Now the request can be pushed to a high priority queue (instead of ocf_queue_push_req_front)
and to a low priority queue (instead of ocf_queue_push_req_back).
Both functions were merged into one function (ocf_queue_push_req) and instead of the
allow_sync parameter there is now a flags parameter that can be an OR combination of
OCF_QUEUE_ALLOW_SYNC and OCF_QUEUE_PRIO_HIGH
Signed-off-by: Ian Levine <ian.levine@huawei.com>
Signed-off-by: Robert Baldyga <robert.baldyga@huawei.com>
Eviction changes allowing to evict (remap) cachelines while
holding hash bucket write lock instead of global metadata
write lock.
As eviction (replacement) is now tightly coupled with request,
each request uses eviction size equal to number of its
unmapped cachelines.
Evicting without global metadata write lock is possible
thanks to the fact that remaping is always performed
while exclusively holding cacheline (read or write) lock.
So for a cacheline on LRU list we acquire cacheline lock,
safely resolve hash and consequently write-lock hash bucket.
Since cacheline lock is acquired under hash bucket (everywhere
except for new eviction implementation), we are certain that
noone acquires cacheline lock behind our back. Concurrent
eviction threads are eliminated by holding eviction list
lock for the duration of critial locking operations.
Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
Divide single global lock instance into 4 to reduce contention
in multiple read-locks scenario.
Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
- Queue allocation is now separated from starting cache.
- Queue can be created and destroyed in runtime.
- All queue ops accept queue handle instead of queue id.
- Cache stores queues as list instead of array.
Signed-off-by: Michal Mielewczyk <michal.mielewczyk@intel.com>
Signed-off-by: Robert Baldyga <robert.baldyga@intel.com>