Avoid unnecessary code execution in D2C mode.
Avoid multiple req->d2c check in normal I/O path.
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@huawei.com>
Allow the core volume IOs to be forwarded directly to backend volumes to
avoid unnecessary allocations.
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@huawei.com>
Otherwise, it may increase the number of hits, while the overall performance
has not been improved. This way, the hit rate is more correlated with
the performance changes.
Signed-off-by: Michael Lyulko <michael.lyulko@huawei.com>
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@huawei.com>
Now the request can be pushed to a high priority queue (instead of ocf_queue_push_req_front)
and to a low priority queue (instead of ocf_queue_push_req_back).
Both functions were merged into one function (ocf_queue_push_req) and instead of the
allow_sync parameter there is now a flags parameter that can be an OR combination of
OCF_QUEUE_ALLOW_SYNC and OCF_QUEUE_PRIO_HIGH
Signed-off-by: Ian Levine <ian.levine@huawei.com>
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
HB lock takes inclusive metadata lock, which is taken also by metadata
flush, thus trying to call metadata flush under HB lock attempts to take
this lock recursively. In that case, if in the meantime some other thread
would try to take exclusive metadata lock, the inner inclusive lock would
block (because the lock keeps the order), with outer inclusive lock still
held, leading to a deadlock.
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
There are situations when we can end up in engine_pt with cache lines
locked for write. One example is engine_rd falling back to engine_pt after
failure during cache line preparation, where write lock has been already
taken. To handle this situation properly, unlock request using more general
unlock function.
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
Remove one callback indirection level. I/O never changes it's direction
so there is no point in storing both read and write callbacks for each
request.
Signed-off-by: Robert Baldyga <robert.baldyga@intel.com>
In most (6/9) instances across engines ocf_core_stats_cache_error_update
is called upon each cache volume I/O error, possibly multiple times
per a user request in case of multi-cacheline requests. Backfill,
fast and read engine are exceptions, incrementing error stats only
once per user request.
This commit unifies ocf_core_stats_cache_error_update usage so that
in all the engines error statistic is incremented for once for every
error.
Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
Flush I/O should be forwarded to core and cache device. In case of core
this is simple - just mirror the I/O from the top volume. Since
cache data is owned by OCF it makes sense to send a simple flush I/O
with 0 address and size.
Current implementation attempts to use cache data I/O interface
(ocf_submit_cache_reqs function) instead of submitting empty flush to
the underlying cache device. This function is designed to read/write
from mapped cachelines while there is no traversation/mapping
performed on flush I/O.
If request map allocation succeeds, this results in sending I/O to
addres 0 with size and flags inherited from the top adapter I/O.
This doesn't make any sense, and can even result in invalid I/O if the
size is greater than cache device size.
Even worse, if flush request map allocation fails (which happens
always in case of large flush requests) then the erroneous call to
ocf_submit_cache_reqs results in NULL pointer dereference.
Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
So far the only resource protected by backfill queue blocking was internal
OCF request queue. Move unblock to backfill io completion to protect also
queue of underlying cache device.
Signed-off-by: Robert Baldyga <robert.baldyga@intel.com>
This patch fixes the issue 988 (and 997) causing a kernel stack
overflow.
Signed-off-by: Krzysztof Majzerowicz-Jaszcz <krzysztof.majzerowicz-jaszcz@intel.com>
All remapped cachelines are write locked. If the operation fails cachelines has
to be unlocked during rollback
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@intel.com>
Flushing metadata in WT is required only if at least of the request's cacheline
changed its state to clean.
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@intel.com>