(struct ocf_cache *cache,
uint32_t cache_line);
int (*purge_range)(struct ocf_cache *cache, int core_id,
uint64_t start_byte, uint64_t end_byte);
void (*set_hot_cache_line)(struct ocf_cache *cache,
uint32_t cache_line);
int (*set_cleaning_param)(struct ocf_cache *cache,
uint32_t param_id, uint32_t param_value);
int (*get_cleaning_param)(struct ocf_cache *cache,
uint32_t param_id, uint32_t *param_value);
/**
* @brief Performs cleaning.
* @return requested time (in ms) of next call
*/
int (*perform_cleaning)(struct ocf_cache *cache,
uint32_t io_queue);
const char *name;
};
extern struct cleaning_policy_ops cleaning_policy_ops[ocf_cleaning_max];
struct ocf_cleaner {
void *priv;
};
int ocf_start_cleaner(struct ocf_cache *cache);
void ocf_stop_cleaner(struct ocf_cache *cache);
#endif

View File

@@ -0,0 +1,19 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
static inline void cleaning_policy_param_error(ocf_cache_t cache,
const char *param_name, uint32_t min, uint32_t max)
{
ocf_cache_log(cache, log_err, "Refusing setting flush "
"parameters because parameter %s is not within range "
"of <%d-%d>\n", param_name, min, max);
}
#define OCF_CLEANING_CHECK_PARAM(CACHE, VAL, MIN, MAX, NAME) ({ \
if (VAL < MIN || VAL > MAX) { \
cleaning_policy_param_error(CACHE, NAME, MIN, MAX); \
return -OCF_ERR_INVAL; \
} \
})

View File

@@ -0,0 +1,15 @@
/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __LAYER_CLEANING_POLICY_NOP_STRUCTS_H__
#define __LAYER_CLEANING_POLICY_NOP_STRUCTS_H__
struct nop_cleaning_policy_meta {
} __attribute__((packed));
struct nop_cleaning_policy {
};
#endif